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Abstract: RNA molecules have been discovered playing crucial roles in numerous biological and medical procedures and processes. 
RNA structures determination have become a major problem in the biology context. Recently, computer scientists have empowered the 
biologists with RNA secondary structures that ease an understanding of the RNA functions and roles. Detecting RNA secondary struc-
ture is an NP-hard problem, especially in pseudoknotted RNA structures. The detection process is also time-consuming; as a result, an 
alternative approach such as using parallel architectures is a desirable option. The main goal in this paper is to do an intensive investiga-
tion of parallel methods used in the literature to solve the demanding issues, related to the RNA secondary structure prediction methods. 
Then, we introduce a new taxonomy for the parallel RNA folding methods. Based on this proposed taxonomy, a systematic and scientific 
comparison is performed among these existing methods.
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Introduction
Bioinformatics is a new discipline resulting from the 
combination of two science fields: Computer Sci-
ence, and Biology. This new scientific application has 
grown rapidly and nowadays it is becoming a corner-
stone for each molecular biological study.1 It utilizes 
computer implementations and algorithms for col-
lecting, accumulating, storing, analyzing, and inte-
grating biological data and genetic macromolecules 
like deoxyribonucleic acid (DNA), ribonucleic acids 
(RNA), or proteins. The DNA has directions on how 
to build other components of cells, such as proteins 
and RNA molecules. The RNA is a type of nucleic 
acid that provides a mechanism to copy the genetic 
information of the DNA. There are two different types 
of RNA which are the Messenger RNA (mRNA) and 
the Transfer RNA (tRNA). They play important roles 
in the living cells and protein synthesis. Recently, 
researchers have found that they can use the RNA 
interference (RNAi) process2,3 for producing modern 
drugs. Mainly, this could be used in the therapeutics 
process of discovering antiviral drugs for difficult 
diseases like Cancer, AIDs, and Herpes.4,5

It is important to study the folding of RNA mol-
ecules to understand their roles and functionalities.6 
Medical researchers and biologists can find different 
vital roles of RNA molecules by scrutinizing their 
RNA secondary structures. This will pave the way in 
front of biomedical researchers to utilize the RNA mol-
ecules in useful application like when there are used 
for productive treatments.4 The experimental methods 
that are commonly and broadly used for determining 
three-dimensional (3D) structures of RNA are listed 
as follows: X-ray crystallography and Nuclear Mag-
netic Resonance (NMR). In a biological context, these 
experimental methods are the most prominent accu-
rate methods to determine the RNA tertiary structure, 
which is a 3D structure. But, both of these physical 
methods are time-consuming, expensive and compu-
tationally difficult to accomplish. To give the reasons, 
which make these purification techniques for determin-
ing the RNA 3D structures are tedious and difficult. In 
the rest of this section, we elaborated more about how 
both of these experimental methods are carried out by 
chemical or biological researchers.

•	 X-ray crystallography. Primarily, it is the faster 
and popular purification experimental methods, 

to determine the RNA tertiary structures. The 
researchers fixed a pure crystal of single RNA mol-
ecule. They needed to obtain sufficient amounts 
of pure RNA crystal, a milligram of RNA quantity 
is necessary,7 which is complex and non-trivial 
to acquire. Next, the biologist will bombard this 
RNA crystal with X-ray, which is depictured in 
Figure 1 (a) as an adapted from.8 The X-ray beams 
will collide with the fixed and stable RNA crys-
tal and will go through it. The X-ray will diffract 
whilst colliding with the electrons that are situ-
ated around the nuclei of RNA molecule. Thus, 
the result is the map for the electrons of the RNA 
molecule, which gives the nearest accurate form 
of the folding RNA molecule.

•	 Nuclear Magnetic Resonance (NMR). In this 
NMR experimental method,7 the charged RNA 
molecule is fixed via magnetizing the RNA mol-
ecule, as shown in Figure 1 (b). The magnetic 
field will stabilize the RNA sample. The phos-
phate groups within the backbone of the RNA 
have a negative charge which causes the solu-
tion of the RNA molecule to be charged.9 Then, 
the fixed molecule will be bombarded by using 
radio waves. This bombarding process will cause 
the resonation of the RNA nuclei. The 3D struc-
ture of the RNA molecule will be constructed 
from the resonating of these bombarded nuclei. 
However, this bombarding process needs to be 
performed from thousands of different angles. 
Therefore, this makes the NMR physical method 
incredibly time-consuming, costly and tedious.

Due to these constraints and difficulties from the 
experimental physical sides, computational methods 
from computer scientists and bioinformatic research-
ers have become more demanding to do the RNA 
structure prediction process. Predicting the RNA 3D 
structure from the primary sequence is difficult to 
accomplish. Hence, the bioinformatic researchers first 
detect and predict the RNA secondary structure from 
a given RNA primary sequence. Then, the result of 
this RNA secondary prediction process will assist the 
biologists to determine the RNA tertiary structure.

Thus, solving the RNA secondary structure prob-
lem is becoming a main issue among bioinformatic 
researchers.10 Recent approaches and current work 
concentrate on applying the parallel techniques to 

http://www.la-press.com


Taxonomy of parallel rna algorithms

Evolutionary Bioinformatics 2010:6 29

the previous RNA computational algorithms. In this 
paper, the works of the researchers explore the state-
of-the-art of parallel techniques were proposed for 
solving RNA structural problems.

The earliest prediction methods for solving the 
RNA secondary structure problems were presented 
by Waterman and Smith11 and Nussinov et al.12 These 
computational algorithms proposed two different 
methods for the RNA/DNA folding structure, which 
require O(n3) time complexity. Later, several stable 
algorithms for the RNA secondary structures were 
proposed like Zuker’s algorithm.13 It was based on 
a thermodynamic energy minimization model. The 
execution time is still also O(n3), where n is the length 
of the RNA sequences, which are implemented in the 
ViennaRNA package.14

Basically, most computational algorithms, approaches 
and methods for solving the RNA secondary structures 
problems were restricted to the length of the bases, which 

were only a few hundreds of characters. Computational 
methods become much more desirable to solve tradi-
tional RNA cases and original RNA algorithms.15 Then 
subsequently, promising passageway simplifies these 
constraints and solves the bottleneck for the original 
RNA computational prediction algorithms, by imple-
menting them on new parallelization approaches. Some 
of the more parallel popular approaches to reach this 
objective are to design them on the Field Programma-
ble Gate-Array (FPGA), the Graphics Processing Unit 
(GPU), the multi-core or the cluster master-slave paral-
lel architecture systems.16

schematic study
We begin this comparative taxonomy study for the 
RNA parallel prediction methods by compromising 
and organizing this paper into three main research 
issues; (i) literature and background of the RNA pre-
dictions, (ii) RNA research models, (iii) the discussion 
and evaluation of existing methods with a compara-
tive taxonomy. The main objective of this research 
is to present a comprehensive summary of the state-
of-the-art researches on the RNA secondary structure 
predictions methods. Thus, we combined and joined 
among these all parts as follows:

•	 The First part is on the literature and background 
of the RNA prediction work. It explains the cause 
of the formation of folds and helices in each RNA 
molecule, in the chemical context. Next, the 
authors elucidated the RNA primary and the RNA 
secondary structure as a base step to clarify the 
RNA problem domain and the research statement 
on the computer side.

