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1. Introduction

While linear independence as it applies to linear algebra is a very useful tool in
mathematics, it can only be used in a specific area of study. The idea of a matroid
was first explored by Hassler Whitney in a paper he wrote in 1935. Essentially,
the concept of a matroid generalizes the idea of linear independence to be within
a finite set of elements. These elements could be the edges of a graph, the rows of
a matrix, vectors from a vector space V , almost anything. As a result, there are
many specific examples of matroids and different ways to visualize them.

In this paper, we will consider some of the varying but equivalent definitions of
matroids, some important examples that build on these definitions, and go through
various problems. Some of the problems are taken from Wilson’s An Introduction to
Graph Theory while others are problems I invented or have seen elsewhere stated.
Some important topics mentioned throughout include the Fano Matroid, the greedy
algorithm from the perspective of the matroid, and finally a brief look at the matroid
dual.

2. Background

Definition 1. A matroid M consists of a non-empty finite set E and a non-empty
collection B of subsets of E, called bases, satisfying the following properties:1

B(i) no base properly contains another base
B(ii) if B1 and B2 are bases and if e is any element of B1, then there is an

element f of B2 such that (B1 − {e}) ∪ {f} is also a base.

Using B(ii) repeatedly, we can show that all bases of a matroid on a set E have
the same number of elements.

Proof. Suppose we have two bases α = {a1, a2, a3, . . . , am} and β = {b1, b2, b3, . . . , bn}
where n > m. Remove a1 from α to get the set α−{a1}. By property B(ii), there
is an element of β, say b1, such that (α − {a1}) ∪ {b1} = {b1, a2, a3, ..., am} = α1

is also a base. Repeating this process, we eventually acquire the set αm which
still contains m elements, all of which are contained in β. Suppose WLOG that
αm = {b1, b2, b3, . . . , bm}. However, |αm| = m < n = |β| which implies that αm is
not a base. Thus α was never a base to begin with.

Since all bases of a matroid M have the same number of elements, a special
term called the rank of M is defined to be the size of its bases. This concept is
analogous in linear algebra where the rank of a vector space V is defined as the size
of its basis. For example, rank(R3)=3, where β = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

1Taken from Introduction to Graph Theory by Robin J. Wilson
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3. Other Definitions of the Matroid

In order to consider another equivalent definition of the matroid, we must define
some important terms. A subset S ⊆ E is independent if S is contained in some
base of the matroid M . The most obvious example of this is the cycle matroid, in
which every independent subset contains no cycles.

Definition 2. A matroid M consists of a non-empty finite set E and a non-
empty collection I of subsets of E called independent sets satisfying the following
properties:

I(i) any subset of an independent set is independent;
I(ii) if I and J are independent sets with |J | > |I|, then there is an element e,

contained in J but not in I, such that I ∪ {e} is independent.

We can also define the matroid M = (E, I) in terms of its rank function, where
r(A) is the size of the largest independent set contained in A for A ⊂ E. We state
the definition here2:

Let E = {e1, e2, e3, . . . , en} be a given set of elements. Let A be an arbitrary
subset of E. If the following three postulates are satisfied, we shall call this system
a matroid.

R(i) The rank of the null subset is zero.
R(ii) For any subset A and any element e /∈ A,

r(A + e) = r(A) + k, (k = 0 or 1).

R(iii) For any subset N and elements e1, e2 not in A, if r(A + e1) = r(A + e2) =
r(A), then r(A + e1 + e2) = r(A).

For comparison, Wilson gives a slightly modified and arguably clearer version of
what Whitney’s definition of the matroid in terms of a rank function says:

Theorem 1. A matroid consists of a non-empty finite set E and an integer valued
function r defined on the set of subsets of E, satisfying:

r(i) 0 ≤ r(A) ≤ |A|, for each subset A of E;
r(ii) if A ⊆ B ⊆ E, then r(A) ≤ r(B);
r(iii) for any A,B ⊆ E, r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).

The proof of the equivalence of this definition to the one in terms of conditions
I(i) and I(ii) is given by Wilson.

Whitney also make the interesting but perhaps trivial point that any subset of
a matroid is a matroid. In other words, if we have a matroid M1 on a set E, we
can define a new matroid M2 on a set A where A ⊂ E.

