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Nanoscale Materials

d

1nm<d<100nm

Increasing size

nanoparticle bulk materialmolecule

Single Electron Transistor
Andres et al., Science, 1323, 1996

Milan - Duomo Florence - S. Croce
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What are they?

Nanoparticles Nanorods

0 dimensional nanomaterials:
unique properties due to 

quantum confinement
and very high surface/volume ratio

1 dimensional nanomaterials:
extremely efficient 
classical properties

Nanowires Nanotubes



S u N M a G

More Specifically

Nanoparticles Nanorods

0 dimensional nanomaterials:
unique properties due to 

quantum confinement
and very high surface/volume ratio
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1 dimensional nanomaterials:
extremely efficient 
classical properties

Nanowires Nanotubes
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Properties of Metal Nanoparticles

Optical Properties

Electronic Properties

Nanoscale Materials Have Different 
Properties when compared to their bulk 

counterparts!
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A brief historical Background

• the extraction of gold started in the 5th millennium B.C. 
near Varna (Bulgaria) and reached10 tons per year in Egypt 
around 1200-1300 B.C.when the marvelous statue of 
Touthankamon was constructed.

• it is probable that “soluble” gold appeared around the 5th 
or 4th century B.C. in Egypt and China.

• the Lycurgus Cup that was manufactured in the 5th to 4th 
century B.C. It is ruby red in transmitted light and green in 
reflected light, due to the presence of gold colloids.
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• The reputation of soluble gold until the Middle 
Ages was to disclose fabulous curative powers 
for various diseases, such as heart and venereal 
problems, dysentery, epilepsy, and tumors, and 
for diagnosis of syphilis. 

• the first book on colloidal gold, published by the 
philosopher and medical doctor Francisci Antonii
in 1618. This book includes considerable 
information on the formationof colloidal gold sols 
and their medical uses, including successful 
practical cases. 

• In 1676, the German chemist Johann Kunckels
published another book, whose chapter 7 
concerned “drinkable gold that contains metallic 
gold in a neutral, slightly pink solution that exert 
curative properties for several diseases”. He 
concluded that “gold must be present in such a 
degree of communition that it is not visible to the 
human eye”. 
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• A colorant in glasses, “Purple of Cassius”, is a colloid 
resulting from the heterocoagulation of gold particles and 
tin dioxide, and it was popular in the 17th century.

• A complete treatise on colloidal gold was published in 1718 
by Hans Heinrich Helcher. In this treatise, this philosopher 
and doctor stated that the use of boiled starch in its 
drinkable gold preparation noticeably enhanced its 
stability.

• These ideas were common in the 18th century, as indicated 
in a French dictionary, dated 1769, under the heading “or 
potable”, where it was said that “drinkable gold contained 
gold in its elementary form but under extreme sub-division 
suspended in a liquid”.

• In 1794, Mrs. Fuhlame reported in a book that she had dyed 
silk with colloidal gold. 

• In 1818, Jeremias Benjamin Richters suggested an 
explanation for the differences in color shown by various 
preparation of drinkable gold:  pink or purple solutions 
contain gold in the finest degree of subdivision, whereas 
yellow solutions are found when the fine particles have 
aggregated.
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• In 1857, Faraday reported the formation of deep 
red solutions of colloidal gold by reduction of an 
aqueous solution of chloroaurate (AuCl4-) using 
phosphorus in CS2 (a two-phase system) in a well 
known work. 

• He investigated the optical properties of thin films 
prepared from dried colloidal solutions and 
observed reversible color changes of the films 
upon mechanical compression (from bluish-purple 
to green upon pressurizing).

• The term “colloid” (from the French, colle) was 
coined shortly thereafter by Graham.

Marie-Christine Daniel and Didier Astruc, Chem. Rev. 2004, 104, 293-346
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Synthesis of Metal Nanoparticles

The citrate method

•It is easy
•It requires only water

•It requires skills
•Has reproducibility issues
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What is on the surface?
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The electrical double layer
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What are the limitations?
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Plasmons
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Optical Properties

ε ω( ) = ε1 ω( )+ iε2 ω( )

Mie Theory(1908)

ε ω( ) = 1−
ω p

2

ω2 − iγω

Empirically

γ r( )= γ 0 +
a
r

σabs ω( ) =
9ωV0εm

3 2

c
ε2

ε1 + 2εm( )2
+ ε2

2

Drude free electron model

Assumes spherical particle
Particle diameter << λ/10J.H. Hodak, et al. ; J. Phys Chem. B, 104(43), 9954, 2000.

Surface Plasmon Resonance is invariant with 
respect to the size on the nanoparticle.

The FWHM scales with the radius of the 
particles.
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Plasmon on nanoparticles
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Funny shapes
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Surface Enhanced Raman Scattering
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Local Field Enhancement
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Concentration Dependence
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Resonances



S u N M a G

Hemoglobin



S u N M a G

Metal Nanoparticles Fractal Clusters 

• Enhancement of optical processes:
Raman scattering, Lasing, DFWM, TPA

Theoretical simulation by 
Shalaev et al., PRB 1997

I/I0

• Metal nanoparticle fractal clusters
→ Collective surface plasmon modes

strongly localized 
resonate at VIS/NIR frequencies
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Sample Preparation 
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TPA Enhancement

Ti:Sapphire 
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~100 fs
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Spatial Inhomogeneity

• TPF vs. position: very inhomogeneous as expected
Average enhancement factor ~ 235==> Peak enhancement factor >2000 
(lower limit)

x (μm)
y (μm)