•	 The next part was for the RNA research models 
and methods. The researchers presented the exist-
ing RNA methods including the sequential and the 
parallel structural predictions. Then, the research-
ers made a comparison among either of the group. 
Lastly, in the discussion and comparison section, 
the authors highlighted the results of this study. In 
the discussion, the researchers concluded with the 
most suitable efficient paradigm that could be used 
for parallelizing the RNA prediction algorithms. 
Also, the reasons that guided to choose this deci-
sion were given.

•	 Finally, there is the discussion and the evaluation 
of existing methods with a comparative taxonomy. 

Figure 1. Experimental Methods of 3D rna structures Determination: 
(a) X-ray crystallography sequence. (b) nuclear Magnetic resonance 
(nMr). (The idea adapted from7,8).
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The researchers proposed and described a general 
taxonomy for RNA parallel methods. By using 
this taxonomy, they applied a comparative process 
for the previous existing parallel RNA prediction 
methods. This process enabled the researchers in 
this field to distinguish among the parallel RNA 
prediction approaches. Future researchers will be 
able to choose the suitable parallel paradigm that 
will fit their interests. This selection will depend 
on the group of the RNA molecules that the bioin-
formatic researchers working on or needs.

Roadmap of the study: The following section high-
lights the elementary RNA chemical structure and the 
RNA (Primary and Secondary) structures. Next, the 
authors presented the fundamental concept for the RNA 
secondary structure problem statement. Then, they 
listed and investigated the sequential RNA prediction 
methods and categorized the RNA parallel techniques 
based on the parallelization hardware architecture 
which are listed as follows: (i) An individual RNA 
parallel algorithm15 on a multi-core Central Processing 
Unit (multi-core CPU). (ii) A one solitary RNA paral-
lel method on the GPU.16 (iii) One work of the RNA 
parallel algorithm on the Beowulf cluster.17 (iv) Three 
different parallel RNA algorithms were implemented 
on the FPGA.18–20 To complete the categorization, the 
researchers explained a suggested parallel taxonomy 
for RNA folding algorithms. Then, they systemati-
cally applied this proposed taxonomy on the men-
tioned RNA parallel methods, comparatively. Next, 
they discussed and compared the results for the main 
parallel RNA methods. Finally, the authors gave some 
concluding remarks. Also, they introduced some rec-
ommendations for bioinformatics researchers. These 
hints could be used as a constructive future research 
in the RNA structural prediction domain.

Background
The RNA molecules had been confirmed to be very 
resourceful materials by.3,4 The RNA molecules play 
different crucial functions and roles in living organ-
isms and in many biological processes. Recently, it 
became clear that the RNA molecules play various 
roles, not just an intermediate in protein synthesis. 
But also, the latest researches are looking to utilize 
the RNAi process to discover new medications as a 
treatment for dangerous virus diseases.4,21

rna chemical structure
To understand the roles and functions of the RNA 
molecules, the biomedical engineers and research-
ers need to determine and scrutinize the RNA ter-
tiary structures. As the first step to reach this goal, 
they ought to know the RNA molecules chemical 
structure and the motives that forced them to make 
these folds of 3D structures. Accordingly, the RNA 
was the common name for ribonucleic acids; they 
are made of long chains (single-stranded) of nucle-
otide units. There are three different components 
of the RNA nucleotides: the nitrogenous base, the 
sugar, and the phosphate group. While, the RNA 
backbone is made up of ribose five atom carbon-
sugar counted from 1′ through 5′ and it is attached 
by two phosphate groups in 3′ and 5′, respectively. 
From the sugar group “ribose”, the RNA molecule 
acquired its nickname “Ribonucleic Acids”. The 
nitrogenous bases in the RNA group were made up 
of four different bases Adenine (A), Cytosine (C), 
Guanine (G), and Uracil (U). These bases attached 
to the five-carbon sugar in 1′ position and they 
give RNA molecules characteristic possessions 
and properties.

Veritably, the phosphate groups in the back-
bone of the RNA have a negative charge, which 
makes the RNA a charged molecule.9 Due to this, 
the charged RNA molecule inside the living cells is 
not stable. Thus to gain more stability, some parts 
of the single-stranded RNA fold back on itself 
forming double helices. This RNA folding process 
makes the determination methods intricate and 
not easy to determine the RNA 3D structures. The 
details about the RNA molecules and its chemical 
structure was explained in.22

The rna primary and secondary structure
Both the phosphate groups are attached to the 3′ and 
5′ positions from ribose sugar in the backbone of 
RNA molecules. Due to this fact and based on the 
convention and general agreement among biolo-
gists, the RNA primary structure is a string series 
of bases reported from the 5′ end to the 3′ end, as 
shown in Figure 3(a).

The RNA secondary structure derives from the pair-
ing up of these four nucleotides according to the rules 
of Watson-Crick and Wobble “WW ”:  Watson-Crick 
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base pairs (G ≡ C) and (A = U) and a  Wobble base pair 
(G-U). By applying these rules, the  single-stranded 
RNA secondary structure forms two large groups: 
[Stem-loops and Pseudoknots (PK)], as shown in 
Figure 3 (b and d).

problem statement
Recently, RNA molecules have been confirmed to 
be very resourceful materials in the medical pro-
cess and biological systems.23 Biologists can deter-
mine the RNA tertiary structure from its secondary 
structure. The biologists need this 3D structure of the 
RNA molecule to derive its function and essential 
role. Thus, the bioinformatic researchers introduced 
computational prediction methods, which can predict 
the RNA secondary structures from a given RNA pri-
mary sequence. In Figure 2, the authors depictured 
and explained the vital crucial position of the RNA 
secondary structure in the chain of the RNA research. 
Also, this figure showed the flow chain of the RNA 
research study, consecutively. Moreover, it confirmed 
that the computational secondary structure prediction 
processes is a required preliminarily step for deter-
mining the RNA 3D structure.

The RNA folding recognition methods attempt 
to predict an accurate and more stable RNA folding 
structure based on the Minimum Free Energy (MFE) 
models. As shown in Figure 3 (d), the nature of some 
types of the RNA structure forms the pseudoknots, in 
some parts. The RNA molecules with the pseudoknots 
structure make the calculation process of the RNA 
secondary structure prediction algorithms complex. 
These complexities of the RNA prediction  algorithms 
conform and confirm the execution time and memory 
storage space, computationally.

The components of the RNA involved in 
understanding the RNA functions, which are extracted 
from,24 and can be presented as follows:

•	 RNA primary sequence structure is a string of n 
characters, xi = x1x2…xn where xi∈{A or a, C or c,  
G or g, U or u} the four bases in uppercases or 
lowercases letters, as well 1#i#n, as seen in the 
Figure 3 (a).