More specifically, if M is a matroid defined on a set E, and if A is a subset of
E, then we define the restriction of M to A, written M × A, to be the matroid
whose cycles are those cycles of M that are contained in A.

In addition, the contraction, written M . A, is the matroid whose cycles are
the minimal members of the collection {Ci∩A}, where Ci is a cycle of M . When we
discuss the dual of a matroid, a simpler definition can be related. Finally, a matroid
obtained through successive contraction and restrictions of M is called a minor of
M . Roughly speaking, these terms correspond to the deletion and contraction of
edges in a graph.

2On The Abstract Properties of Linear Dependence by Hassler Whitney
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Theorem 2. If M is a matroid on a set E and A ⊆ B ⊆ E, then (M ×B)×A =
M ×A.

Proof. Consider an arbitrary cycle Ci ⊂ A. Clearly it is also true that Ci ⊂ B.
It follows that no cycles of A are omitted when M is restricted to B and therefore
the theorem is true.

�

Theorem 3. If M is a matroid on a set E and A ⊆ B ⊆ E, then (M . B) . A =
M . A.

Proof. The cycles CBAi of (M . B).A are the minimal members of the collection
{CBi ∩ A} where CBi is a cycle of M.B. Furthermore, CBi is itself an arbitrary
minimal member of the collection {CMi ∩B} where CMi is a cycle of M .

Therefore all cycles CBAi of (M . B) . A satisfy the following:

CBAi ∈ min{min{CMi ∩B} ∩A}
∈ min{CMi ∩B ∩A}
∈ min{CMi ∩A} Since A ⊂ B

Since every cycle CBAi of (M . B) . A is from the same collection as each cycle
CAi of M . A, the theorem is true.

�

4. Matroids In Terms of The Cycle

A matroid can also be defined in terms of its cycles. By definition a cycle is a
minimal dependent set of a matroid M(E, I) defined in terms of its independent
sets. Using this idea, we will prove that a matroid can be defined as follows:

Theorem 4. A matroid consists of a non-empty finite set E, and a collection C

of non-empty subsets of E called cycles satisfying the following properties:3

C(i) no cycle properly contains another cycle;
C(ii) if C1 and C2 are two distinct cycles each containing an element e, then

there exists a cycle C3 ⊆ C1 ∪ C2 − {e}.

Proof. (⇒) Let M = (E, I) be a matroid defined in terms of its independent
sets. To prove C(i), suppose that there exist cycles C1 and C2, where C1 6= C2,
such that C1 ⊂ C2. This implies that C2 is not a minimal dependent set since we
can remove at least one element e and still have that C2 − {e} is dependent.

To prove C(ii), suppose that C1∪C2−{e} does not contain a cycle. This implies
that C1∪C2−{e} is independent, and likewise that C1∪C2 is a minimal dependent
set (i.e. it is a cycle). However, this contradicts C(i) since C1∪C2 properly contains
two distinct cycles, namely C1 and C2.

(⇐)Now suppose we have a matroid M(E,C) defined by its cycles. To prove I(i),
consider an arbitrary cycle C1 and remove an element e1 from it. It follows that
C1−{e1} is independent. If we then remove any other element ei ∈ C1−{e1}, the
set must still be independent otherwise we would have that C1 properly contains
another cycle, contradicting C(i).

3Introduction to Graph Theory by Robin J. Wilson
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To check I(ii), let I1 and I2 be independent sets of M with |I1| > |I2|. If
I2 ⊂ I1, then clearly there exists an element e ∈ I1 − I2 such that I2 ∪ {e} is
independent. Otherwise, let I2 − I1 = {x1, x2, x3, . . . , xk} where k ≤ |I2|. Also let
I1 − I2 = {y1, y2, y3, . . . , yj}. Note that j > k. To see this, suppose that |I1| = a,
that |I2| = b where a > b, and that |I1 ∩ I2| = c. Then |I2 − I1| = b − c = k and
|I1 − I2| = a− c = j. Since a > b, we have that j > k.

