A Brief | ntroduction to

Functional Reactive Programming
and Yampa

FoP Away Day 17 January 2007/

Henrik Nilsson

School of Computer Science and Information Technology

University of Nottingham, UK

Functional Reactive Programming

What is Functional Reactive Programming (FRP)?

Umbrella-term for functional approach to
programming reactive systems.

Functional Reactive Programming

What is Functional Reactive Programming (FRP)?

Umbrella-term for functional approach to
programming reactive systems.

Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

Functional Reactive Programming

What is Functional Reactive Programming (FRP)?

Umbrella-term for functional approach to
programming reactive systems.

Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

Has evolved in a number of directions and
Into different concrete implementations.

Functional Reactive Programming

What is Functional Reactive Programming (FRP)?

Umbrella-term for functional approach to
programming reactive systems.

Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

Has evolved in a number of directions and
Into different concrete implementations.

Yampa: An FRP implementation in the form
of a Haskell combinator library , a.k.a.
Domain-Specific Embedded Language
(DSEL).

Signal functions

Key concept: functions on signals

FoPAD: Brief Introduction to FRP & Yampa — p.3/14

Signal functions

Key concept: functions on signals

Intuition:

Signal a ~ Tine — «

r .. Signhal T1

y .. Signal T2

SF o« 8 ~ Signhal o« — Signhal (3
f . SF T1 T2

Signal functions

Key concept: functions on signals

Intuition:

Signal a ~ Tine — «

r .. Signhal T1

y .. Signal T2

SF o« 8 ~ Signhal o« — Signhal (3
f . SF T1 T2

Additionally, causality required: output at time ¢
must be determined by input on interval |0, ¢|.

Signal functions and state

Alternative view:

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

f
[state (t)]

state(t) summarizes input history z(t'), t' € [0, t].

Yampa — p.

4/14

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

f
[state (t)]

state(t) summarizes input history z(t'), t' € [0, t].

From this perspective, signal functions are:
stateful if y(¢) depends on x(t) and state(t)
stateless if y(¢) depends only on x(t)

Yampa — p.

4/14

Programming with signal functions

In Yampa, systems are described by combining
signal functions (forming new signal functions).

Programming with signal functions

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

S e

Programming with signal functions

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

S e

A combinator can be defined that captures this
idea:

(>>):SFab—SFbc— SFac

Programming with signal functions (2)

What about larger networks?
How many combinators are needed?

s

Programming with signal functions (2)

What about larger networks?
How many combinators are needed?

s

John Hughes’s Arrow framework provides a
good answer!

The Arrow framework (1)

These diagrams convey the general idea:

>O— '.".n'.

arr f

._-
L

-'_-
S

()

first f loop f
first :: SF a b — SF (a,c) (b, c)
loop :: SF (a,c) (b,c) — SF a b

The Arrow framework (2)

Some derived combinators:

Example: Constructing a networ k

s

Example: Constructing a networ k

Example: Constructing a networ k

o i =l

R =S

| -|=-=I|

loop (arr (M(z,y) — ((z,y),7))
S>> (fst f
> (arr (Mz,y) — (z,(z,y))) > (g h))))

The Arrow notation

¢

The Arrow notation

¢

The Arrow notation

L/

proc z — do
rec
u<— f—=(z,v)
Yy — g—= u
v — h— (u,)
returnA— y

FoPAD: Brief Introduction to FRP & Yampa — p.10/14

How does it work?

Essentially:

newtype SF a b =
SF (DeltaTime — a — (SF a b, b))

How does it work?

Essentially:

newtype SF a b =
SF (DeltaTime — a — (SF a b, b))

A top-level loop, reactimate , drives the
computation.

How does it work?

Essentially:

newtype SF a b =
SF (DeltaTime — a — (SF a b, b))

A top-level loop, reactimate , drives the
computation.

Note that the system representation in principle
IS reconstructed at every time step.

Related languages and par adigms

FRP/Yampa related to:

Synchronous dataflow languages, like
Esterel, Lucid Synchrone.

Related languages and par adigms

FRP/Yampa related to:

Synchronous dataflow languages, like
Esterel, Lucid Synchrone.

Modeling languages, like Simulink, Modelica.

What makes Yampa interesting?

First class reactive components (signal
functions).

What makes Yampa interesting?

First class reactive components (signal
functions).

Supports hybrid (mixed continuous and
discrete time) systems: option type Event
represents discrete-time signals.

What makes Yampa interesting?

First class reactive components (signal
functions).

Supports hybrid (mixed continuous and
discrete time) systems: option type Event
represents discrete-time signals.

Supports dynamic system structure through
switching combinators

	Functional Reactive Programming
	Signal functions
	Signal functions and state
	Programming with signal functions
	Programming with signal functions (2)
	The Arrow framework (1)
	The Arrow framework (2)
	Example: Constructing a network
	The Arrow notation
	How does it work?
	Related languages and paradigms
	What makes Yampa interesting?
	Example: Space Invaders