•	 A single-stranded RNA secondary structure is a 
list of base-pairs which can be viewed as a set of, 
X, forms on acceptable base pairs (xi, xj). These 
pair of letters is called a complementary base pair, 
according to the “WW ” rules, in Figure 3 (b):
•	 These “WW ” rules are: (xi, xj) = (a,u) or (A,U), 

(xi, xj) = (g, c) or (G, C) for the Watson-Crick 
rule. Also, (xi, xj) = (g, u) or (G, U ) along with 
the Wobble rule later.

•	 In addition, these base pairs (xi, xj) for RNA 
secondary structure where that:
•	 It should be at first, 1#i,j#n.
•	 Second, j-i.t where t is a small constant, 

i.e. j-i$2.
•	 For all base pairs (xi, xj) and (xi′, xj′) in X, i = i′, 

if and only if j = j′, (such that ∀ (i, j), (i′,j′	)∈R: 
i = i′ ⇔ j = j’) as depictured in Figure 3 (b).

•	 Thus, namely two bases that form the canonical pair 
must be located at different locations. While, the RNA 
sequence does not fold back on itself too sharply. 
Also, each base can be paired and combined at most 
only with another base. Restrictedly, the implement-
ers allowed just “WW ” the canonical RNA base pairs 
rules26: {(A,U), (C,G), (G,U)}. The RNA secondary 
structures without pseudoknots folding in different 
kinds of loops,15 which are: Hairpin Loops, Inter-
nal Loops, Multiloops, Stacks, Bulges and External 
Loops, as depicted in Figure 3 (c).

•	 The RNA secondary structure with pseudo-
knots: this is defined as, X, if and only if the 
base pairs exist in nested condition (xi, xj),  
(xi′, xj′)∈X (i,i′) such that i,i′,j,j′, as seen in the  
Figure 3 (d). Whereas the RNA secondary struc-
tures with pseudoknots coming in two main groups 
of pseudoknotted RNA10: simple or recursive, 
those depictured in Figure 3 (e). Thus, a given 
RNA sequence X, can fold with a maximum num-
ber of base pairs and in an exponential number of 
possible structures.Figure 2. The main systematic chain steps of rna research study.

RNA Sequence RNA 2D Structure RNA 3D Structure RNA Functions
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Thermodynamic algorithm  
for rna prediction
From the energy stability point of view, the phos-
phate groups in the backbone of RNA molecule have 
a negative charge. Thus, the RNA molecules inside 
the living cells are not stable.9,27 They will fold back 
on themselves to reach more stability.

Then, the main goal of the RNA secondary struc-
ture prediction computational method is to arrive at 
more stable equilibrium of the RNA folding form, 
based on the free-energy model. Hence, to calcu-
late the RNA free energy stabilities, it is necessary 
to predict RNA secondary structure by calculat-
ing the MFE, which is named as an optimal RNA 
structure.28

The summation of energies for all loops is the 
energy of RNA secondary structure (Eq. 1), which 
extracted with condensation from.18,28,29 The empiri-
cal calculations explained and confirmed that over 
99% from the execution time for the RNA prediction 
algorithm is in computing the MFE.20

Total MFE for RNA = ∑ of RNA Loops Energies (1)

(At fixed temperature + ionic concentration)

In reality, to the best knowledge of the authors, 
thermodynamic prediction approach for calculat-
ing the energy of the optimization RNA, had been 
expressed and introduced for the most time by Lyn-
gso et al in.28 They were used a four different arrays 
to hold and include the MFE lookup tables inside the 
shared cache memory during the execution time of 
the  prediction algorithm.

These MFE calculative motifs complicate the gen-
eral pseudoknotted RNA secondary structure predic-
tion algorithms. The pseudoknots type turns the RNA 
prediction algorithms to be NP-Complete Problem.10,30 
In addition, the algorithms for solving the pseudo-
knotted RNA secondary structure problem, need to 
allow energy functions to operate and run in the worst 
case polynomial time. In fact, two researchers Akutsu 
in10 and Lyngso and Pedersen in30 proved that find-
ing the pseudoknotted RNA structure with the MFE 

Figure 3. rna structures:- (a) rna sequence. (b) rna secondary structure. (c) rna stem-loops structure. (d) rna PseudoKnots. (e) PseudoKnots 
Types [simple and recursive], some parts adapted from.10,15,25
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is the NP-hard problem, particularly by applying the 
standard nearest-neighbour energy function.

Consequently, researchers of pseudoknotted RNAs 
faced with three problems: First, the RNA secondary 
structure prediction with the pseudoknots is compu-
tationally intricate and difficult to carry out.30 Con-
sidering the execution time and the memory space 
complexities, made the problem an NP-complex 
problem.30 Besides that, most professional algorithms 
exist only for partial classes of pseudoknots.10,25,31,32 
Namely there were restricted in a subclass and not for 
all classes of pseudoknotted RNA.33 Second, almost 
majority of RNAs computational methods have ana-
lyzed nested “Stem-Loops” RNA secondary structure 
prediction,34 either by neglecting the RNA pseudo-
knots for simplicity, or not being aware of the exis-
tence of the pseudoknotted RNA types. Lastly, most 
of the existing methods for RNA structure prediction 
are not acceptable at levels of accuracy, reliability 
and robustness.33

existing sequential Methods
Basically, one of the important tasks in front of bio-
informatics and computer application researchers is 
the RNA secondary structure prediction dilemma. 
From a biological point of view, there are various 
complexities and constraints that are faced the bio-
medical researchers in experimental methods to 
determine the RNA tertiary structures.7 Recently, 
many computational efforts have been presented 
on the computer side, to detect the RNA second-
ary structure from the primary sequence. The pre-
dictive approaches have been introduced to solve 
the related issues in the RNA structural detection 
field as follows: (i) Energy thermodynamic models 
to predict RNA secondary structures; i.e. Mfold,13 
RNAfold14 and RNAalifold.35 (ii) Comparative 
analysis methods to predict the RNA secondary 
structures from multiple homologous sequence 
alignment.36 (iii) Stochastic Context-Free Grammar 
methods (SCFS) are a comparative sequence analy-
sis for prediction consensus of the RNA secondary 
structures from multiple sequence alignment.37

The original existing methods that have been pro-
posed in solving the RNA secondary structures are 
divided into two major groups. The first group pre-
dicts the non-pseudoknotted RNA secondary struc-
tures “Stem-Loop of RNA”, while the other group 

is solving the RNA secondary structure prediction 
problem including pseudoknots type “RNA with 
Pseudoknots”.

