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ABSTRACT
In this paper we describe a new Bayesian estimation ap-
proach for simultaneous mapping and localization for pedes-
trians based on odometry with foot mounted inertial sensors.
When somebody walks within a constrained area such as
a building, then even noisy and drift-prone odometry mea-
surements can give us information about features like turns,
doors, and walls, which we can use to build a form of a map
of the explored area, especially when these features are re-
visited over time. Our initial results for our novel scheme
which we call “FootSLAM” are very surprising in that true
SLAM with stable relative positioning accuracy of 1-2 me-
ters for pedestrians is indeed possible based on inertial sen-
sors alone without any prior known building indoor layout.
Furthermore, the 2D maps obtained even for just 10 min-
utes of walking converge to a good approximation of the true
layout forming the basis for future automated collaborative
mapping of buildings.
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INTRODUCTION
Recent work has shown remarkable advances in the area of
indoor positioning with low cost inertial sensors worn by
pedestrians. The work of Foxlin on foot mounted Inertial
Measurement Units (IMUs) [5] has shown how zero veloc-
ity updates - ZUPTs- during the rest phase of a pedestrian’s
foot can be used to mitigate the problem of non-linear error
growth in inertial integration over time. Nevertheless, errors
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Figure 1. Plots from two walks around an office environment (one rect-
angular corridor circuit and rooms on the inside and outside of it).
Shown is ZUPT aided inertial navigation based on a foot mounted IMU.
Both these traces produce viable maps that are shown later.

Figure 2. A map learnt from foot mounted IMU data alone plotted on
the actual building layout for reference. See Figure4 for explanations.

still accrue over time, especially the heading error which is
only weakly observable from the zero velocity update. Fig-
ure 1 shows the data from the IMU attached to a shoe pro-
cessed in a typical Inertial Navigation System (INS) using
ZUPTs: The drifts (particularly in heading) lead to large di-
vergence from the true path. Three groups independently
showed that this problem can be addressed by employing
known building layouts [10, 3, 6]. All used “particle filter-
ing” (PF) methods where the building layout information is
used to constrain particle movement to within the areas ac-
cessible to a pedestrian. As a result, long term error stability
can be achieved when the map is sufficiently accurate and
the layout sufficiently constrains the motion. The goal of
this work is tocope with situations where the floor plan is
unknown. One useful application would be the ability to use



data collected from people wearing IMUs on their shoes as
they walk about in some environment during their lives (such
as their office premises, while traveling, or at home) and to
build maps automatically which can later be combined with
other maps of the same or other areas and shared with navi-
gating users. See Figure2 for an example corresponding to
Figure1. These maps could then be used by people requir-
ing assistance using positioning, such as rescue personnel,
people with disabilities, or visitors to a company.
The robotics community has long used numerous sensors
such as sonar, laser ranging scanners and cameras to perform
high precision positioning of robots. The SLAM (Simulta-
neous Localization and Mapping) problem was addressed to
allow robots to navigate in a-priori unknown environments
[9]: A moving robot explores its environment and uses its
sensor information to build a “map” of landmarks.
This paper builds on prior work on pedestrian positioning
using foot mounted IMUs as well as the SLAM approach
used in robotics.The novelty here is the fact that we use no
visual or other exteroceptive sensors of any kind; the only
sensors we used are the foot mounted IMU. We show that a
pedestrian’s location and the building layout can be jointly
estimated by using the pedestrian’s odometry alone, as mea-
sured by the foot mounted IMU. We begin by presenting the
problem formulated as a dynamic Bayesian estimation prob-
lem and a Rao-Blackwellized particle filtering approach that
follows the FastSLAM principle [8]. Subsequently we pro-
pose a probabilistic map that represents human motion in
a two-dimensional hexagonal grid (somewhat similar to an
occupancy grid [4] but with a different purpose). We then
show qualitative and quantitative results obtained from real
data obtained from a person walking in a building.