Now suppose that I2 ∪ {ym} is dependent ∀m ≤ j. This implies that each set
I2 ∪ {ym} contains a cycle, and furthermore, this cycle necessarily contains ym. If
not, we would have that I2 is not independent. So, we now have j distinct cycles
and Cm is the cycle contained in I2 ∪ {ym}. We will now show by induction on the
number of elements i contained in I2− I1, i ≤ k, that there are at least j− i cycles
in I1 ∪ I2 containing none of x1, x2, . . . , xi.

For the base case i = 1, if one of the cycles Cp ⊂ I2 ∪ {yp} ⊂ I1 ∪ I2 does not
contain x1, we have that Cp ⊂ I1, which contradicts the fact that I1 is independent.
If all cycles C1, C2, . . . , Cj ⊂ I1 ∪ I2 contain the point x1. Then pick two of them,
C1 and Cj for example. By C(ii), there exists a cycle C ′

1 ⊂ C1 ∪ Cj − {x1}. Now
create j − 2 additional cycles by pairing Cj with every other cycle in the sequence
and applying C(ii). Now delete Cj from the sequence and replace each Cm with
C ′

m. We now have a sequence of j − 1 cycles C ′
1, C

′
2, C

′
3, . . . , C

′
j−1, none of which

contains x1.
Now suppose that for i = s where s ≤ k − 1, we have at least j − s cycles

contained in I1 ∪ I2, and none of them contain an element from x1, x2, x3, . . . , xs.
Consider the case i = s+1. If none of the j−s cycles Cm ⊂ I2∪{ym} contain xs+1,
we are done. Suppose that xs+1 is contained in n of these cycles, C1, C2, . . . , Cn.
By C(ii) for d = 1, 2, . . . , n− 1, we can find a cycle C ′

d contained in Cj ∪Cn but not
containing xs+1. Replacing Cd by C ′

d for each d = 1, 2, 3, . . . , n−1 and deleting Cn

completes the induction step.
We have now shown that for i = k, there are at least j − k cycles contained

in I1 ∪ I2 that contain no point of I2 − I1. In other words, there are j − k cycles
properly contained in I1. Again, this contradicts the independence of I1.

�

5. Types of Matroids

Two very important and common matroids are the the vector matroid and cycle
matroid. If our set E is a finite set of vectors from a vector space V , then E spans
some subspace contained in V . Moreover, we define the vector matroid on E
by taking its bases as all linearly independent subsets S ⊆ E such that span(S) =
span(E).

Example 1. Find a graph corresponding to the cycle matroid on n edges with bases
{1, 2, 3, . . . , n− 1}, {2, 3, 4, . . . , n}, {3, 4, 5, . . . , n, 1}, . . . , {n, 1, 2, 3, . . . , n− 2}.

Note that all of the matroid’s bases have n−1 elements. By definition, a matroid
is k-uniform on E, if its bases are those subsets of E with exactly k elements. Thus
the matroid in this example is n− 1 uniform.

Example 2. Find a graph that corresponds to a cycle matroid M on n edges in
which only 1 basis exists: the basis β = {1, 2, 4, 5, 7, 8, . . . , n}. β contains no edge
labelled with a multiple of 3. Now find the dual M∗ and construct a graph of it.
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Example 3. Find an upper bound for the total number of possible matroids on a
set of n elements

Consider that the total number of subsets of a set of n elements is 2n. Moreover,
if we treat each of these subsets as members of the collection of independent sets
of a matroid, then 22n

is the total of ways of selecting its independent sets. Thus,
there are at most 22n

different matroids on a set of n elements. It turns out that
this is indeed an overestimate of the actual numbers.

6. The Fano Matroid and More Terminology

The Fano Matroid is a matroid defined on the set E = {1, 2, 3, 4, 5, 6, 7}, whose
bases are all the triples of E except those determined by the Steiner Triple System4,
that is, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2} and {7, 1, 3}. The Fano
Matroid can be represented geometrically below:
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Wilson states that the Fano Matroid can be shown to be binary and Eulerian,
but not graphic, cographic, transversal, or regular. Let us provide some of these
tedious definitions below:

Note that the cycle matroid is denoted by M(G). The rank of the cycle matroid
of a graph G is defined by the cutset rank ξ. Remember that the cutset rank is
the number of edges in a spanning forest of G, is denoted ξ(G), and equals n− k,
where n is the number of vertices and k is the number of components. Before we
define cographic, note that a matroid M is graphic if there exists a graph G such
that M is isomorphic to M(G).