Then, the researchers in this paper classified these 
sequential RNA prediction methods in a schematic 
diagram, as shown in Figure 4. Next, the researchers 
converged these RNA prediction methods, as shown 
in Table 1, which was adapted and extracted from.22 
This table included the most well-known existing 
RNA sequential prediction methods and approaches 
that have been produced lately to predict RNA sec-
ondary structures.

parallel Methods and schemes
The experimental methods are completely accu-
rate for determining the RNA 3D folding structures. 
But due to their time consuming and expensive 
nature, many computational approaches have been 
proposed to predict the RNA secondary structure, 
which includes: (i ) RNA prediction methods based 
on a thermodynamic energy minimization model. 
(ii ) RNA structural comparative approaches from 

Figure 4. schematic diagram of rna structural prediction methods.

Co-fold Alg38 SCMF Alg39

RNA alifold35 FlexStem  Alg40

RNA fold14 DP Planar Pseudoknots41

DP. partition function alg42 HotKnots  Alg43

SA. Alg44 ILM Alg31
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Nussinov’s Alg12 NUPACK Alg32

Waterman & Smith Alg11
Akutsu’s Alg10

Pknots-RE25

RNA Prediction Methods

Stem-Loop PseudoKnots
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Table 1. Existing sequential methods for rna secondary structure prediction.

no. RnA prediction 
method

Reference Method complexities Major contribution RnA types
execution 
time

space 
requirement

1. scMF alg. Jens and 
andrew39

O(m n2) O(n2) a near optimal algorithm to predict 
rna secondary structure with 
pseudoknots. 
Where n: is the rna sequence 
length. and m: is the number  
of iteration steps  
with the n bases.

Pseudokots

2. Flexstem alg. chen et al40 O(n4) O(n2) a prediction algorithm named for 
rna secondary structures, it 
adapted a comprehensive energy  
models for complex pseudoknots 
type. 
Where n: is the rna sequence 
length. 

Pseudokots

3. co-fold alg. Ziv-Ukelson 
et al38

O(n4ζ (n)) – an optimal alignment alg.  
to predict rna secondary  
structures based 
on sankoff’s alg.44 
Where n: is the rna sequence 
length. 
and ζ(n) can converge  
to O(n).

stem-
loops

4. DP Planar 
Pseudoknots

hengwu et al41 O(n4) O(n3) a DP algorithm to predict rna 
secondary structures with  
arbitrary planar and simple  
non-planar pseudoknots type  
by using MFE model. 
Where n: is the rna sequence 
length.

Pseudokots

5. hotKnots alg. ren et al43 O(n4) O(n2) a heuristic algorithm to predict 
pseudoknotted rna based on 
MFE. 
Where n: is the rna sequence 
length.

Pseudokots

6. ilM alg. ruan et al31 O(n4) O(n2) a heuristic algorithm for predicting 
pseudoknotted rna bosed on  
MFE or comparative or both. 
Where n: is the rna sequence 
length.

Pseudokots

7. Pknots-rg reeder et al34 O(n4) O(n2) a DP algorithm to predict optimal 
rna secondary structures by using 
MFE model. 
Where n: is the rna sequence 
length.

Pseudokots

8. nUPacK alg. Dirks and 
Pierce32

O(n5) O(n4) a DP algorithm to predict base- 
pairing probabilities of rna with 
pseudoknots based on a 
partition function and MFE. 
Where n: is the rna sequence 
length.

Pseudokots

(Continued)
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Table 1. (Continued)

no. RnA prediction 
method

Reference Method complexities Major contribution RnA types
execution 
time

space 
requirement

9. rnaalifold hofacker 
et al35

O(m × n4 +	n3) O(n2) The algorithm computes the 
consensus rna secondary 
structures from multiple  
alignments with  
modifying energy models. 
Where n: is the rna sequence 
length. and m: is the number of 
sequences alignments.

stem-
loops

10. akutsu’s alg. akutsu10 O(n4) O(n3) enhanced 
by30 to be O(n2) 

a simple DP algorithm to predict 
rna secondary structure with 
pseudoknots. 
Where n: is the rna sequence 
length.

Pseudokots

11. Pknots-rE rivas and 
Eddy25

O(n6) O(n4) an adaption of DP algorithm for 
predicting a tractable subclass of 
pseudoknotted rna based on  
complex MFE model. 
Where n: is the rna sequence 
length.

Pseudokots

12. rnafold hofacker 
et al14

O(n3) O(n2) an implementing of Zuker’s rna 
prediction alg.13 based on MFE 
model with employing 
thermodynamic parameters of.29 
Where n: is the rna sequence 
length.

stem-
loops

13. DP. partition 
function alg.

Mccaskill42 O(n3) O(n2) a DP algorithm used MFE model to 
predict the partition function of 
unpseudoknotted rna. 
Where n: is the rna sequence 
length.

stem-
loops

14. sa. alg. sankoff44 O(n6) O(n4) a DP algorithm for rna secondary 
structural alignment. 
Where n: is the rna sequence 
length.

stem-
loops

15. Zuker’s alg. Zuker and 
stiegler13

O(n4) 
optimized 
by45 to be 
O(n3)

O(n2) an improved DP algorithm to 
predict rna secondary structures 
from single sequence by 
computing MFE. it has been re- 
implemented by Mfold,13 rnafold14 
and rnaalifold.35 
Where n: is the rna sequence 
length.

stem-
loops

16. nussinov’s alg. nussinov  
et al12

O(n3) O(n2) a simplest DP algorithm computes 
rna secondary structure based on 
MFE. 
Where n: is the rna sequence 
length.

stem-
loops

17. Waterman and 
smith alg.

Waterman and 
smith11

O(n3) O(n2) a simple DP algorithm for 
predicting rna secondary structure 
without pseudoknots. 
Where n: is the rna sequence 
length.

stem-
loops
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multiple homologous sequences. (iii ) A comparative 
prediction consensus of the RNA structures by using 
SCFG methods. (iv) The Genetic Algorithm (GA) for 
predicting RNA structures.18

Lately, many different parallel methods were intro-
duced, in order to face the computational complexities 
of the RNA secondary structure prediction problem 
such as: (i) The scalable program using the parallel 
multi-core.15 (ii) An implementing computer algo-
rithms to run on the graphics hardware like GPU.16 
(iii) A parallel implementation on the Beowulf cluster 
by using Message Passing Interface (MPI) library.17 
(iv) The fine-grained hardware implemented on 
FPGA.18–20 In the remaining parts of this section, the 
authors discussed the existing parallel methods for 
predicting the RNA structure from a given primary 
sequence.

Multi-core rna parallel algorithm
Recently, the mainly accepted and accurate approaches 
for predicting the RNA secondary structures sequen-
tially are Mfold 29,46 and RNAfold.14 These two sequen-
tial approaches require the O(n4) execution time steps 
and the O(n2) spatial storage complexities. Having 
these complexities, the prediction of the large RNA 
sequences would not be feasible, particularly in the 
sequential implementation. Lately, one RNA research 
presented a parallel and scalable design “GTfold ” 
in.15 GTfold was implemented on the multi-core CPU 
for solving the RNA secondary structure problem. 
This parallel RNA prediction method integrated the 
Mfold and RNAfold algorithms together, in the paral-
lel blueprint. This proposed re-implemented parallel 
method “GTfold”15 obtained more accuracy in pre-
dicting RNA secondary structure. Also, it could com-
pute the larger RNA sequences.

