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Functional Reactive Programming

What is Functional Reactive Programming (FRP)?

Umbrella-term for functional approach to
programming reactive systems.

Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

Has evolved in a number of directions and
Into different concrete implementations.

Yampa: An FRP implementation in the form
of a Haskell combinator library , a.k.a.
Domain-Specific Embedded Language
(DSEL).
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Signal functions

Key concept: functions on signals

Intuition:

Signal a ~ Tine — «

r .. Signhal T1

y .. Signal T2

SF o« 8 ~ Signhal o« — Signhal (3
f . SF T1 T2

Additionally, causality required: output at time ¢
must be determined by input on interval |0, ¢|.
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Alternative view:

Signal functions can encapsulate state.

f
[ state (t) ]

state(t) summarizes input history z(t'), t' € [0, t].
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Signal functions and state

Alternative view:

Signal functions can encapsulate state.

f
[ state (t) ]

state(t) summarizes input history z(t'), t' € [0, t].

From this perspective, signal functions are:
stateful if y(¢) depends on x(t) and state(t)
stateless if y(¢) depends only on x(t)
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Programming with signal functions

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

S e

A combinator can be defined that captures this
idea:

(>>):SFab—SFbc— SFac
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What about larger networks?
How many combinators are needed?

s

John Hughes’s Arrow framework provides a
good answer!



The Arrow framework (1)

These diagrams convey the general idea:
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first f loop f
first :: SF a b — SF (a,c) (b, c)
loop :: SF (a,c) (b,c) — SF a b



The Arrow framework (2)

Some derived combinators:
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Example: Constructing a networ k

o i =l

R =S

| -|=-=I|

loop (arr (M(z,y) — ((z,y),7))
S>> (fst f
> (arr (Mz,y) — (z,(z,y))) > (g h))))
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The Arrow notation

L/

proc z — do
rec
u<— f—=(z,v)
Yy — g—= u
v — h— (u, )
returnA— y
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How does it work?

Essentially:

newtype SF a b =
SF (DeltaTime — a — (SF a b, b))

A top-level loop, reactimate , drives the
computation.

Note that the system representation in principle
IS reconstructed at every time step.
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Related languages and par adigms

FRP/Yampa related to:

Synchronous dataflow languages, like
Esterel, Lucid Synchrone.

Modeling languages, like Simulink, Modelica.
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What makes Yampa interesting?

First class reactive components (signal
functions).

Supports hybrid (mixed continuous and
discrete time) systems: option type Event
represents discrete-time signals.

Supports dynamic system structure through
switching combinators
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