
Recent Progress in the Design and Analysis

of Admissible Heuristic Functions�

Richard E. Korf

Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90095
korf@cs.ucla.edu

Abstract. In the past several years, significant progress has been made
in finding optimal solutions to combinatorial problems. In particular, ran-
dom instances of both Rubik’s Cube, with over 1019 states, and the 5×5
sliding-tile puzzle, with almost 1025 states, have been solved optimally.
This progress is not the result of better search algorithms, but more effec-
tive heuristic evaluation functions. In addition, we have learned how to
accurately predict the running time of admissible heuristic search algo-
rithms, as a function of the solution depth and the heuristic evaluation
function. One corollary of this analysis is that an admissible heuristic
function reduces the effective depth of search, rather than the effective
branching factor.

1 Introduction

The Fifteen Puzzle consists of fifteen numbered square tiles in a 4×4 square grid,
with one position empty or blank. Any tile horizontally or vertically adjacent
to the blank can be moved into the blank position. The task is to rearrange the
tiles from some random initial configuration into a desired goal configuration,
ideally or optimally using the fewest moves possible.

The Fifteen Puzzle was invented by Sam Loyd in the 1870s [10], and appeared
in the scientific literature shortly thereafter [5]. The editor of the journal added
the following comment to the paper: “The ‘15’ puzzle for the last few weeks has
been prominently before the American public, and may safely be said to have
engaged the attention of nine out of ten persons of both sexes and of all ages
and conditions of the community.”

One reason for the world-wide Fifteen Puzzle craze was that Loyd offered a
$1000 cash prize to transform a particular initial state to a particular goal state.
Johnson and Story proved that it wasn’t possible, that the entire state space was
divided into even and odd permutations, and that there is no way to transform
one into the other by legal moves.

Rubik’s Cube was invented in 1974 by Erno Rubik of Hungary, and like the
Fifteen Puzzle a hundred years earlier, became a world-wide sensation. More
� Copyright c© 2000, American Association for Artificial Intelligence (www.aaai.org).
All rights reserved.

B.Y. Choueiry and T. Walsh (Eds.): SARA2000, LNAI 1864, pp. 45–55, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

46 Richard E. Korf

than 100 million Rubik’s Cubes have been sold, and it is the best-known com-
binatorial puzzle of all time.

In the remainder of this paper, we’ll use these example problems to illustrate
recent progress in heuristic search. In particular, the design of more accurate
heuristic evaluation functions has allowed us to find optimal solutions to random
instances of both the 5× 5 Twenty-Four puzzle, and Rubik’s Cube for the first
time. In addition, we’ll present a theory that allows us to accurately predict the
running time of admissible heuristic search algorithms from the solution depth
and the heuristic evaluation function. One consequence of this theory is that an
admissible heuristic function decreases the effective depth of search, relative to
a brute-force search, rather than the effective branching factor.

2 Search Algorithms

The 3× 3 Eight puzzle contains only 181,440 reachable states, and hence can be
solved optimally by a brute-force breadth-first search in a fraction of a second.

To solve the 4× 4 Fifteen Puzzle however, with about 1013 states, we need a
heuristic search algorithm, such as A* [4]. A* is a best-first search in which the
cost of a node n is computed as f(n) = g(n) + h(n), where g(n) is the length of
the current path from the start to node n, and h(n) is a heuristic estimate of the
length of a shortest path from node n to a goal. If h(n) is admissible, meaning
it never overestimates the distance to a goal, A* is guaranteed to find a shortest
solution, if one exists.

The classic heuristic function for the sliding-tile puzzles is Manhattan dis-
tance. It is computed by taking each tile, counting the number of grid units
between its current location and its goal location, and summing these values for
all tiles. Manhattan distance is a lower bound on actual solution length, because
every tile must move at least its Manhattan distance, and each move only moves
one tile.

Unfortunately, A* can’t solve the Fifteen Puzzle, because it stores every node
it generates, and exhausts the available memory on most problems before finding
a solution. Iterative-Deepening-A* (IDA*) [6] is a linear-space version of A*. It
performs a series of depth-first searches, pruning a path and backtracking when
the cost f(n) = g(n)+h(n) of a node n on the path exceeds a cutoff threshold for
that iteration. The initial threshold is set to the heuristic estimate of the initial
state, and increases in each iteration to the lowest cost of all the nodes pruned
on the last iteration, until a goal node is expanded. Like A*, IDA* guarantees
an optimal solution if the heuristic function is admissible. Unlike A*, however,
IDA* only requires memory that is linear in the maximum search depth. IDA*,
using the Manhattan distance heuristic, was the first algorithm to find optimal
solutions to random instances of the Fifteen Puzzle [6]. An average of about 400
million nodes are generated per problem instance, requiring about 6 hours of
running time on a DEC KL10 in 1984.