I/<I>
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Frequency Dependence

• Excitation 
wavelength 
dependence:

λexc = 720 nm 
820 nm
890 nm

10 μmFalse Color Overlay
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Sub-monolayers on MNFC 
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•Spatially averaged TPF enhancement factor ~ 20000 
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•Peak TPF enhancement factor > 160000

N

N
O

O

HS

Thickness dependence



S u N M a G

Morphology Effect 

N

N
O

O

HS

Enhancement factor: 1

Enhancement factor: 5Enhancement factor: 104
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Metal Nanoparticles Synthesis

Metal Salt (AuHCl4) + HS

Reducing Agent (NaBH4)+
HS

Ligand exchange 
reaction*

Direct mixed 
ligands reaction**

A. C. Templeton, M. P. Wuelfing and R. W. Murray, Accounts Chem. Res. 2000, 33, 27F. Stellacci, et al. Adv. Mat. 2002, 14, 194
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Synthesis Mechanism
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Synthesis Procedure 
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Place Exchange Reactions
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Galvanic Exchange
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Solid State Photo-Patterning

HOMO

LUMO

Dye Ag+

+0.25eV

+1eV

-1eV

Vs. Fc/Fc+

In solution: Huang et al., Langmuir, 12 (4),909,1996

hν

Photography

Nanoparticle patterning

Photo-reduction
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Applications for Nanoparticles 
Patterns

3 μm

10 μm

3D Optical Memories with 
fluorescence-based and 
refractive index-based 
readout

Holographic Data Storage
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General Concept
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AgAg+ + + RSH + RSH ((RSAg)RSAg)nn

((RSAg)RSAg)nn +Ag+Ag++ (RS)(RS)nn AgAgmm’’
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Kim et al., Langmuir 14,226, 1998Brust,et. al. Chem Commun., 1655, 1995.
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TPA induced Microfabrication

100 fs pulses 700 - 800 nm
1.4 NA , 0.35 μm spot size

+z +y

+x

O

O

O

O
O

O

2hν

D-π-D TPA dye

Maruo, Nakamura, Kawata, Opt.Lett. 1997
Wu, Webb et al., Proc. SPIE 1992

Insoluble cross-linked polymer
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Silver Patterns

Transmission Image

Reflection Image

30 μm

30 μm
100 μm

Wavelength: 488 nm
Average Power: 3 mW
Writing Speed: 25 μm/s
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TPA Properties

•• 3D confinement3D confinement
•• Depth penetrationDepth penetration

Two-
photon
excitation

One-photon
excitation

Excited volume as small as ~ 0.05 μm3

TPA ∝δ I2

I ~
1
z 2

⇒ TPA ~
1
z 4
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3D Metal Structures

200 μm
200 μm

65 μm

20 μm

Transmission Optical Microscopy Scanning Electron Microscopy

Two-Photon MicroscopySchematic Drawing

Wavelength: 730 nm
Pulse duration: 120 fs
Average Power: 15 mW
Writing Speed: 25 μm/s
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Solubility Issue
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Badia et. al. Chem. Europ. J., 2(3), 359,1996.
Pradeep et al, Phys. Rev. B, 2(62), R739,2000.
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Ligand Length Effect

Sample ligand ΔH(kJ/mol organic)  Temp(K)

d = 5 nm -42.3 402

d = 5 nm -35.5 402 

d = 5 nm -20.7 401

dodecanethiol

octanethiol

Result-
The shorter the ligand the smaller  the interdigitation enthalpy

octadecanethiol

increasing
length
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Nanoparticle Size Effect

Sample        ligand ΔH(kJ/mol org)   Temp(K)

d = 5 nm 1 -20.7 401 

d = 7 nm 1/3 -13.5 401

d = 5 nm 1 -20.7 382

d = 8 nm 1/2 -5.7 377

3:1 oct/dod

octanethiol

relative ligand                         
amount

The larger the nanoparticle the smaller the interdigitation enthalpy, probably 
because of surface curvature effect

Result-

larger

larger
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Mixed Ligands Effect

Sample ligand ΔH(kJ/mol org)      Temp(K)
d = 7 nm -5.7 377

d = 5 nm -6.0 384

d = 5 nm -9.5 380

d = 5 nm -20.6 420

d = 5 nm 14.1 384

3:1 oct/dod

N SH

1:3 carbazolethiol/oct

Result-
Mixture of ligands lower the interdigitation enthalpy

1:1:1 
oct/hep/dod

1:1 octadecane/dodecane

3:1 hep/dod
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Order/Disorder Transition

10nm

@1220C @200C

Deinterdigitated Interdigitated
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Thermal Annealing Evidences

Pristine Film with a 
thickness of ~ 20nm

After 1 thermal cycle After 5 thermal cyclesAfter 4 thermal cycles

Submonolayer

SEM TEM

50 nm

10 nm 10 nm

Thick annealed film
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Ligands on Nanoparticles
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Fluorescent Nanoparticles
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Nanoparticles synthesized by place exchange reactions
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O2N
O

O
HS

NO2

~ 2500 dyes per nanoparticles

5 nm

+ AgNO3

NaBH4

EtOH/Acetone

DCM

Water Soluble
SH

COOH

Fluorescence Quantum Yield (η) of the:
Free Dye 48% (2.2 ns)
Dye on the particle 33% (1.8 ns)
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Optical Spectroscopy
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