In fact, the value and the significance of the 
GTfold is in predicting the accuracy of the large RNA 
sequences. This accurate result when compared to 
many other existing RNA approaches such as the 
Mfold,29,46 and the RNAfold.14 Also, Mathuriya et al in15 
made an optimal improvements by reducing the time 
complexity from O(n4) to O(n3). This improvement 
was calculated in computing the internal loop in the 
RNA fold, by improving the Internal Loop Speedup 
Algorithm “ILSA”. Basically, this ILSA enhancement 
enabled the execution steps of the GTfold algorithm, 
to run in a shorter time.

Therefore, the ILSA enhancement gave the 
opportunity for the GTfold to predict Homo sapi-
ens 23S ribosomal with 5,184 nucleotides of the 
RNA sequence only in minutes compared to the nine 
hours before.15 Furthermore, the GTfold calculated 
the HIV-1 viral RNA genomes in 84 seconds (two 
months before47); HIV-1 includes 9,781 bases of RNA 
nucleotides. The GTfold was a parallel implementa-
tion of the RNA secondary structure prediction in 
the 16-core dual CPU symmetric multiprocessor sys-
tem on an IBM P5-570 server machine. The GTfold 
algorithm achieved a good execution time one to two 
times (a factor 1.6× speed-up time). This algorithm 
has shown enhancements in both efficiency and per-
formance when compared to the existing sequential 
algorithms,14 in the large sequences.

Parallel algorithm on gPU
The Graphics Processing Units (GPUs) started like 
a specific processor for accelerating and manipulat-
ing 3D computer graphical operations and games. 
Fortunately, due to the GPU’s highly parallel struc-
ture, extraordinary powerful and common function 
computing engines, this technique open a promising 
way in the parallel bio-computing sector. Recently, 
the General Purpose of GPUs (GPGPU) also has been 
growing very fast. The GPUs are going to become 
the cornerstone for the high computational complex-
ity algorithms,16 like the pseudokotted RNA struc-
tural prediction methods, which was proved as the 
NP-hard problem.10,30

Basically, the researchers utilized the latest modern 
GPUs to speed-up the algorithms in solving RNA 
secondary structure problems. Rizk and Lavenier 
in16 explored a new implementation for the previous 
function, which was used in solving RNA prediction 
problems. The researchers re-implemented the hybrid-
ss-min48 function on GPU. This function was used in 
the Unafold package to compute the MFE of the RNA 
folding problem. Also, the original RNA algorithm 
“Unafold” has a time complexity of O(n3). Conse-
quently, the new parallel design16 on modern GPUs 
hardware fulfilled more accelerated speed-up time of 
up to ×17. These results was comparing with the same 
function which run on a system with a single CPU 
sequentially.

The significance of the research results in,16 is to 
obtain faster execution time in the RNA  secondary 
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prediction algorithm. Utilizing the GPU design, 
reduced the execution time and the computation 
complexities without any extra cost. This improves 
the results when compared with the other competi-
tive RNA prediction methods like the Multi-core, the 
clusters or the multiprocessors systems.

Parallel framework on cluster
The computer hardware Beowulf cluster showed 
some strong parallel features, based on the master-
slave paradigm.49 Many researchers exploited this 
parallel architecture to compute the traditional RNA 
secondary structure detection methods. The parallel 
implementation on the Beowulf cluster was utilized 
for re-implementing the original RNA prediction 
methods.17 This work pointed out that there were 
good results with a higher accuracy and a faster exe-
cution time in the RNA structural algorithms, com-
paring to the original RNA detection methods.25,34 
The pseudoknotted RNA complicated structure algo-
rithms could also benefit from this parallel design. 
Despite those RNA pseudoknots structures were 
always recognized in most of the RNA molecules 
and they were known among RNA researchers.24 
But, due to that the pseudoknotted RNA molecules 
are computationally demanded nature. Thus, the 
RNA pseudoknots types mostly ignored from many 
RNA prediction methods. Namely, some research-
ers compute their RNA prediction methods without 
pseudoknots to get more simplicity.34 These perdi-
tion methods to solve RNA secondary structures 
would be inaccurate when they neglected pseudo-
knotted types.

A prominent work has opened a new epoch in 
pseudoknotted RNA secondary structure predic-
tion research. The CompPknots17 integrated two 
main pseudoknotted RNA secondary structure pre-
diction methods.25,34 The researchers implemented a 
parallel master-slave framework between two exist-
ing RNA methods. These two existing pseudoknotted 
RNA prediction methods are:

•	 Pknots-RE 25: an optimal method in solving pseudo-
knotted RNA secondary structures. It was based on 
applying the standard RNA thermodynamic stabil-
ity of pseudoknots type. The Pknots-RE method 
requires O(n6) in time and O(n4) memory space, 
where n is the length of the RNA sequences.

•	 Pknots-RG34: It was the latest improvement on 
time and space complexities for the same algo-
rithm, which was used before in the Pknots-RE. 
The authors of Pknots-RG utilized the MFE model, 
to achieve better performance on the complexity, 
when comparing with the Pknots-RE.25 This new 
version is the Pknotes-RG, which enhanced the 
execution time complexity from O(n6) to O(n4). 
Also, Pknots-RG improved the storage com-
plexity to O(n2) from O(n4) comparing with the 
Pknots-RE method.

The main contribution of the CompPknots,17 
was to apply a parallel calculation in bioinformat-
ics for the pseudoknotted RNA structural methods. 
The authors used the MPI library with the combi-
nation of these two previous pseudoknotted RNA 
algorithms25,34 in a parallelization design. The 
new paradigm enabled the researchers to predict 
larger RNA sequences. While, the two previous 
methods25,34 were not able to act as efficient as the 
improved parallel one.17 The CompPknots paral-
lel design was implemented on the Beowulf cluster 
based on the master-slave architecture. This paral-
lel design obtained the good results in the pseudo-
knotted RNA secondary structure detection with the 
higher accurate prediction. Also, the method ran in 
a shorter execution time. Moreover, the authors in17 
introduced a new automatic comparison approach, 
which allowed the end users to compare their final 
results directly with previous ones. This automati-
cally comparison process takes a shorter time than 
the traditional manual methods that they were using 
tools such as the Pseudoviewer3.50

Parallel on FPga co-processors
Different researches found and confirmed that 
the traditional RNA prediction methods can be 
put into operation by using fine-grained hardware 
implemented on the FPGA. Recently, the bioinfor-
matic researchers found that the modern comput-
ers, parallel or multi-core, do not show a greater 
than 50% parallel usefulness and efficiency.18 But 
the researchers achieved better accelerations when 
using the FPGA co-processors, which grows to be 
a hopeful approach for the main RNA prediction 
algorithms like RNAalifold,18 Nussinov’s algorithm19 
and  Zuker’s algorithm.20
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(i) Fine-grained parallel implementation on the 
FPga for the rnaalifold method
The most popular computational approach for RNA 
secondary structures based on using the MFE-model 
is the RNAalifold folding method, which was pre-
sented by Hofacker et al in.35 The RNAalifold was 
used for computing the consensus of RNA struc-
tures and it had been implemented as an extension of 
Zuker’s algorithm.13 Also, the RNAalifold algorithm 
was considered the thermodynamic energy minimi-
zation stability with an average energy matrix and 
sequence co-variation score matrix together. The 
RNAalifold approach has the worst case execution 
time and storage space complexities are respectively 
O(m × n4 + n3) and O(n2), as n is the length of RNA 
sequence and m is the number of RNA sequences in 
the alignment. Due to these strong reasons Xia et al 
in18 adopted the RNAalifold algorithm and re-imple-
mented it on FPGA chips.

