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We derive new sum rules for the real and imaginary parts of the frequency-dependent Hall con
and Hall conductivity. As an example, we discuss their relevance to the doped Mott insul
that we describe within the dynamical mean-field theory of strongly correlated electron syste
[S0031-9007(99)08443-4]
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The ac Hall effect can provide valuable insights int
the dynamics of an electronic medium. This has recen
been demonstrated in the case of high-Tc superconductors
[1,2]: Various theoretical models based on different sca
tering mechanisms agree that the anomalous frequen
and temperature dependences of the Hall effect are clos
intertwined, but they differ in their predictions about thes
dependences [3]. So far, experiments cannot discrimin
between these models, but they will possibly be able to
so in the future [3].

The magneto-optical response of charge carriers c
be probed by the frequency-dependent Hall conductivit
Hall constant, or Hall angle. Recently, a sum rule for th
Hall angle has been derived [4] that is similar to the wel
knownf-sum rule for the optical conductivity [5]. In this
paper, we derive new sum rules for the real and imagina
parts of the two other magnetotransport probes. Su
sum rules are useful: First, they help elucidating ho
the corresponding spectral weight is redistributed upo
changing the temperature or the doping level. Secon
they provide exact constraints on the interdependence
Hall effect–related quantities and thus help interpretin
experimental data. For example, the sum rules for t
ac Hall constant relate its low-frequency behavior t
its infinite-frequency limit. This can be useful becaus
experimentally, only the microwave domain and the fa
infrared are attainable sufficiently reliably [2,3], wherea
the calculation of the Hall constant simplifies considerab
in the high-frequency limit [6].

We shall first derive the sum rules for the Hal
conductivity and Hall constant quite generally. Then, t
illustrate their application, we shall discuss some aspe
of the magneto-optical response of correlated electro
close to the density-driven Mott transition.

We start by considering the ac conductivities. In term
of the dissipative part of the current-current correlatio
function,
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kfĴnstd, Ĵms0dgleivt , (1)

the conductivity tensor reads
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Here,P indicates principal-value integration. From tim
reversal invariance, homogeneity of time, and the He
miticity of the current operators, we may deduce the fo
lowing symmetry properties [7]:

x 00
xxsvd  odd and real, (3)

x 00
xysvd  even and wholly imaginary, (4)

where Eq. (4) holds to first order in the magnetic fiel
Equations (3) and (4) imply that the real parts ofsxxsvd
andsxysvd are even while their imaginary ones are od
We also see that the dc Hall conductivity is finite only if

x 00
xys0d  0 , (5)

and derive the first couple of sum rules:Z `

0
dv Resxysvd  0 , (6)

Z `

2`

dv
v Imsxysvd

pe2  2ikfĴx , Ĵygl . (7)

To prove Eq. (6), we close the path of integration along
semicircle at infinity in the upper-half complex-frequenc
(z) plane and apply Cauchy’s theorem. The integral
the semicircle does not contribute since the leading hig
frequency behavior ofsxyszd is 1yz2. The sum rule (7) is
similar to thef-sum rule of the optical conductivity,Z `

2`

dv
Resxxsvd

pe2  ikfĴx , P̂xgl  x0, (8)

where P̂x is the polarization operator satisfying
Ĵxstd  ≠P̂xstdy≠t, and x0 

R
dv x 00

xxsvdypv is
the static current-current correlation function, which
positive definite. To interpret the right-hand sides
Eqs. (7) and (8), we first note that the Hall frequenc
vH ; 2ikfĴx , Ĵyglyx0 is the generalization of the cy-
clotron frequency to the lattice [4,7]. Its sign determine
© 1999 The American Physical Society 1317
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that of the infinite-frequency Hall constant,

Rp
H  lim

H!0

NvH

e2x0H
, (9)

which was considered by Shastryet al. [6]. Here, N
denotes the total number of lattice sites. Second, t
Drude-theory expressionsxxsvd 

v2
py4p

1yt2iv yields x0 
v2

py4pe2, wheree is the charge of an electron andvp

the plasma frequency. In general, however,x0 and vH

depend on all external and model parameters such
temperature, band filling, and correlation strength.