An isomorphism for matroids is defined as follows: A matroid M1 is isomor-
phic to a matroid M2 if there is a bijection or 1-1 correspondence between their
underlying sets E1 and E2 that preserves independence. It is important to note
that when looking at cycle matroids, we can have an isomorphism even though the
two graphs don’t have the same numbers of components, vertices, or degrees. How-
ever, matroid isomorphism does preserve cycles, cutsets, and of course the number
of edges.

Graphically speaking, we can also make use of the cutset matroid which takes
the cutsets of a graph G as the cycles of the corresponding matroid. This defines
a matroid that we call the cutset matroid of G, denoted M∗(G). Now, we call
a matroid M cographic if there exists a graph G such that M is isomorphic to

4See http://mathworld.wolfram.com/SteinerTripleSystem.html for more information
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M∗(G). Note the analogy between graphic and cographic matroids. Are all graphic
matroids also cographic, and vice versa? It turns our that the graphic matroids
M(K5) and M(K3,3) are not cographic. An interesting fact since these two graphs
are the building blocks of non-planar graphs in the Euclidean plane. Conveniently,
we define a matroid to be planar if it is both graphic and cographic.

Example 4. Show that the graphic matroid M(K3,3) is not cographic.
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Consider that the only cycle lengths of K3,3 are 4 and 6. This is easy to see

since a spanning tree of K3,3 has exactly 5 edges so the maximum cycle length is
6. Moreover, the graph is bipartite so only even cycle lengths are possible. Thus, if
there does exist a graph G such that M∗(G) is isomorphic to M(K3,3), then all the
cutsets of G have either 4 or 6 edges. G must have a total of 9 edges so suppose
that G has 5 vertices. It follows that G has at least 5·4

2 = 10 edges. This obviously
doesn’t work. Suppose G has 4 vertices. In this case, we have a minimum of 4·4

2 = 8
edges. If we allow one vertex to have degree 6, we get 3·4+6

2 = 9 edges. Thus, G
must have 4 vertices with degree sequence (4, 4, 4, 6).

Now, if we remove any 6-cycle of M∗(G) and the corresponding cutset of G,
M∗(G) will have no cycles left and will be disconnected. Likewise, the sum of the
vertex degrees of G is now 6. Since there are 4 vertices, at least 1 of them has degree
2, which means that a cutset of size 2 remains in G. This means that M∗(G) must
have a remaining cycle of length 2. This is the desired contradiction.

Similar to our more common definition of bipartite, a bipartite matroid is
a matroid in which every cycle has an even number of elements. A matroid is
Eulerian if its underlying set E can be written as a union of disjoint cycles.

Theorem 5. The cutsets of a graph G satisfy conditions C(i) and C(ii).

Proof. Remember that a cutset is defined as a disconnecting set and furthermore,
no proper subset of a cutset is a cutset. In this way, a cutset is minimized so C(i) is
automatically satisfied. For C(ii), suppose that we have 2 cutsets S1 and S2 where
there exists some element e such that e ∈ S1 ∩S2. Now suppose that S1 ∪S2−{e}
contains no cutset. However, this implies that S1 ∪ S2 must be a cutset itself,
contradicting C(i).

�

Given a matroid M on an underlying set E, M is said to be representable
over a field F if there exist a vector space V over F and a map φ : E → V , such
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that a subset A of E is independent in M iff φ is 1-1 on A and φ(A) is linearly
independent in V . This equates to saying that M is isomorphic to some vector
matroid in some vector space, if we ignore loops and parallel elements. A binary
matroid is a matroid representable over the field of integers modulo 2. The book
states that for any graph G, the cycle matroid of G is always a binary matroid.
Now, a regular matroid is one that is representable over any field5. The idea of
representable is a tough concept to grasp so let us consider an example.

Example 5. Show that the Fano Matroid is binary.