Design & Analysis of Admissible Heuristic Functions 47

3 Design of Heuristic Functions

3.1 Classical Explanation

The standard explanation for the origin of heuristic functions is that they com-
pute the cost of exact solutions to a simplified version of the original problem
[11]. For example, in the sliding-tile puzzles, if we ignore the constraint that we
can only move a tile into the empty position, we get a new problem where any
tile can be moved to any adjacent position, and multiple tiles can occupy the
same position. In this simplified problem, we can solve any instance by taking
each tile one at a time, and moving it along a shortest path to its goal position,
counting the number of moves made. The cost of an optimal solution to this
simplified problem is just the Manhattan distance of the original problem. Since
we simplified the problem by removing a constraint on the moves, any solution
to the original problem is also a solution to the simplified problem, and hence
the cost of an optimal solution to the simplified problem is a lower bound on the
cost of an optimal solution to the original problem. Thus, any heuristic derived
in this way is admissible.

What makes it possible to efficiently compute the Manhattan distance is that
in the simplified problem, the individual tiles can move independently of each
another. The reason the original problem is difficult, and why the Manhattan
distance is only a lower bound on actual cost, is that the tiles interact. By
taking into account some of these interactions, we can compute more accurate
admissible heuristic functions.

3.2 Pattern Databases

Pattern databases [1] are one way to do this. Consider any subset of tiles, such as
the seven tiles in the right column and bottom row of the Fifteen Puzzle, which
they called the fringe pattern. The minimum number of moves required to get
the fringe tiles from their initial positions to their goal positions, including any
required moves of other tiles as well, is obviously a lower bound on the minimum
number of moves needed to solve the entire problem.

It would be too expensive to calculate the moves needed to solve the fringe
tiles for each state in the search. This number, however, depends only on the
positions of the fringe tiles and the blank position, but not on the positions of
the other tiles. Since there are only a limited number of such configurations, we
can precompute all of these values, store them in memory in a table, and look
them up as needed during the search. Since there are seven fringe tiles and one
blank, and sixteen different locations, the total number of possible configurations
of these tiles is 16!/(16− 8)! = 518, 918, 400. For each table entry, we can store
the number of moves needed to solve the fringe tiles from their corresponding
locations, which takes only a byte of storage. Thus, we can store the whole table
in less than 495 megabytes of memory.

We can compute this table by a single breadth-first search backward from
the goal state. In this search, the non-pattern tiles are all considered equivalent,

48 Richard E. Korf

and a state is uniquely determined by the positions of the pattern tiles and the
blank. As each configuration of these tiles is encountered for the first time, the
number of moves made to reach it is stored in the corresponding entry of the
pattern database. The search continues until all entries of the table are filled.
Note that this table is only computed once for a given goal state, and its cost
can be amortized over the solution of multiple problem instances with the same
goal state.

Once the table is built, we use IDA* to search for an optimal solution to a
problem instance. As each state is generated, the positions of the pattern tiles
and the blank are used to compute an index into the pattern database, and the
corresponding entry, which is the number of moves needed to solve the pattern
tiles, is used as the heuristic value for that state.

Using the fringe pattern database, Culberson and Schaeffer [1] reduced the
number of nodes generated to solve the Fifteen Puzzle by a factor of 346, and
reduced the running time by a factor of 6. Combining this with another pattern
database, and taking the maximum of the two database values as the heuristic
value, reduced the nodes generated by a factor of a thousand, and the running
time by a factor of 12, compared to Manhattan distance.

Rubik’s Cube Pattern databases have also been used to find optimal solu-
tions to Rubik’s Cube [8]. The standard 3× 3× 3 Rubik’s Cube contains about
4.3252×1019 different reachable states. Of the 27 subcubes, or cubies, 20 of them
can be moved. These can be divided into eight corner cubies, with three faces
each, and twelve edge cubies, with two faces each. There are only 88, 179, 840
different configurations of the corner cubies, and the number of moves required
to solve just the corner cubies ranges from zero to eleven. At four bits per entry,
a pattern database for the corner cubies requires about 42 megabytes of memory.
Six of the twelve edge cubies generate 42, 577, 920 different possibilities, and a
corresponding pattern database requires about 20 megabytes of memory. Sim-
ilarly, the remaining six edge cubies generate another pattern database of the
same size.