DYNAMIC BAYESIAN NETWORK FORMULATION
We will formulate the problem as a dynamic Bayesian net-
work (DBN). The key is to suitably represent the actor in
the system; i.e. the pedestrian. When people walk in a con-
strained environment, they rely mainly on visual cues in or-
der to avoid walls and other obstacles. Such a person might
be walking towards a particular target destination such as an
office, or might just be walking randomly in the accessible
space in an office during a conversation.
In robotic SLAM the robot is controlled by a series of inputs
U that control its movement and these inputs are used in the
SLAM estimation as inputs to a probabilistic motion model.
Here, we can state that the human visual system is interpret-
ing the environment and using it to guide motion: Observed
direct physical constraints such as walls will influence in-
tentions which will result in a person deciding which steps
U to take. We obviously have no means of directly observ-
ing the human visual systemVis, nor can we directly mea-
sure where the person might actually want to go next (Int ).
We do have sensors that (differentially) measure the steps a
person takes, i.e. a foot mounted IMU. Figure3 shows a
dynamic Bayesian network (DBN) that encodes relevant as-
pects of the system. Random Variables (RVs) are denoted in
bold face. The step transition vectorUk has a special prop-
erty: given the old and new posesPk−1, Pk the step transi-
tion Uk is determined entirely; just as knowledge of any two
of the state variablesPk−1, Pk andUk determines the third.
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Figure 3. DBN for FootSLAM showing three time slices. The Map can
include any features and information to let the pedestrian choose Int.

Step measurementsZU
k are obtained in a manner as described

in [6] and we assume that a suitable Kalman filter or simi-
lar algorithm was used to estimate the step vectorUk. From
the viewpoint of our DBN this estimate is ameasurement.
The only other influence on the measurementZU

k is a state
variableEk that encodes the correlated errors of the IMU.

DERIVATION OF BAYESIAN FILTER FOR GENERIC MAPS
Our goal is to estimate the states and state histories of the
DBN given the series of all observationsZU

1:k from the foot-
mounted IMU. In a Bayesian formulation we compute the
joint posteriorp(P0:kU0:kE0:k, M |ZU

1:k) which factorizes into

p(M |P0:k) · p({P U E}0:k|Z
U
1:k). (1)

The expression for the map probability in (1) simplifies be-
cause the assumed knowledge ofP0:k makes the mapM con-
ditionally independent ofU0:k, E0:k, and the measurements
ZU

1:k; as follows from the DBN in Figure3 and the relation-
ship linking Pk−1, Pk andUk. It is important to point out
that the additional states - encoding vision and intention -
never actually have to be explicitly used - they are in the
model only for completeness and understanding. We shall
express the right hand term in (1) recursively in the sense of
a Bayesian filter. It can be shown that the recursive formula-
tion isp({P U E}0:k|Z

U
1:k)

∝ p(ZU
k |UkEk) · p({PU}k|{P U}0:k−1) ·

p(Ek|Ek−1) · p({P U E}0:k−1|Z
U
1:k−1). (2)

The recursion is usually begun with the poseP0 set to an ar-
bitrary fixed state, since performing SLAM without any true
heading or location information is invariant over rotation and
translation. We assume pertinent post-processing to resolve
rotation, translation (and scale) transformations.
It is clear from the DBN that the map must play a role in de-
termining the second term of (2), the pose and step transition
probability. Marginalizing overM we can express this as

I =̂
∫

M
p({PU}k|Pk−1, M) · p(M |P0:k−1)dM . (3)

If we are able to computep(M |P0:k−1) and the influence of a
map on the transition fromPk−1 to Pk, then we can perform



sequential Bayesian estimation of the map and pose.

Sequential Monte-Carlo - Particle Filtering
In order to obtain an online particle filter we sample from
the “likelihood PF” proposal density shown in the algorithm
summary below. Following [2], it can be shown that to a very
good approximationwi

k ∝ wi
k−1 · Ii. We therefore apply

a Rao-Blackwellized PF [8] based on (1): Each particlei
represents{{PUE}k

i
, p(M |P0:k

i)}.