The researchers in18 supplied an innovative accel-
erated approach for the RNAalifold algorithm. They 
proposed a systolic array structure with one master 
Processing Element (PE) and many slave PEs for 
fine-grained hardware implementation on the FPGA. 
Their goals from this re-implementation, was to par-
allelize the original RNAalifold algorithm. The master 
PE loads the energy matrices from the outer memory 
“DRAM ”, while the other slave PEs remain waiting 
to take data from the master PE. The execution time 
of the parallel prediction algorithm was grown to be 
more than 12× on one FPGA with 16PEs. This results 
compared with the previous results for ViennaRNA-
1.6.5 software,51 the original RNAalifold algorithm.

(ii) Fine-grained parallelization of nussinov’s 
algorithm implemented on FPga
Many RNA folding methods utilized empirical mod-
els for predicting the RNA secondary structures based 
on the MFE estimation by using the Dynamic Pro-
gramming (DP) algorithm. Jacob et al in19 pointed 
out that in all these empirical models, algorithms for 
predicting RNA structures are just DP recurrences 
from the original Nussinov’s algorithm.12 There are 
two features that make this algorithm computation-
ally more applicable for predicting RNA second-
ary structures among the other prediction methods; 
Firstly, Nussinov’s algorithm used the length of RNA 
sequence as a proxy for the MFE and it computed 

the most maximum of RNA base pairs. Secondly, 
the original Nussinov12 one runs in O(n3) time and 
requires O(n2) storage space complexities.

Jacob et al in19 adapted one of the most recent par-
allel FPGA architectures (Virtex-II 6000 FPGA) for 
implementing the normal Nussinov’s algorithm. Also, 
the researchers calculated and built it on two clas-
sic two-dimensional (2D) systolic arrays to achieve 
optimal string parenthesization and to deal with the 
maximum length of RNA primary sequence. Hence, 
Jacob et al19 implemented this design of accelerat-
ing the original Nussinov RNA structural prediction 
method by utilizing the 2D systolic arrays on FPGA 
implementation. This parallel design obtained good 
throughput results on the Virtex-II 6000 FPGA. This 
output was compared with the same implemented 
method on the modern x86 CPU. The results obtained 
better factor up to 39× speed-ups in execution time.

(iii) Parallel fine-grained implementation  
for the Zuker algorithm on FPga
The most well-liked and admired computational 
approach for the RNA secondary structure based on 
using the MFE is the Zuker’s algorithm.13 It was con-
firmed to be the most stable RNA secondary structure 
prediction method based on calculating MFE. The 
Zuker’s algorithm runs in O(n4) execution time and 
resides in the O(n2) storage memory requirements 
complexities. Recently, different developments and 
many optimal algorithms have been derived to sim-
plify and reduce the Zuker’s algorithm computa-
tional complexities. Also, most biology researchers 
have proved that, the RNA molecule existing in large 
sequences is more than what was expected before. In 
other words, biological experiments have shown that 
RNA molecules fold in thousands of bases.15 Also, 
new discoveries make a huge increase of the RNA 
data sources; the data in GenBank almost doubling 
every year.52 The original polynomial time complex-
ity of the Zuker’s algorithm is O(n4). This complex-
ity could not be able to deal with these sophisticated 
instances introduced earlier, in a sequential manner.

The promising way to make Zuker’s algorithm tol-
erable and balanced in calculation is a parallel struc-
tural design implementation. Recently, Dou et al in20 
proposed an innovative parallel design for accelerating 
Zuker’s algorithm. The investigators in20 utilized and 
built their techniques by dividing the Zuker  algorithm 
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matrix in the usual mode. Then, they submitted and 
distributed the subtasks as a multithreading procedure 
that can be calculated independently. This parallel 
scheme was implemented on the FPGA fine-grained 
hardware by proposing one master PE and multiple 
slave PEs with systolic array structure. In addition, 
the RNA researchers in20 projected new methods for 
reducing the RNA energy lookup table size by 85%. 
These lookup tables should be loaded in the mem-
ory, as the RNA prediction algorithm requires to use 
them. Consequently, they implemented their parallel 
algorithm on 16 PEs on FPGA co-processors. The 
experimental results of this parallel scheme explained 
enhancement up to factor of 14× speed-up time com-
paring with the ViennaPackage.51

RnA parallel Taxonomy
Parallel taxonomy of rna folding
In particular, the most popular RNA secondary struc-
ture prediction methods are the dynamic programming 
algorithms based on the MFE models. Herein, we pro-
posed and described a general taxonomy to apply on 
the existing RNA parallel methods. This proposed tax-
onomy for the RNA parallel secondary structure meth-
ods is using four main phases. Three of them working 
as a different agents and the fourth one is the main 
RNA prediction algorithm, as shown in Figure 5:

•	 The Input Checker Agent (INCA) receives the 
RNA primary sequence from the input device or 
reads it from a text file. Subsequently, the INCA 
checks the validity of this RNA by applying the 
valid nucleotides RNA bases in Watson-Wobble 
rules (WW-rules).10,24

•	 INCA transfers the valid RNA sequence to the par-
allel prediction RNA MFE algorithm (P-RNAmfe), 
which starts calculating the RNA secondary struc-
ture by using WW-rules to combine the valid RNA 
base-pairs. The P-RNAmfe algorithm simultane-
ously predicts the optimal and most stable RNA 
secondary structure by using the MFE lookup tables 
(mfe-LT).15,28 These mfe-LTs are loaded to the shared 
cache memory by loader just before the P-RNAmfe 
algorithm start calculating and predicting the RNA 
secondary structures. Essentially, based on this 
investigation, there are four parallel techniques 
was used to re-implement the previous RNA pre-
diction methods. These four popular parallel RNA 

prediction methods were illustrated by zooming in 
the “P-RNAmfe”, as shown in Figure 5 (a, b, c and d). 
A brief explanation of these four implementation 
parallel methods are as follows:
•	 First, a parallel design to harness the power of 

the multi-core CPUs for predicting the RNA 
secondary structures. The GTfold is a parallel 
multi-core algorithm.15 It computed a larger 
RNA sequences, as shown in Figure 5 (a).