Given multiple pattern databases, the best way to combine them, without
overestimating the actual solution cost, is to take the maximum of their values,
even if the cubies in the different databases don’t overlap. The reason for this is
that every twist of the cube moves eight different cubies, and hence moves that
contribute to the solution of the cubies in one pattern may also contribute to
the solution of the others. Taking the maximum of the values in all three pattern
databases described above allowed IDA* to find the first optimal solutions to
random instances of Rubik’s Cube [8]. The median optimal solution length is 18
moves. At least one problem instance generated a trillion nodes, and required
a couple weeks to run. With further improvements by Michael Reid, Herbert
Kociemba, and others, most states can now be solved optimally in a day.

Design & Analysis of Admissible Heuristic Functions 49

3.3 Disjoint Pattern Databases

The main limitation of Culberson and Schaeffer’s pattern databases is that the
only way to combine the values from different databases without overestimating
actual cost is to take their maximum value. Returning to the Fifteen Puzzle,
even if we compute a separate pattern database for the remaining eight tiles
not in the fringe pattern, the best admissible combination of these two heuristic
values is their maximum. The reason is that Culberson and Schaeffer counted
all moves required to solve the pattern tiles, including moves of tiles not in the
pattern. As a result, moves used to solve tiles in one pattern may also be used
to solve tiles in another pattern.

One way to improve on this is when computing the heuristic value for a
pattern of tiles, only count the moves of the tiles in the pattern. Then, given two
or more patterns that have no tiles in common, we can add together the heuristic
values from the different databases, and still get an admissible heuristic. This
is because in the sliding-tile puzzle, each operator only moves a single tile. We
call such a set of databases a disjoint pattern database, or a disjoint database for
short. Summing the values of different heuristics results in a much larger value
than taking their maximum, and thus greatly reduces the amount of search that
is necessary.

A trivial example of a disjoint pattern database is Manhattan distance. Man-
hattan distance can be viewed as the sum of a set of individual pattern database
values, each representing only a single tile. It could be “discovered” by running
a pattern search for each tile, recording the minimum number of moves required
to get that tile to each location from its goal location.

A non-trivial example of a disjoint database divides the Fifteen Puzzle in half
horizontally, into a group of seven tiles on top, and eight tiles on the bottom,
assuming the goal position of the blank is the upper-left corner. We precompute
the number of moves required to solve the tiles in each of these patterns, from
all possible combinations of positions, but only counting moves of the tiles in
the given pattern. Instead of explicitly representing the blank position in the
database, we store the minimum value for all possible positions of the blank.
The resulting eight-tile pattern database contains 16!/(16− 8)! = 518, 918, 400
entries, each of which requires a byte, or 495 megabytes of memory. The 7-tile
pattern contains only 16!/(16 − 7)! = 57, 657, 600 entries, or 55 megabytes of
storage.

Once these pattern databases are computed and stored, we get another set
of heuristic values by reflecting all the tiles and their positions about the main
diagonal of the puzzle. This gives us a 7-tile pattern on the left side of the puzzle,
and an 8-tile pattern on the right. The values from these two different sets of
databases can only be combined by taking their maximum, since their individual
tiles overlap.

This heuristic can be used to optimally solve random Fifteen Puzzle in-
stances, generating an average of about 37,700 nodes, and taking less than 29
milliseconds per problem instance on a 440 Megahertz Sun Ultra 10 workstation.
This is in comparison to 400 million nodes and about 50 seconds per problem on

50 Richard E. Korf

the same machine for simple Manhattan distance. This is a factor of over 10,000
in nodes generated, and over 1700 in actual running time.

3.4 Pairwise Distances

The original pattern database idea allows the most general combination rule,
since the maximum of any set of admissible heuristics is always an admissible
heuristic. Conversely, disjoint pattern databases admit the most powerful combi-
nation rule, by allowing the values from different heuristics to be added together,
but it’s not very general, since it requires each operator to effect only subgoals
within a given pattern. Disjoint databases cannot be used on Rubik’s Cube,
for example, since each twist moves eight different cubies. Between these two
extremes lies a technique that combines the two ideas.