Let us assign each element of E = {f1, f2, f3, f4, f5, f6, f7} a vector in N7
2. Re-

member the cycles of F are:

{f1, f2, f4} {f2, f3, f5} {f3, f4, f6} {f4, f5, f7} {f5, f6, f1} {f6, f7, f2} {f7, f1, f3}
We want to eventually assign each element of E to a vector consisting of 7 entries
of only 0’s and 1’s. The trusty guess and check method seemed the to be the easiest
way to solve this problem. Fortunately, the answer is attainable this way. Assign
each element of E in the following manner. Notice that no two vectors have the
same number of zeros.

f1 = (0, 0, 0, 1, 0, 0, 0)
f2 = (0, 0, 1, 1, 1, 0, 0)
f3 = (1, 1, 1, 0, 1, 1, 1)
f4 = (0, 0, 1, 0, 1, 0, 0)
f5 = (1, 1, 0, 1, 0, 1, 1)
f6 = (1, 1, 0, 0, 0, 1, 1)
f7 = (1, 1, 1, 1, 1, 1, 1)

It turns out that there is more than one way to assign binary vectors to each
element of F . Tutte6 gave the following representative matrix: 1 0 0 1 0 1 1

0 1 0 1 1 0 1
0 0 1 0 1 1 1


Specifically let:

f1 = (1, 0, 0)
f2 = (0, 1, 0)
f3 = (0, 0, 1)
f4 = (1, 1, 0)
f5 = (0, 1, 1)
f6 = (1, 0, 1)
f7 = (1, 1, 1)

5Introduction to Graph Theory by Robin J. Wilson
6Graph Theory As I Have Known It by W.T. Tutte
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Example 6. Show that the Fano Matroid is Eulerian.

Let C1 = {f2, f3, f4, f7}. Note that C1 is a minimally dependent set and hence a
cycle as it contains a base of F plus one other element. Now, let C2 = {f1, f5, f6}.
C2 is a cycle by definition. Since C1 ∪ C2 = E and C1 ∩ C2 = ∅, F is Eulerian.

�

Example 7. Let us consider the cycle matroid M(K4) where E can be thought
of as the set of edges. Show that this matroid is representable over some field F .
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Note that E = {1, 2, 3, 4, 5, 6} and our cycles are {1, 2, 3, 4}, {1, 2, 5}, {2, 3, 6},
{3, 4, 5} and {1, 4, 6}. The maximal independent sets are {1, 2, 3}, {1, 2, 4}, {1, 2, 6},
{2, 3, 5}, {1, 4, 5}, {3, 4, 6}, {1, 3, 4} and {2, 3, 4}. Now we just need to figure out
vectors to assign to each element of E such that independence and dependence are
preserved among subsets. To make things simpler, let us show that M(K4) is a
binary matroid.

The book gives a nice technique for showing that a cycle matroid is also a
binary matroid. We’ll associate each edge of G (i.e. each element of E) with the
corresponding column from its incidence matrix. Here is the incidence matrix for
K4.

Q =


1 1 0 0 0 1
0 1 1 0 1 0
0 0 1 1 0 1
1 0 0 1 1 0


Looking at the labelled K4, notice that the edge set {1, 2, 3} is independent.

Moreover the vectors from columns 1, 2 and 3 of Q are linearly independent. One
could test all possible subset mappings and see that mapping of each edge to a
vector in Nn

2 where n is the number of vertices, preserves the independence relation
for all subsets A ⊂ E. Specifically, if a set of edges forms a cycle, than the sum of
the corresponding vectors is 0 (mod 2).

Theorem 6. If a matroid M is graphic, then it is binary.

Proof. Consider that if M is graphic, then there exists a graph G such that M
is isomorphic to M(G). Now we assign each edge of G its corresponding column
from the incidence matrix of G. Note that this is a vector on the field of integers
modulo 2.

Now consider any cycle C of G. Each edge of the cycle is connected to two
vertices, one at each end. Also note that the vector associated with each edge has
only two 1’s in it, for the same reason.
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Therefore, the final vector sum of the cycle is 0 (mod 2) at each vertex. Each
edge that is connected to a given vertex in the cycle contributes 1 to this sum.
Thus, our mapping preserves the dependence of the cycles of G.