•	 Second, a parallel paradigm on the latest mod-
ern GPU-NVIDIA cards. This parallel design 
was utilizing the CUDA programming code in 
the C-language environment. This new scheme 
was used in16 to accelerate the execution time 
for the previous RNA folding method.48 This 
design was explained in Figure 5 (b).

•	 Another parallel design is a combination of two 
existing pseudoknotted RNA secondary struc-
tures prediction methods.25,34 This design17 used 
a parallel master-slave techniques based on 
the Beowulf cluster/hardware, as depictured in 
Figure 5 (c).

•	 The last parallel scheme elaborated the 2D sys-
tolic array parallel by using FPGA in fine-grained 
hardware. This parallel paradigm was illustrated 
in Figure 5 (d). Actually, there were three vari-
ous parallel RNA detection methods.18–20 These 
original RNA prediction methods were lately 
re- implemented on FPGA.

•	 The Output Decision Maker Agent (OTDMA) 
checks the accuracy of the initial Output RNA 
Secondary Structure Production (ORSSP). It per-
forms this checkable process by testing and com-
paring the first output “ORSSP” with the diverse 
known RNA structures (as a standard benchmark 
for testing and evaluating the RNA prediction 
method) in the RNA Databases (RNA-Db).53–57 If 
the OTDMA finds the quality of the new ORSSP 
is poor or low, it feeds the RNA sequence back to 
the INCA to re-start another round of detection 
with new and more intelligent constraints. Or else, 
the OTDMA finds the accuracy of the output RNA 
structure is high, it transfers the new ORSSP to 
the last agent, which called Final Result 2D Com-
parison Agent (FR2CA).

•	 The FR2CA compares the final RNA second-
ary structure result with the known and existing 
 structures in RNA-Db, to report the accuracy scale 
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of predicted RNA.58 In addition, the FR2CA agent 
measures the execution time and space complexi-
ties for the RNA prediction algorithm.

Evaluating existing rna algorithms using 
comparative taxonomy
By using this proposed comparative taxonomy, as 
a classified comparison procedure for the exist-
ing parallel RNA prediction methods. The authors 
found that some of these RNA parallel prediction 

methods ran through all the comparative taxonomy 
phases. While, the other RNA prediction methods 
went through some steps of this proposed compara-
tive taxonomy.

From the methodological point of view, the 
researchers explained and investigated a comparison 
procedure among these RNA parallel methods accord-
ing to the proposed taxonomy in Table 2. The selected 
group of the previous RNA algorithms focuses on the 
parallel implementation of the existing RNA second-
ary structure methods.

Figure 5. Parallel taxonomy of rna folding algorithms. (1) inca: agent to check the validity of input rna primary sequence. (2) P-rnamfe alg: Parallel 
rna secondary structure prediction algorithm based on MFE. it zooms out in [a, b, c or d]. (3) OTDMA: Agent to compare the first result with existing online 
rna databases. (4) Fr2ca: agent to measure the performance of the rna structural prediction method with the standard benchmarks.
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Discussion and comparison
Scores of RNA researchers have introduced several 
evolutionary parallel blueprints for solving the 
RNA secondary structure problem. In this paper, the 
researchers discussed and compared these parallel 
RNA methods, as shown in Table 3. They have dis-
cussed in22 an intensive RNA detection algorithms, 
as a first phase of the RNA secondary research in a 
Bioinformatics domain. The authors classified and 
compared the RNA approaches in two main groups 
and they presented the results in the two tables. In this 
study, the researchers extracted the well-known RNA 
sequential prediction methods in Table 1.

Then, in this paper, the authors focused their anal-
ysis on discussing and comparing the latest parallel 
RNA prediction efforts that have been pioneered in 
the RNA secondary structure folding domain. Con-
sequently, from the comparison of the parallel RNA 
methods in Table 3, it could be noticed that only one 
research17 presented a parallel design for the RNA 
pseudoknots type. While the others, proposed parallel 
designs for the RNA detection on stem-loops types. 
The comparison had also shown that the latest paral-
lel algorithm16 applied on the GPU, by utilizing the 
power of the NVIDIA card with the CUDA program. 
This method was implemented on the GPU to solve 
the RNA secondary structure problems. The high 
accessibility of the GPU card in the contemporary 
machines and the provided features for the devel-
oper to utilize GPU using high level languages like 
a C language environment; are the important motiva-
tions for the RNA research community to exploit the 
CUDA on the GPU.

Finally, the authors concluded that, implementing 
the RNA secondary structure prediction methods on 
parallel architectures has several significant benefits. 
The main advantage is reduced complexity, in both 
time and memory storage, comparing with the origi-
nal RNA structure prediction algorithms. Also, the 
parallel RNA algorithms provided accurate results 
with better performance.

conclusion
In this paper for the solving RNA secondary struc-
ture prediction problem, the authors presented the 
state-of-the-art of the RNA parallel methods. They 
introduced an intensive investigation on exhaus-
tive up to date parallel RNA secondary structure 

 prediction algorithms. Indeed, recently various 
methods and techniques for predicting RNA second-
ary structures have emerged. Most of these computa-
tional methods have faced with some complexities, 
from sequential implementation viewpoint. There-
fore, re-implementing the existing RNA prediction 
methods by using parallelization architectures would 
result and contribute in solving the faced difficulties. 
The study concluded and showed that all of RNA par-
allel methods obtained better results, when compared 
to the sequential methods in terms of accuracy in one 
side and time/space complexities, in another side.

This research study was comprised in three trends: 
(i) RNA in biological context. (ii) RNA computational 
prediction methods. (iii) A comparative taxonomy of 
RNA parallel methods. In the first part, the research-
ers explained the experimental method’s difficulties 
that the biologists are facing, in determination of 
RNA 3D structures. Exploratively, the researchers 
concluded the reasons that force and allow the RNA 
molecule to fold and pair back on itself forming a 
double helices, in a chemical and biological context. 
Secondly, in the methods and research findings, the 
authors listed the sequential RNA secondary struc-
ture methods, in a schematic classification diagram. 
Then, they compared their contributions and com-
plexities. Also, the authors investigated compre-
hensively the state-of-the-art of the RNA parallel 
prediction methods.

In addition, the researchers performed a scien-
tific comparison among these enhanced RNA paral-
lel methods with the previous existing methods. In 
the third part, the researchers proposed a new paral-
lel taxonomy. Then, they applied the existing parallel 
methods using this taxonomy. Lastly, the researchers 
conducted a comparison procedure to evaluate these 
RNA parallel methods based on the proposed taxon-
omy, in terms of the taxonomy steps.