Before proceeding, we compare the sum rules (7) a
(8). In both cases, the contribution of a bandes $kd to
the right-hand side can be represented as a weighted
erage of the momentum-distribution function,n $ks, over
the Brillouin zone (BZ), where the weight function is de
termined by the inverse mass tensor [6]:2ikfĴx , Ĵygl 
He

P
$ks detsenm

$k
dn$ks and x0 

P
$ks e

xx
$k

n$ks. Here, up-
per indices indicate differentiation with respect to
component of the Bloch vector, such as in, say,e

x
$k


≠e $ky≠kx. H is the magnetic field and is assumed to poin
in thez direction, andn, m  x, y. In many semiconduc-
tors, only Bloch states close to the minima of the condu
tion band or the maxima of the valence band contribut
Then, one can replace the inverse mass tensor by its va
at the respective band edge. Thus, the sum rules (7) a
(8) are seen to relate hard-to-obtain experimental info
mation to, first, the number of carriers and, second, to t
mass tensor at a band edge which can be measured
cyclotron-resonance experiment. In a strongly correlat
system, on the other hand, the momentum-distributio
function receives contributions from the entire BZ, an
the above-mentioned BZ averages may no longer be e
to determine experimentally [6].

Next, we investigate the ac Hall constant. In Ref. [7
it has been decomposed into its infinite-frequency lim
(9) and a memory-function contribution which can b
represented in terms of a spectral functionksvd:

RHsvd  Rp
H

√
1 1

Z `

2`

dṽ P
ksṽdṽ
ṽ 2 v

!
1 ipRp

Hksvdv . (10)

ksvd was shown to be even and real. Therefore, th
real and imaginary parts ofRH svd are even and odd,
respectively. We also establish nontrivial sum rules fo
the ac Hall constant:Z `

0
dvfReRHsvd 2 Rp

Hg  0 , (11)

Z `

2`

dv

p

ImRHsvd
v

 RH 2 Rp
H , (12)

where RH is the dc Hall constant. Equation (11) hold
because the leading high-frequency behavior ofRHszd 2

Rp
H is 1yz2 [7]. Equation (12) is a Kramers-Kronig
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relation. The sum rules (11) and (12) are interest
because they relate the Hall constant at low frequencie
its infinite-frequency limit. The low-frequency regime
attainable in experiments [2], whereas the high-freque
limit is much easier to handle theoretically. The sum ru
(11) implies thatRH cannot go over from its dc value to
its infinite-frequency limit monotonically.

Finally, we quote a sum rule for the Hall ang
tHsvd ; tanuHsvd  sxysvdysxxsvd that was derived
in Ref. [4]: Z `

2`

dv

p
RetHsvd  vH . (13)

By contrast to thef-sum rule in Eq. (8), none of
our sum rules involves a positive definite integrand.
a consequence, we expect our sum rules to beco
fully useful only in conjunction with some theoretica
understanding of the problem involved.

We now apply the above-mentioned sum rules to
doped Mott insulator, which we describe by the sing
band Hubbard model with bare bandwidth2D and on-site
repulsionU. We are primarily interested in the physic
close to half filling, d ; 1 2 n ø 1, where n denotes
the average occupancy per lattice site. In the limit
infinite spatial dimensions, all vertex corrections of t
conductivity tensor vanish which implies [8]

sxxsivmd 
2ie2

Nb

X
$kn

sex
$k
d2G$kjn

G $kjn1m 2 G$kjn

ivm
, (14)
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e3H
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e
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$k

e
yy
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É

3 G2
$kjn

G$kjn1m 2 G$kjn2m

ivm
. (15)

In each equation, a spin factor 2 has been taken
account andb  1yT is the inverse temperature.ivn

and ivm are fermionic and bosonic Matsubara freque
cies, respectively. The single-particle Green’s functi
is given by G21