Consider a database that contains the number of moves required to correctly
position every pair of tiles, from every possible pair of positions they could be
in. In most cases, this will be the sum of their Manhattan distances. In some
cases, however, this pairwise distance will exceed the sum of the Manhattan
distances of the two tiles. For example, if two tiles are in the same row, which
is also their goal row, but they are reversed with respect to each other, one
tile will have to move vertically out of the row, to allow the other to pass by,
and then move back into the row. This adds two moves to the sum of their
Manhattan distances, which only reflects the moves within their goal row. This
is the idea behind the “linear conflict” heuristic function [3], the first significant
improvement to Manhattan distance. There are also other situations where the
pairwise distance of two tiles from their goal location exceeds the sum of their
Manhattan distances [7].

The difficulty with the pairwise distance heuristic comes in applying it to
a given state. We can’t simply sum the pairwise distances of all pairs of tiles,
because moves of the same tile may be counted more than once. Rather, we
must partition the tiles into non-overlapping groups of two, and then sum the
pairwise distances of each of the disjoint groups. Ideally, we want to choose a
grouping for each state that maximizes the heuristic value. This is known as
the maximal matching problem, and must be solved for each state in the search.
Thus, heuristics based on pairwise distances are relatively expensive to compute.
The idea of pairwise distances can obviously be generalized to distances of triples
or quadruples of tiles as well.

Twenty-Four Puzzle An admissible heuristic based on linear conflicts and
other pairwise and higher-order distances lead to the first optimal solutions to
random instance of the 5 × 5 Twenty-Four Puzzle [7], containing almost 1025

states. Some of these problems generated trillions of nodes, and required weeks
to run. We have applied disjoint databases to this problem, using patterns of six
tiles, and can optimally solve most problem instances in a day.

Design & Analysis of Admissible Heuristic Functions 51

4 Time Complexity of Admissible Heuristic Search

We now turn our attention to the time complexity of admissible heuristic search
algorithms. The central difficulty is that the running time depends on the quality
of the heuristic function, which has to be characterized in some way. We begin
with computing the brute-force branching factor, and then consider admissible
heuristic search.

4.1 Brute-Force Branching Factor

The running time of a brute-force search is O(bd), where b is the branching factor
of the search space, and d is the solution depth of the problem instance. In the
sliding-tile puzzles, the branching factor of a node depends on the position of
the blank. If the blank is in a corner, there are two places it can go, if it’s on a
side it can go to three places, and from a center position it can to to four places.
If we assume that all possible positions of the blank are equally likely, we get a
branching factor of (4 ·2+8 ·3+4 ·4)/16 = 3 for the Fifteen Puzzle. Subtracting
one to eliminate the move back to the parent node yields a branching factor of
two.

Unfortunately, the blank is not equally likely to be in any position in a
deep search. In particular, the more central location of the middle positions
causes those positions to be over-represented in the search space. To compute
the asymptotic branching factor, we need to compute the equilibrium fraction
of nodes with the blank in the different types of positions at a given depth of
the search tree, in the limit of large depth. When this is done correctly [2], we
get an asymptotic branching factor of about 2.13 for the Fifteen Puzzle.

A similar situation occurs in Rubik’s Cube, even though all operators are
always applicable. In this case, we eliminate certain operators to avoid redundant
states. For example, if we allow any twist of a single face as a primitive operator,
we don’t want to twist the same face twice in a row, since the same effect can
be achieved by a single twist. Furthermore, since twists of opposite faces are
independent, these operators commute, and we only allow two consecutive twists
of opposite faces to occur in one particular order. These considerations result in
a branching factor of about 13.34847 for Rubik’s Cube, compared to 6 · 3 = 18
for the naive problem space.

4.2 Conditions for Node Expansion

We now turn our attention to heuristic search. The running time of a heuristic
search is proportional to the number of nodes expanded. Both A* and IDA*
expand all nodes n whose total cost is less than the optimal solution cost, i.e.
for which f(n) = g(n) + h(n) < c∗, where c∗ is the optimal solution cost [11].
An easy way to understand this node expansion condition is that any admissible
search algorithm must continue to expand every partial solution path, until its
cost equals or exceeds the cost of an optimal solution, lest it lead to a better
solution.