Consequently, this study of the RNA existing 
parallel methods proved that the parallelization per-
formance of the algorithm is proportional to the 
method of the parallelization itself. Particularly, the 
comparison showed that the proposed RNA meth-
ods utilizing GPU capabilities result more promising 
outputs. Besides that, from the implementation point 
of view, the available open source Application Pro-
gramming Interface (API) in a high level language 
in C environment could be considered as a positive 

http://www.la-press.com


Taxonomy of parallel rna algorithms

Evolutionary Bioinformatics 2010:6 43

Ta
bl

e 
3.

 c
om

pa
ris

on
 p

ar
al

le
l a

lg
or

ith
m

s 
fo

r r
n

a 
se

co
nd

ar
y 

st
ru

ct
ur

e 
pr

ed
ic

tio
n.

pa
ra

lle
l p

ar
ad

ig
m

R
n

A 
ex

is
tin

g 
al

go
rit

hm
s

O
rig

in
al

 c
om

pl
ex

iti
es

M
aj

or
 c

on
tr

ib
ut

io
n 

of
 th

e 
 

pa
ra

lle
liz

at
io

n 
m

et
ho

d 
Th

e 
en

ha
nc

em
en

t o
n 

 
co

m
pl

ex
iti

es
 b

y 
us

in
g 

pa
ra

lle
liz

at
io

n 
de

si
gn

ex
ec

ut
io

n 
 

tim
e

sp
ac

e 
 

re
qu

ire
m

en
t

sp
ee

d-
up

 ti
m

e
sp

ac
e 

re
qu

ire
m

en
t

r
n

a 
pr

ed
ic

tio
n 

 
al

go
rit

hm
s 

on
 m

ul
tic

or
e 

 
P

ar
al

le
liz

at
io

n 
“G

Tf
ol

d”

m
fo

ld
 29

,4
6  a

nd
 

R
N

A
fo

ld
 14

O
(n

4 )
O

(n
2 )

G
Tf

ol
d15

 c
om

bi
ne

 w
ith

 e
nh

an
ce

m
en

t  
fo

r r
n

a 
pr

ed
ic

tio
n 

al
go

rit
hm

s 
 

(m
fo

ld
 &

 R
N

A
fo

ld
) o

n 
c

P
U

 
m

ul
tic

or
e 

P
ar

al
le

liz
at

io
n

O
(n

3 ) 
w

ith
 a

 fa
ct

or
  

of
 1

.6
× 

on
  

ex
ec

ut
io

n 
tim

e 

–

a
cc

el
er

at
in

g 
r

n
a 

 
se

co
nd

ar
y 

st
ru

ct
ur

e 
 

al
go

rit
hm

s 
on

 g
P

U
 

U
na

fo
ld

 p
ac

ka
ge

 
“h

yb
rid

-s
s-

m
in

”48
O

(n
3 )

O
(n

2 )
a

da
pt

in
g 

pa
ra

lle
l f

un
ct

io
n 

on
  

hy
br

id
-s

s-
m

in
 fo

r r
n

a 
pr

ed
ic

tio
n 

 
an

d 
re

-im
pl

em
en

tin
g 

on
 g

P
U

a 
fa

ct
or

 o
f 1

7×
 o

n 
sp

ee
d-

up
 ti

m
e

–

P
ar

al
le

l r
n

a 
 

pr
ed

ic
tio

ns
 a

lg
. o

n 
B

eo
w

ul
f c

lu
st

er
  

«M
as

te
r–

S
la

ve
»

P
kn

ot
s-

R
E

25
O

(n
6 )

O
(n

4 )
co

m
pP

kn
ot

s:
17

 a
 p

ar
al

le
l f

ra
m

ew
or

k 
 

by
 u

si
ng

 c
om

bi
na

tio
n 

of
 b

ot
h 

ex
is

tin
g 

 
m

et
ho

ds
 (P

kn
ot

s-
R

E
, P

kn
ot

s-
R

G
)  

an
d 

ru
nn

in
g 

bo
th

 a
lo

ng
si

de
  

fo
r p

re
di

ct
io

n 
r

n
a 

st
ru

ct
ur

e 
w

ith
 m

or
e 

ac
cu

ra
cy

 a
nd

 s
ho

rte
r t

im
e

O
(n

4 )
Av

g.
 O

(n
2 )

P
kn

ot
s-

R
G

34
O

(n
4 )

O
(n

2 )

P
ar

al
le

liz
in

g 
r

n
a 

 
se

co
nd

ar
y 

st
ru

ct
ur

e 
 

al
go

rit
hm

s 
on

  
FP

g
a 

ch
ip

s

r
n

a
al

ifo
ld

 a
lg

.35
O

(m
 ×

 n
4 
+	

n3 )
O

(n
2 )

A 
sy

st
ol

ic
 a

rr
ay

 s
tru

ct
ur

e 
us

in
g 

fin
e-

 
gr

ai
ne

d 
pa

ra
lle

l o
n 

FP
g

a
s18

 to
  

ac
ce

le
ra

te
 r

n
a

al
ifo

ld
 a

lg
or

ith
m

 

a 
fa

ct
or

 o
f 1

2×
 o

n 
 

sp
ee

d-
up

 ti
m

e 
–

P
ar

al
le

liz
in

g 
n

us
si

no
v 

 
r

n
a 

st
ru

ct
ur

al
 

al
go

rit
hm

s 
on

 F
P

g
a 

 
co

-p
ro

ce
ss

or
s

n
us

si
no

v’
s 

al
g.

12
O

(n
3 )

O
(n

2 )
a 

pa
ra

lle
l s

ys
to

lic
 a

rr
ay

s 
on

 F
P

g
a

19
  

co
-p

ro
ce

ss
or

s 
fo

r a
cc

el
er

at
in

g 
 

n
us

si
no

v’
s 

r
n

a 
al

go
rit

hm

a 
fa

ct
or

 o
f 3

9×
 o

n 
 

sp
ee

d-
up

 ti
m

e
–

a
cc

el
er

at
in

g 
Zu

ke
r’s

  
al

go
rit

hm
 fo

r r
n

a 
 

st
ru

ct
ur

al
 b

y 
P

ar
al

le
l  

fin
e-

gr
ai

ne
d 

on
 F

P
G

A 

Zu
ke

r’s
  

al
go

rit
hm

13
O

(n
4 )

O
(n

2 )
a 

pa
ra

lle
l s

ys
to

lic
 a

rr
ay

s 
on

 F
P

g
a

20
  

co
-p

ro
ce

ss
or

s 
fo

r a
cc

el
er

at
in

g 
 

Zu
ke

r’s
 r

n
a 

al
go

rit
hm

U
p 

to
 fa

ct
or

 o
f 

14
× 

sp
ee

d-
up

  
co

m
pa

rin
g 

w
ith

  
Vi

en
na

P
ac

ka
ge

–

http://www.la-press.com


al-Khatib et al

44 Evolutionary Bioinformatics 2010:6

point. These parallelizing RNA secondary structure 
prediction methods, showed a promising area for 
future RNA studies and for computational RNA bio-
informatic researches.
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