$kjn
 ivn 1 m 2 e $k 2 Ssivnd, where

the local self-energySsivnd must be calculated by
solving a single-impurity Anderson model supplement
by a self-consistency condition [9]. Earlier work o
the Hall effect in infinite dimensions was carried out
Refs. [10–12]. We compute the ac conductivities (1
and (15) numerically by using the tight-binding bande $k 
2sDy

p
2d d

P
j cosskjad in d dimensions, wherea is the

lattice spacing. We use the iterated perturbation the
(IPT), which can be shown to obey our sum rules exac

Our main focus is on the frequency regime we
below the Mott-Hubbard gapU. The relevant part of
the single-particle spectrum then consists of two disti
features: an incoherent lower Hubbard band (LHB) a
provided the temperature is low enough, a quasipart
resonance (QPR) at the Fermi level. As the doping le
is increased, the QPR merges with the LHB from abov
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Accordingly, there are two widely different energy
scales close to the Mott transition: a coherence tempe
ture Tcoh below which Fermi-liquid properties begin to
be observed, andD which sets the scale for incoheren
excitations. The width of the QPR defines a second low
energy scaleTp. The ac conductivities (14) and (15)
reflect the possible transitions within the single-partic
spectrum. ForT , Tcoh, this means that the integrands o
all sum rules roughly decompose into two features: first,
narrow one at zero frequency which is due to transition
within the QPR. Consequently, its width scales at mo
with Tp. We shall see below that this feature can b
resolved in the Fermi-liquid regime so its width does no
exceed the smaller scaleTcoh. Second, a feature around
a frequencyv1 that measures the distance between th
maxima of the LHB and the QPR,v1 , D. At high
temperatures, on the other hand, the integrands are so
determined by transitions from occupied to unoccupie
states within the LHB, andD is the only energy scale.

In the Fermi-liquid regime,T , v , Tcoh, the conduc-
tivities can be cast into the Drude formssxxsvd 
vp2

p y4p

1ytp2iv and sxysvd 
vp

c vp2
p y4p

s1ytp2ivd2 with renormalized pa-
rameters. Here, the renormalized plasma frequency b
haves asvp2

p , Dd [13]; 1ytp , d ImSRsv  0, T d,
whereSR is the retarded self-energy in the absence of di
order;vp

c , vcd wherevc is the cyclotron frequency of
noninteracting electrons on the same lattice. The ren
malized plasma and cyclotron frequencies must not
confused with the bare ones defined by the sum rules
and (13), respectively.

Expanding Eqs. (14) and (15) to leading order in1yT
as explained in Ref. [12] shows that both conductivitie
are suppressed by a factord close to the Mott transi-
tion. Approximate expressions for the dissipative parts
the conductivities, which capture the doping and temper
ture dependences in the regionT , v . Tp, v ø 2D, are

given by Resxxsvd , e2d
12exps2jvjyTd

jvj and Imsxysvd ,
e3Hd sgnsvd f1 2 exps2jvjyT dgyD. The last relation
holds only for a generic band that does not have th
bipartite-lattice property discussed in Ref. [12].

We now discuss the qualitative forms of the function
governing the sum rules (6), (7), (11), (12), and (13) mo
specifically. In all plots, we have chosend  0.1 and
U  4.

Real part of the Hall conductivity.—Its high-frequency
behavior is given bysxysvd . 2e2x0vHyv2 and there-
fore has the opposite sign asRp

H in Eq. (9). On the other
hand, its dc value has the same sign asRH . Close to
half filling, and for intermediate temperatures and up,RH

and Rp
H have the same sign [11]. Since in this param

ter regime, the only energy scale isD, Resxysvd changes
its sign once at a scale of orderD to satisfy sum rule
(6). For T , Tcoh, Rp

H remains holelike whileRH be-
comes electronlike [11]. Then, the sum rule (6) require
at least one further sign change at a scalev , Tcoh. This
prediction is corroborated by our numerical investigatio
ra-
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FIG. 1. Real part of the Hall conductivity forT  0.015D.
The insets magnify the structures atv  0 (left inset) and
v  D (right inset).