ADOPTING PROBABILISTIC TRANSITION MAPS
We will now introduce a probabilistic map, based on the
probability of the pedestrian crossing transitions in a reg-
ular 2D grid of adjacent hexagons of radiusr. We chose
hexagons because they are the polygons with the greatest
number of sides that can be arranged to cover a 2D area com-
pletely without overlap. Furthermore, six angular transitions
appear an appropriate number of choices for which human
motion would be reasonably independent between angles.
We restrict this space to the region visited by any particle and
defineHh as one ofNH hexagons, whereh uniquely refer-
ences a hexagon’s position. Our map RVM is defined as the
set comprising allMh whereMh is a RV vector of length 6
with each component RV denoting the transition probability:

Me(Uk)
h(Pk−1)

=̂ P (Pk ∈ Hj |Pk−1 ∈ Hh) ; wherej 6= h, (4)

for leaving theh-th hexagon over the edgee viaUk to hexagon
Hj . We assume that the map factors into local, conditionally
independent components, and stepUk is only dependent on
Pk−1 and the local mapMh(Pk−1)

. Writing h̃ for outgoing
hexagonh(Pk−1), andẽ for e(Uk), we compute the integral
I by integrating overM ẽ

h̃
for the respective edge.

Learning the Transition Map
Learning is straightforwardly based on Bayesian learning of
probabilities of discrete RVs. Each time a particle makes a
transitionPk−1

i → Pk
i across edgẽe we count this transi-

tion in the local map of hexagonHh̃. When computing the
counts we assume that observing a certain transition from an
outgoing hexagon to an incoming one allows us to increment
the counts for the outgoing as well as the incoming one. This
is the same as assuming that a person is likely to walk in ei-
ther direction and improves convergence. In order to easily
incorporate prior information we assume thatp(M ẽ

h̃
|P0:k

i)
follows a beta distribution and integratingIi yields

Ii α
N ẽ

h̃
+ αẽ

h̃

Nh̃ + αh̃

(5)

whereN ẽ
h̃

is the number of times particlei crossed the tran-
sition, Nh̃ is the sum of the counts over all edges of the
hexagon in this particle’s map counters; andαẽ

h̃
andαh̃ =∑5

e=0 αe
h̃

are the prior counts.

SUMMARY OF THE ALGORITHM
1. Initialize all Np particles toP0

i = (x, y, h = 0) wherex,
y, h denote the pose location and heading in 2D; drawE0

i

from a suitable initial distribution for the error states.

2. for each time step incrementk:

(a) Particles are drawn from the proposal density
p(Ek|Ek−1

i)· p(Uk|ZU
k , Ek

i) from left to right..

(b) The posePk
i is is the vector addition ofUk

i toPk−1
i.

(c) The particle weight updates arewi α wi
k−1 · Ii; the

counts used inIi are those that are computed up to
stepk − 1; weights are then normalized,

(d) Increment each particle’sN ẽ
h̃

for the transitions of
both hexagons joined by the edgeẽi w.r.t. the outgo-
ing hexagoñhi; perform resampling if required.

So far an increment of the time indexk is associated with a
step that leads from one hexagon to an adjacent one. In re-
ality a step might keep us in the hexagon or it might lead us
over several. To address this we simply perform a weight up-
date only when we have stepped out of the last hexagon and
apply multiple products of (5) for all edges crossed. Sim-
ilarly, we update the counts of all edges crossed. We also
incorporated a minor correction term in the weight update
(raising it to a power depending on the step’s angle in the
grid) to account for the fact that straight tracks with different
angles traversing the grid will yield slightly different total
number of hexagon edge transitions per distance unit (other-
wise particles with some directions are slightly favored).

