

Templating Nanoparticles with Self-Assembled Matrices

Paul V. Braun

pbraun@uiuc.edu

Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory and Beckman Institute for Advanced Science and Engineering

University of Illinois at Urbana-Champaign, Urbana, IL

June 2004

Support: DOE, NSF, ARO-MURI

Mase Bone – Mineral Grown in (with?) a Biomolecular Template

Weiner S., *Annual Rev. Mater. Sci.* 1998, **28**:271

Level 6: Spongy vs Compact Bone

Level 4: Fibril Array Patterns

Level 2: Mineralized Collagen Fibril

Level 3: Fibril Array

Level 1: Major Components

mineralized bone from a 50-year-old human male femur

mineral - collagen nanocomposite.

Ziv V., et al., Microscopy Res. and Technique 1996, 33:203

Direct Templating of Semiconductor Nanostructures

"liquid crystal lithography"

lyotropic liquid crystal

semiconductor nanostructure

Motivation

quantum dots antidots photoactive zeolites filter membranes LEDs nanocomposites

Braun, various publications 1995-2000

Lyotropic Liquid Crystals

P. V. Braun et al.

"Best Case"

 $Cd_{0.5}Zn_{0.5}S$

Bulk Mineralization of Lyotropic Liquid Crystals

synthesis of semiconductor-organic composites

 H_2S is introduced at the top of the vial, once it reaches the cadmium ion doped liquid crystal, the precipitation of CdS (yellow) begins immediately.

M.SE Illinois Templating and Nontemplating of II-VI Semiconductors

All grown in identical lyotropic liquid crystals

50 nm

Braun, JACS 1999

TEM of hexagonally structured mesoporous platinum

Grown in hexagonal lyotropic liquid crystal

Mineralization of a Cubic Liquid Crystal

Cubic phase formed from:

60% (EO)₁₀₆(PO)₇₀(EO)₁₀₆ 40% 0.1 M Cd(CH₃CO₂)₂

SEM of hollow CdS spheres

Hollow sphere morphology is the result of mineralization around one or more micelles (micelle diameter = 23 nm)

Braun, Mater. Res. Bull 1999

Mineralization of a Cubic Liquid Crystal

Tilt series confirms hollow sphere morphology

Braun, Mater. Res. Bull 1999

BiOCI Synthesized in Lyotropic Liquid Crystals

potential precursor for nanostructured thermoelectric materials

water

250 nm disks

hexagonal phase (50% amphiphile, 50% water)

250 by 100 nm arrowheads

lamellar phase (78% amphiphile, 22% water)

5 nm nanoparticles

 $BiCl_3$ stabilized in $HCl_{(aq)}$, diffuse in NH_4OH gas \longrightarrow BiOCl

Dellinger, Braun, Scripta Materialia, 2001

MASE Biological Templating of CdS in DNA-membrane complexes

Organization of ion precursors using DNA-membrane complexes

Pictures adapted from Rädler J.O. et al, Science (1997) and Koltover I. et al, PNAS (2000).

CdS nanorods –Crystallographic Control

HRTEM CdS lattice

DNA

Crystallographic control via biomolecular architecture: Templated nanorods have (002) directions tilted by 60° with respect to the rod axis, in contradistinction to all known templated CdS nanorods

Direct Templating of Semiconductor Thin Films

polyol amphiphile

Thin film templating was attempted with **many** oligo(ethylene oxide) based amphiphiles with **no** success, motivating the synthesis of the polyol amphiphile below

Polyol Amphiphiles-properties

• insoluble in water

OH

OH

16

- swell forming a hexagonal lyotropic liquid crystal
- synthesized via living cationic polymerization of t-butyl vinyl ether followed by deprotection

Braun, unpublished

Direct Templating of CdS Films

polyol based lyotropic liquid crystal directly templates the growing CdS film as H_2S diffuses through the polymer substrate

TEM of the CdS film, after removal of the organic template. Inset is a small angle electron diffraction from the film

CdS Thick Film Growth

microtomed cross-section of a templated CdS film grown with 15 min. H_2S exposure, note mesopores running entirely through the film, as required by the growth mechanism Braun, unpublished

Electrodeposition of CdTe Film

Direct Templating by Hexagonal Liquid Crystal

Bias substrate to -650 mV vs. SCE resulting in CdTe growth

TEM of periodically nanoporous CdTe film

Potential for chemical sensors and solar energy conversion

M.S.E. Combine Sol-Gel Processing + Molecular Self-Assembly (Mobil)

Evaporation Induced Self-Assembly of Mesoporous Silica

M.S.E *Evaporation Induced Self-Assembly of Mesoporous Silica*

C. J. Brinker, *et al.* Nature, 1999

Semiconductor nanorods

100 nm

Also, see similar work by M. P. Pileni

Products include extremely high aspect ratio CdSe nanorods (30:1), as well as arrow-, teardrop-, tetrapod-, and branched tetrapod-shaped nanocrystals of CdSe.

Solvent: mixture of hexylphosphonic acid and trioctylphosphine oxide

Important parameters: ratio of surfactants, injection volume, and monomer concentration.