Fig. 1 displays the frequency-dependent Hall conductiv
for T  0.015D.

Imaginary part of the Hall conductivity.—Figure 2
displays the integrand of the sum rule (7), which is pr
portional to the spectral function (4). We have no
malized this function to 1 to facilitate the compariso
between curves belonging to different temperatures.
T . Tp, this function hardly depends on temperature.
“M-shaped” form is consistent with Eq. (5) and the fa
thatD is the only energy scale. As the temperature is d
creased to belowTp, the spectral weight is redistribute
to comply with the emergence of two energy scalesTcoh
and v1, the Drude form in the Fermi-liquid regime, an
the fact that the overall weight is positive.

Hall angle.—The real part of the Hall angle define
before Eq. (13) closely resembles that of the previou
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FIG. 2. x 00
xysvd normalized to 1.
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FIG. 3. ReRH svd (solid lines) and Rp
H (dotted lines) for

T  0.015D (main panel) andT  0.15D (right inset). The
left inset magnifies the low-frequency part of theT  0.015D
curve.

considered function, except that it is not subject to
condition like Eq. (5).

Hall constant.—Close to half filling and forT . Tp,
RH is greater thanRp

H [11]. Then, ReRHsvd satisfies
the sum rule (11) as follows: Starting from its dc valu
ReRH svd first decreases monotonically as a function
frequency, drops to below its infinite-frequency level
a frequency of orderD, and finally rises to approachRp

H
from below. In the opposite limit of very low tempera
tures, we show a curve forT  0.015D in the main
panel of Fig. 3, along with a better resolution of its low
frequency part in the left inset.Rp

H (dotted line) is seen to
be positive, whileRH , 0 (not discernible), in agreemen
with Ref. [11]. In addition,RHsvd hardly depends on
frequency in the Fermi-liquid regime, as expected fro
the Drude parametrizations ofsxxsvd and sxysvd. To
counterbalance the drop of the dc value to belowRp

H , a
peaklike structure has piled up to above theRp

H level at the
other energy scale,v , v1. The structure aboutv ,
3D arises from the upper Hubbard band. At very hig
frequencies, ReRH svd approaches its asymptotic valu
according to a1yv2 law. In the right inset of Fig. 3, we
display a curve at the crossover temperatureT  0.15D.
As in the high-temperature regime,RH . Rp

H . 0. But
the sign change of ReRHsvd 2 Rp

H is already shifted to
higher frequencies, signaling the emergence of the pea
v , D as the temperature is lowered.

Finally, Fig. 4 displays the functionksvd, which is
proportional to the integrand of the sum rule (12) an
which has not been normalized to 1. As the tempe
ture is decreased from well above (not shown in Fig.
to well below Tp, a single peak of widthD decom-
poses into a narrow one atv  0 and of width smaller
than Tcoh, and a feature aroundv , v1 which involves
a sign change. In the normal state of cuprates such
1320
a

e,
of
at

-

-

t

m

h
e

k at

d
ra-
4)

as

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
ω/D

-12

-9

-6

-3

0

3

k(
ω

)

T=0.15
T=0.10
T=0.05
T=0.015

FIG. 4. ksvd defined in Eq. (10).

La22xSrxCuO4, ksvd is resonancelike and has a width
given by the anomalous relaxation rate1ytH which ex-
hibits aT2 law [7]. Instead, we find a width of orderD
for temperatures aboveTp whereRH . 0. Similarly, the
dynamical mean-field theory predicts that Kohler’s rule
is replaced byDryr , svcyDd2 in the high-temperature
regime [12], whereas experiments on cuprates are co
sistent withDryr , svctH d2 as suggested by Terasaki
et al. [14]. Here,Dr is the magnetoresistance.

In summary, we have derived sum rules for the rea
and imaginary parts of the Hall conductivity and Hall
constant. We have applied them, along with another on
for the Hall angle, to the doped Mott insulator.
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