If we consider a subset S of E that isn’t a cycle, it follows that the subgraph
containing each element of S and all incident vertices has at least one end vertex.
Let’s call this vertex vi. Furthermore, position i in the vector sum is the number
of elements in S that are incident to vi. Since there is only one such element, the
vector sum is non-zero.

�

Example 8. Construct an Eulerian vector matroid M on a finite set of vectors E
that is a subspace of R3. Remember that a cycle of a vector matroid is a minimal
linearly dependent set of vectors.

The largest cycle we could possibly have would be 4 elements since we are
dealing with a 3 dimensional subspace. The simplest case is to construct two
cycles where one only occupies the first component of the space and the other
cycle occupies the two remaining components. This is analogous to having a
cycle restricted to x and another cycle restricted to y and z. Thus, let C1 =
{(1, 0, 0), (3, 0, 0)} and C2 = {(0, 1, 0), (0, 0, 1), (0, 1, 1)}. We want C1 ∪ C2 = E so
let E = {(1, 0, 0), (3, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)}. From this, it seems relatively
easy to construct Eulerian vector matroids on any dimension. However, testing an
arbitrary matroid for being Eulerian may prove difficult.

7. The Greedy Algorithm Revisited

Previously, we used the greedy algorithm on weighted graphs. Specifically, we
considered the example of a railroad that needs to reach a given network of cities
using a minimal amount of track. This essentially breaks down to finding a spanning
tree with least possible total weight. We start with the smallest weighted edge and
add it to our tree. We then continue adding edges to our tree making sure to pick
the one with minimum cost at each step. We stop when we have a spanning tree
(i.e. adding any more edges creates a cycle). This process can be described quite
nicely in the context of matroids since we don’t actually have to look at a specific
graph.

Ken Bogart gives another example to consider7: suppose we have a school district
trying to fill a number of job positions. For each position, there is a set of qualified
candidates. We can visualize this situation as a bipartite graph where V1 is the
set of candidates and V2 is the set of job positions. Furthermore, there is an edge
drawn from candidate a to job position b if a is qualified to fill b.

However, there may very well be a financial factor involved here. Consider
that each candidate has a minimum salary he or she is willing to accept. We can
represent this with a cost function c : E → N where E is the set of edges in the
graph. From the school district’s perspective, we want to fill as many positions as
possible with the least total cost. The greedy algorithm tells us to build a maximum-
sized independent set by continually adding the cheapest element possible to the
current set. This process stops when we can no longer find candidates to add.

How do we know that there isn’t some other independent set that is larger than
the one we’ve created? Consider condition I(ii), which states: If I and J are

7Introductory Combinatorics by Kenneth P. Bogart
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independent sets where |I| < |J |, then there is an element e ∈ J such that I ∪ {e}
is independent.

Here is the greedy algorithm, clearly and simply stated:

Step 1. Let I = ∅.
Step 2. From the set E, pick an element x with minimum cost.
Step 3. If I ∪ {x} is independent, replace I by I ∪ {x}.
Step 4. Delete x from E.
Step 5. If E is not empty, return to Step 2.

Theorem 7. Suppose we are given a matroid M on a set E with a cost function
c : E → N. The greedy algorithm selects a basis of minimum cost. In other words,
it gives us a basis B such that c(B) ≤ c(B′) for all bases B′ 6= B.

From condition I(ii), the greedy algorithm will be able to continue adding ele-
ments to the A (the set in consideration) until A becomes a maximum-sized indepen-
dent set. Thus we have selected a basis. We call this basis B and suppose that B′ is
another basis. List the elements of each basis as follows: B = {b1, b2, b3, . . . , bn} and
B′ = {a1, a2, a3, . . . , an}. In addition, the elements are listed in order of increasing
cost so that if i < j, c(bi) ≤ c(bj) and similarly, c(ai) ≤ c(aj).

By Step 2 of the greedy algorithm, c(b1) ≤ c(a1). If c(bi) ≤ c(ai) ∀i, then
c(B) ≤ c(B′). So let us assume that for some i, but for no previous i, c(ai) < c(bi).
Clearly, the two sets {a1, a2, a3, . . . , ai} and {b1, b2, b3, . . . , bi−1} are both indepen-
dent. Then by I(ii), there exists an aj with j ≤ i such that {b1, b2, b3, . . . , bi−1, aj}
is independent.