52 Richard E. Korf

4.3 Characterization of the Heuristic

As mentioned above, the central difficulty in analyzing the time complexity of
heuristic search lies in characterizing the heuristic. Previous work on this prob-
lem [11] characterized the heuristic by its accuracy as an estimator of optimal
solution cost, and relied on an abstract analytic model of the search space. There
are several problems with this approach. The first is that to determine the ac-
curacy of a heuristic function on even a single problem instance, we have to
determine the optimal solution cost, which is computationally very expensive on
large problems. Secondly, most real problems don’t fit the restrictive assumptions
of the abstract model, namely that the problem space contain only a single so-
lution path to the goal. Finally, the results obtained are only asymptotic results
in the limit of large depth. As a result, this previous work cannot predict the
actual performance of heuristic search on real problems such as the sliding-tile
puzzles or Rubik’s cube.

In our analysis [9], we characterize the heuristic function by the distribution
of heuristic values over the problem space. In other words, we only need to know
the fraction of states with each different heuristic value. Equivalently, let P (x)
be the fraction of total states in the problem space with heuristic value less
than or equal to x. In other words, P (x) is the probability that a randomly
chosen state in the problem space has heuristic value less than or equal to x.
More precisely, we need the distribution of heuristic values at a given depth of the
brute-force search tree, in the limit of large depth, but we ignore this detail here.
Note that the heuristic distribution says nothing directly about the accuracy of
the heuristic function, except that distributions shifted toward larger values are
more accurate, since we assume that our heuristics are admissible.

For heuristics based on a pattern database, we can compute the heuristic
distribution exactly, simply by scanning the database. If the heuristic is based
on several different pattern databases, we assume that the different heuristic
values are independent. For heuristics based on functions, such as Manhattan
distance, we can randomly sample states from the problem space, and use the
heuristic values of the samples to approximate the heuristic distribution. Note
that in either case, we don’t have to solve any problem instances to get the
heuristic distribution.

4.4 Main Theoretical Result

Here’s the main result of our analysis [9]. Let Ni be the number of nodes at
depth i in the brute-force search tree. For example, Ni might be bi, where b is
the brute-force branching factor. In a heuristic search to depth d, the number
of nodes expanded by A* or IDA* at depth i is simply Ni · P (d − i). At one
level, the argument for this is simple. The nodes n at depth i have g(n) = i, and
P (d− i) is the fraction of nodes n for which h(n) ≤ d− i. Thus, for these nodes,
f(n) = g(n)+ h(n) ≤ i+ d− i = d, which is the condition for node expansion in
a search to depth d.

Design & Analysis of Admissible Heuristic Functions 53

The key property that makes this work is consistency of the heuristic func-
tion. We say that h is consistent if for all nodes n and their neighbors n′,
h(n) ≤ c(n, n′) + h(n′), where c(n, n′) is the cost from node n to its neigh-
bor n′ [11]. This is akin to the triangle inequality of metrics, and almost all
admissible heuristics are consistent. If our heuristic is consistent, then the prun-
ing that occurs in the tree doesn’t effect the heuristic distribution of the nodes
that are expanded. Given the number of nodes expanded at a given depth, we
sum these values for all depths up to the optimal solution depth to determine the
total number of nodes expanded, and hence the running time of the algorithm.

4.5 Experimental Results

We have experimentally verified this analysis on Rubik’s Cube, the Eight Puz-
zle, and the Fifteen Puzzle. In each case, for Ni we used the actual numbers
of nodes in the brute-force search tree at each depth. For Rubik’s cube, we de-
termined the heuristic distribution from the pattern databases, assuming the
values from different databases are independent. For the Eight Puzzle, we com-
puted the heuristic distribution of Manhattan distance exactly by exhaustively
generating the entire space, and for the Fifteen Puzzle, we approximated the
Manhattan distance distribution by a random sample of ten billion states. We
then compared the number of node expansions predicted by our theory to the
average number of nodes expanded by IDA* on different random initial states.
For Rubik’s cube, we got agreement to within one percent, and for Fifteen puzzle
we got agreement to within 2.5 percent at typical solution depths. For the Eight
Puzzle, our theoretical predictions agreed exactly with our experimental results,
since we could average the experimental results over all states in the problem
space. This indicates that our theory accounts for all the relevant factors of the
problem.