EXPERIMENTS, RESULTS AND CONCLUSIONS
We performed three runs where a pedestrian walked around
an office layout for roughly10 minutes with a foot mounted
IMU and r = 0.5m. The data sets were recorded and pro-
cessed offline. Results for the learned maps (translated, ro-
tated and scaled) are shown in Figures2 and4. The maps
in those areas that were visited reflect the real path and are
accurate to about 1-3 meters, with better accuracy in the
corridors that were frequented more often. Both walks in
Figure4 intentionally remained out of “loop closure” in the
corridor for some time. The particles start converging once
the user backtracks or revisits a region for about 10 meters.
Hexagons have to be re-visited once or twice in each main
undirected traversal axis (remember we increment bidirec-
tionally) for a usable map to emerge, and this governs the
required duration of a walk; it fits within what a person typ-
ically covers in an office day, say. Accuracy in any case
will be limited by the average physical structure dimension,
such as corridors and doors which is about 1-2 m. Note
that map errors were often in different regions of the indi-
vidual map, suggesting that map combination from many
walks could be valuable. We recorded ground truth for two
positions at opposite corners of the main corridor. The er-
ror growth (as the walk progessed) for FootSLAM process-
ing is shown in Figure5. Our coordinate system origin was
both the starting point and one of the reference points and
we restricted the hexagon area to remove rotation ambiguity.
With sufficient particles we achieve an accuracy of relative
position to within two meters at the two reference points.
Without FootSLAM we see error growth after some time -
the INS coasted without too much error for about 300 sec-
onds. Durations from 30s - 300s are typical and suggest that
without maps the PF can bridge areas like large halls where



Figure 4. Two other maps learnt from IMU data alone. Shown are an
overlap of the posterior (i.e. weighed average) map (in shades of grey)
and the more useful MAP map (i.e. the map of the “best” particle) -
black. Hexagons which the pedestrian has visited more often are more
open, unvisted ones are not shown. More white within the hexagons
themselves means more frequently crossed transitions. Ovals indicate
errors - the arrow indicating roughly the error vector (see the scale).

there are no features for FootSLAM to map; at least to let
someone find a destination or till a restricting door/corridor
is again reached. In order to work, we expect FootSLAM
to need a certain minimum average restrictedness of mo-
tion (related to entropy) but it can survive some open areas
given sufficient particles. To achieve accurate mapping, es-
pecially in the rooms, we need a large number of particles (>
10, 000). This needed200 MB and took about 30 minutes
on a 2,4GHz Pentium core. In our experiments we applied
two independent additive random walk processes toEk com-
prising heading bias and heading temporal drift error states
affectingZU

k . The additive error in 2D space betweenZU
k

rotated according toEk, andUk, was white and Gaussian.
In many SLAM approaches without location sensors there
is a map scaling error in addition to rotation and translation.
In FootSLAM, this error is due to biases in the worn sen-
sors, occasional erroneous ZUPTs and subsampling/clipping
of the IMU signals that affect the step length estimation, and
also a result of particles exploring hypotheses of different
lengths. In our quantitative evaluation and videos [1] we
havenot used an individual length correction factor. This
was only done using a constant factor of 1.15 which we have
established quite reliably for that sensor setup. Only for the
illustrations in the known floorplans did we adjust the scal-
ing so that the resulting map fits the known floor plan and
this additional scaling factor was less than 10%. Scaling can
possibly be automated once tracks start to be grounded to
outdoors GPS measurements or mobile radio positioning.
In this paper we have introduced FootSLAM, a novel scheme
for simultaneous localization and mapping for pedestrians
using only foot mounted inertial sensors. We have used a
probabilistic map representation using a hexagon grid of a
2D area that is learnt per particle in a FastSLAM like ap-
proach. Our results are very encouraging: We have shown
using real world data that accurate maps and stable position-
ing can in fact be achieved. Since our maps are probabilis-
tic, estimation of pedestrians’ future paths could also be per-
formed - similar to work for driver intent estimation [7]. Fur-
ther work should also integrate more sensors, address 3D, as
well as collective mapping where users collect data during
their daily lives and maps are combined and improved.
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