

Photonic Crystal-Based Optical Devices

Paul V. Braun

pbraun@uiuc.edu

Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory and Beckman Institute for Advanced Science and Engineering

University of Illinois at Urbana-Champaign, Urbana, IL

June 2004

Funding: NSF, DOE, ARO – MURI, Beckman Foundation, 3M

Photonics Today: Interesting, but Exciting?

Current 2-D Optical Network Devices

"Innovate to manipulate photons in a flexible, compact way."

Lucent's (canceled) WaveStar™ LambdaRouter

2.5 dimensional?

Close-up of single mirror.

Array of microscopic mirrors, each able to tilt in various directions, to steer light.

Colloidal self-assembly

Multiphoton polymerization

Ref: many, many groups!

Lithography

S. Y. Lin, et al. Nature 1998, 394, 251.

3-D Applications

- · Low-loss waveguides
- Optical cavities
- · Zero-threshold microlasers
- Light-emitting diodes
- All-optical transistors
- Improved photoreactors
- Tunable filters

Prof. John Joannopoulos http://ab-initio.mit.edu/photons/index.html

Cumpston et al. Nature 1999, 398, 51.

Turberfield A. J., et al., Nature 2000 Wiltzius, P. et al., Chem. Mater. **2002**

Requirements for a Photonic Crystal: 1) Periodicity in the dielectric constant; 2) Domain sizes ~ λ

Current Principle: Total Internal Reflection

Inherent losses typically > ~ 0.2 db / km Cannot tolerate bend radii < 5 cm Q Require periodic amplification of signal Not suitable for small bend radii

PBG-Based:

Frequency Confinement

http://ab-initio.mit.edu/photons/index.html

3-D Self-Assembly: Colloidal Crystals (Opals)

SEM of opal cross-section Opal synthetic "opal" formed from ~500 nm silica spheres J.V. Sanders, Phil. Mag. A. 1980 60 Reflectance / % Natural Opals consist of periodically arranged silica spheres in a matrix 40 The colors of an opals are due to Bragg diffraction of light by planes of silica spheres 20 Synthetic Opals are formed by careful assembly 0 of silica spheres from solution 400 500 900 700 800 600 1000

Wavelength / nm

Colloidal Crystals – Diffraction Yields Color

Effect of particle diameter

Image courtesy of Satoshi Takeda, Pierre Wiltzius

Mase A Better Colloidal Crystal – Nanoparticle Mediated Colloidal Epitaxy

A. van Blaaderen, R. Ruel, P. Wiltzius, *Nature* **1997**, *385*, 321.

Colloidal epitaxy → low defect density & defined orientation with respect to the substrate

Gravity Driven Nanoparticle Mediated Colloidal Epitaxy

Crystal Engineering through Substrate Engineering

Vacancy concentration ~1 per 200 particles

Optical cavities & Waveguides?

System Characteristics

*Courtesy of Air Force Research Laboratory (e.g. R. Kannan et al. Chem. Mater. 2001, 13, 1896-1904)

3-D Pattern Formation in Colloidal Crystals – Procedure

Imaging of Templated Multiphoton Written Polymers

W. Lee, S. A. Pruzinsky, P. V. Braun, Adv. Mater. 2002, 14, 271.

M.SE 2-photon Polymerization in and out of Colloidal Crystals

Embedded Waveguide Structure Fabrication

Successful fabrication of embedded waveguide structures in self-assembled photonic crystals!

<u>Press Reports:</u> R.F. Service, *Science.* **2002**, *295*, 2399. T.A. Taton, D.J. Norris, *Nature.* **2002**, *416*, 685. W. Roush, *Technology Review.* **2002**, *105*, 22.

1.6 μ m silica colloid settled on a 1.66 μ m template. Index matched with DMF (n ~ 1.43). White light illumination

001 face

Selenium photonic crystal

P. V. Braun, *et al. Adv. Mater.* **13**, 721-724 (2001)

Characterization of transmission through embedded waveguides

Inserted Planar Defects in Colloidal Crystals

Integrated Photonics?

48-channel echelle grating demultiplexer chip.

Metallic Photonic Crystals

Enhance blackbody emission?

After semiconductor electrodeposition, the colloidal particles are removed via solvent

Braun and Wiltzius, Nature 1999

Mas F Self-Assembled Chemical Sensors: Polymeric Photonic Crystals

Because $\Delta\lambda \sim \Delta d$, swelling enables sensing

$$\lambda = 2dn_{eff} \cong 2d\left(\sum_{i} n_i^2 V_i - \sin^2 \phi\right)^{1/2}$$

- d = interlayer distance
- n_i = refractive index of component i
- V_i = volume fraction of component i
- $\boldsymbol{\phi}$ = angle between incident beam and sample normal

- 1. Assemble colloidal crystal in flow cell
- 2. Infiltrate with monomer mixture
- 3. UV irradiate (356 nm, 50 min)
- 4. CHCl₃ etch (24 hours)
- 5. Solvent exchange
- 6. Structural and optical characterization

Y.-J. Lee and P.V. Braun, *Adv. Mater.* **2003**, 15, 563 Y.-J. Lee , S. A. Pruzinsky, P.V. Braun, *Langmuir*, in press

Glucose Sensing with Mesoscale Photonic Crystals

Y.-J. Lee et al. Langmuir, 2004

Increasing [Glu] Diffraction Shift Kinetics 1.0 10 \rightarrow 100 mM 0 8

Dramatic Decrease in Diffraction Efficiency with Swelling

Mas E Illinois

WHY?

Mase Simple Models for Hydrogel Swelling → Diffraction Response Initial State

Confocal Imaging of Inverse Opal Hydrogels

1. Synthesize Acrylated Rhodamine B Rhodamine B-ITC + 2-Aminoethylmethacrylate·HCI

- 2. Polymerize hydrogel in colloidal crystal (PS, d = 3 μ m, t = 25 μ m) HEMA + 5% AA + 0.66% EDGM + ~10 μ M acrylated Rhodamine B
- 3. Etch colloids
- 4. Image with 2-photon confocal microscopy

fcc (111), bottom layer

- Substrate pinning

fcc (111), 2nd layer

Finite Element Analysis

Parameters

- 1/4 of an inverse fcc unit cell modeled
- Periodic boundary conditions
- Bottom surface does not move vertically
- Thermal strain applied \rightarrow 59% volume change
- E = 10^6 N/m^2 , v = 0.499

fcc (110)

So, how will this impact the optical response?

Conclusions and Acknowledgements

Colloidal Epitaxy

Binary nanoparticle-colloid suspensions enable the formation of crack-free, low defect density dry colloidal crystals **Dr. Wonmok Lee, Dr. Michael Bevan, Prof. Jennifer Lewis**

<u>Waveguides</u> Direct writing of 3-D structures in colloidal crystals through multiphoton polymerization **Stephanie Pruzinsky, Dr. Wonmok Lee**

<u>Chemical Sensors</u> Optically active structures formed from chemically responsive inverse opal hydrogels **Yun-Ju (Alex) Lee, Stephanie Pruzinsky, Carla Heitzman, Walter Frey, Prof. Harley Johnson**

Funding: NSF, DOE, ARO – MURI, Beckman Foundation, 3M

Paul Braun: pbraun@uiuc.edu; www.mse.uiuc.edu