4.6 The “Heuristic Branching Factor”

From previous analyses, it was thought that the effect of an admissible heuristic
function is to reduce the effective branching factor of a heuristic search relative
to a brute-force search. The effective branching factor of a search is the limit
at large depth of the ratio of the number of nodes generated at one level to the
number generated at the next shallower level. One immediate consequence of our
analysis, however, is that the effective branching factor of a heuristic search is the
same as the brute-force branching factor of the problem space. The effect of the
heuristic is merely to decrease the effective depth of search, by a constant based
on the heuristic function. This prediction is also verified by our experimental
results.

5 Conclusions

Pattern databases [1] automate the design of more effective lower-bound heuris-
tics. We have used them to find optimal solutions to Rubik’s cube. We have also

54 Richard E. Korf

extended the original idea to disjoint databases, which allow the values from
different pattern databases to be added together, rather than just taking their
maximum. Disjoint databases reduce the time to find optimal solutions to the
Fifteen Puzzle by over three orders of magnitude, relative to the Manhattan dis-
tance heuristic. In addition, pairwise and higher order distances can also be used
to compute more effective heuristics, but at greater cost per node evaluation.
We have used both disjoint databases and pairwise and higher-order distances
to find optimal solutions to the 5× 5 Twenty-Four puzzle.

We have also developed a new theory that allows us to predict the running
time of admissible heuristic search algorithms. The heuristic is characterized
simply by the distribution of heuristic values over the problem space. Our the-
ory accurately predicts our experimental results on the sliding-tile puzzles and
Rubik’s Cube. One consequence of our theory is that the effect of a heuristic
is to reduce the effective depth of search, rather than the effective branching
factor.

6 Acknowledgements

I would like to thank my collaborators in this work, including Stefan Edelkamp,
Ariel Felner, Michael Reid, and Larry Taylor. This research was sponsored by
NSF grant No. IRI-9619447. This paper also appears in the Proceedings of the
National Conference on Artificial Intelligence (AAAI-2000), Austin, TX, Aug.
2000, and is reprinted here with permission of AAAI. c© 2000, American Asso-
ciation for Artificial Intelligence (www.aaai.org). All rights reserved.

References

1. Culberson, J., and J. Schaeffer. Pattern Databases, Computational Intelligence,
Vol. 14, No. 3, 1998, pp. 318-334.

2. Edelkamp, S. and R.E. Korf, The branching factor of regular search spaces, Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI-98), Madison,
WI, July, 1998, pp. 299-304.

3. Hansson, O., A. Mayer, and M. Yung, Criticizing solutions to relaxed models yields
powerful admissible heuristics, Information Sciences, Vol. 63, No. 3, 1992, pp. 207-
227.

4. Hart, P.E., N.J. Nilsson, and B. Raphael, A formal basis for the heuristic de-
termination of minimum cost paths, IEEE Transactions on Systems Science and
Cybernetics, Vol. SSC-4, No. 2, July 1968, pp. 100-107.

5. Johnson, W.W. and W.E. Storey, Notes on the 15 puzzle, American Journal of
Mathematics, Vol. 2, 1879, pp. 397-404.

6. Korf, R.E., Depth-first iterative-deepening: An optimal admissible tree search, Ar-
tificial Intelligence, Vol. 27, No. 1, 1985, pp. 97-109.

7. Korf, R.E., and L.A. Taylor, Finding optimal solutions to the twenty-four puz-
zle, Proceedings of the National Conference on Artificial Intelligence (AAAI-96),
Portland, OR, Aug. 1996, pp. 1202-1207.

Design & Analysis of Admissible Heuristic Functions 55

8. Korf, R.E., Finding optimal solutions to Rubik’s Cube using pattern databases,
Proceedings of the National Conference on Artificial Intelligence (AAAI-97), Prov-
idence, RI, July, 1997, pp. 700-705.

9. Korf, R.E., and M. Reid, Complexity analysis of admissible heuristic search, Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI-98), Madison,
WI, July, 1998, pp. 305-310.

10. Loyd, S., Mathematical Puzzles of Sam Loyd, selected and edited by Martin Gard-
ner, Dover, New York, 1959.

11. Pearl, J. Heuristics, Addison-Wesley, Reading, MA, 1984.

	Introduction
	Search Algorithms
	Design of Heuristic Functions
	Classical Explanation
	Pattern Databases
	Disjoint Pattern Databases
	Pairwise Distances

	Time Complexity of Admissible Heuristic Search
	Brute-Force Branching Factor
	Conditions for Node Expansion
	Characterization of the Heuristic
	Main Theoretical Result
	Experimental Results
	The ``Heuristic Branching Factor''

	Conclusions
	Acknowledgements

