

Nanoscale single quantum dot devices at 1300 nm

Andrea Fiore

Ecole Polytechnique Fédérale de Lausanne

Quantum Devices group at EPFL:

Postdocs: L.H. Li, C. Monat, V. Zwiller (now at ETHZ)

PhD students: B. Alloing, C. Zinoni

Undergrads: G. Buchs, M. Gobet (now at Texas Univ.)

Funding: Swiss National Science Foundation

- Single-photon emitters
- Practical issues for single-photon emitters:
 - Wavelength & density: Growth of QDs at 1300 nm
 - Electrical injection: Nanosized QD LEDs
 - Controlling the optical density of states
- Conclusions

Application: Quantum cryptography

BB84 quantum key distribution

A close look at single photons

"Classical" light sources (e.g. a laser) are Poissonian:

"Nonclassical" light source:

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Single quantum system:

COLE POLYTECHNIQUE
ÉCOLE POLYTECHNIQUE
ÉÉDÉRALE DE LAUSANNE The quest for single-φ
SOURCES Image: Cole Polytechnique
Sources Image: Cole Polytechnique<

- Single atoms
- Single ions
- Single molecules
- •

Wish list for single-φ sources:

- Compact, electrically pumped
- Efficient
- Emitting at 1300-1550 nm

\Rightarrow A semiconductor LED!

Semiconductor Quantum Dots

MBE growth of InAs on GaAs:

(Kiraz et al., PRB 2002)

Single-QD LED ?

- Electrical pumping ?
- Efficiency ?
- Emission at 1300 nm ?

Our approach:

- Sparse InAs/GaAs QDs at 1300 nm
- Nanostructured LEDs
- Nanocavities for efficient LEDs

• Lo

Low density at low coverage (Leonard et al., PRB 1994)
Wavelength?

Low-density QDs

Coverage affects emission wavelength:

Difficult to grow large and In-rich QDs at small In coverage

Low growth rate \Rightarrow Increased diffusion length \Rightarrow Low density

The role of capping

InGaAs capping:

- Lower strain
- Reduced In segregation

1300 nm at 5K:

Single QDs in 2 μmdiameter mesa:

Low signal-to-noise due to noisy InGaAs detector

Increase light extraction with a microcavity

Temperature dependence

Single QD emission above 77 K:

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Population of charged exciton states at high T
Homogeneous broadening of lines due to phonon scattering
Single lines can be isolated up to T>77K

Towards LN₂-cooled singlephoton sources at 1300 nm

Confining current injection

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Current spreading: $L_{spread} = f(R_{//}, R_{\perp})$ Carrier diffusion: $L_{diff} = f(material)$

To suppress current spreading: Bandgap engineering of hole injector

doped p-injector:

0.2

0.4

0.6

Voltage (V)

0.8

400 µm

200 um

⁻100 μm ⁻50 μm

1.2

(PAU) ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Quantum dots:

Carrier diffusion + extraction efficiency:

InGaAs quantum well:

Extracting light from semiconductors

The problem of light extraction:

Total internal reflection $n(GaAs) \approx 3.5$ $\eta = \frac{\Omega}{c} \approx 2\%$

Planar μ-cavity: no control in lateral directions

 $\Rightarrow \eta_{max} pprox 20\%$

Need to change carrier-photon interaction so that light is generated only in useful directions Andrea Fiore

Microcavities & QDs

Spontaneous emission rate:

 $W_{if} \propto \left|r_{12}\right|^2 rac{g(E_2-E_1)}{V}$

g(E): Opt. density of states per unit energy V: Mode volume

Sp. em. rate enhancement: (Purcell, 1946)

$$F_P = \frac{W_{cav}}{W_{FS}} \propto \frac{1}{\Delta E_{cav}V} \frac{1}{E^2} \propto Q \frac{\lambda^3}{V}$$

(all photons emitted in cavity mode)

Electrical injection?

Micropillars (Gérard et al., PRL 1998) :

VCSELs:

2 µm

Design quality factor: Q=1000 Calculated Purcell effect for Φ =300 nm:

$$F_{P} = \frac{3}{4\pi^{2}} \frac{\left(\lambda / n\right)^{3}}{V_{cav}} Q \approx 40$$

10.2 2

Acc.V Spot Magn Det WD Exp

5.00 kV 3.0 18554x SE

- Low growth rate ⇒ sparse, long-wavelength QDs
- Single QD spectroscopy at 1300 nm
- Carrier injection in <300 nm with oxidized apertures
- Strong optical confinement in $\approx \lambda^3$ volumes

Towards efficient single-QD LEDs