However, since c(aj) ≤ c(ai) < c(bi), aj would have been chosen by the greedy
algorithm. Therefore, c(bi) ≤ c(ai) and so B is a minimum-cost basis.

�

8. Dual Matroids

It turns out that the duality of matroids is a much nicer and more generalized
way of defining the dual concept. In fact, the definition encountered before for the
abstract dual of a planar graph is a direct consequence of the definition of a matroid
dual.

Earlier, we found the cutset matroid M∗(G) on the set of edges of G by taking
as cycles of M∗(G) the cutsets of G. It is conveniently the case that M∗(G) is the
dual of M(G).

Definition 3. If M is a matroid on a set E, defined in terms of its rank function
r, we specify the dual matroid M∗ of M as the matroid on E whose rank function
r∗ is given by:

r∗(A) = |A|+ r(E −A)− r(E), for A ⊆ E

Theorem 8. M∗ = (E, r∗) is a matroid on E.

The proof is given by Wilson.
As this is a rather convoluted definition, it is nice that the bases of M∗ are

defined in terms of the bases of M .

Theorem 9. The bases of M∗ are precisely the complements of the bases of M .
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Now we will define some important terms that apply to the matroid dual. The
elements of a matroid M form a cocycle of M if they form a cycle of M∗. It turns
out that the cocycles of the cycle matroid of a graph G are the cutsets of G. In
addition, a cobase is a base of M∗. There are also the similarly defined terms
corank and co-independent set. Before, we said that a matroid M is cographic
if there exists a graph G such that M ∗ (G) (the cutset matroid of G) is isomorphic
to M . An equivalent definition is as follows: a matroid M is cographic if and only
if its dual M∗ is graphic.

Example 9. Find the dual of the Fano Matroid. Is there a graphical representation
of this perhaps similar to that of the F? Is F ∗ binary?

Theorem 10. Every cocycle of a matroid intersects every base. Likewise, every
cycle of a matroid intersects every cobase.

The proof of this is contained in the class text.

Theorem 11. Let M be a binary matroid on a set E. If M is an Eulerian matroid,
then M∗ is bipartite.

Theorem 12. If M is a graphic Eulerian matroid on a set E, then M∗ is bipartite.

Proof. Since M is graphic, there exists a graph G such that M(G) is isomorphic
to M . The edge set E(G) can thus be written as a union of disjoint cycles. By
Corollary 6.3, G is an Eulerian graph. We can assume G to be connected because if
not, we could just piece it together by its cycles connecting them at single vertices.
Connecting two cycles at a single vertex does not increase the number of cycles nor
does it affect any previously existing cycles.

Since G is Eulerian, every vertex has even degree. Therefore, every cutset of G
has an even number of edges. If we suppose otherwise that there is a cutset with
an odd number of edges, then we can easily construct a contradiction that G is not
Eulerian. With this established, each cycle of G∗ has even length. Therefore, G∗

is bipartite. By Theorem 32.6, M(G∗) is isomorphic to (M(G))∗. Since M(G) is
isomorphic to M , we have that M(G∗) must also be isomorphic to M∗. Hence M∗

is bipartite.
�

We end with an important theorem in matroid theory proven by Tutte. The
proof is too difficult to be explained simply, but it has important connections to
the planarity of graphs.

Theorem 13. (Tutte). A matroid M is graphic if and only if it is binary and
contains no minor isomorphic to M(K5), M(K3,3), F or F∗.

9. Conclusion

The examples and problems presented have been intended to help one to better
understand the idea of a matroid. In a manner of speaking, the matroid relates nu-
merous fields of mathematics, including graph theory and linear algebra, and links
them with a supreme generalization of independence. So perhaps understanding
the matroid will help one to better understand mathematics as a whole. Nonethe-
less, matroid theory is huge. There are so many different ways of using them in
the context of a research project. Ultimately, this paper was designed to pose some
interesting problems and exercises in matroid theory that may help another student
wishing to learn something about it.


