Analytical Ultracentrifugation of Nanoparticles

Helmut Cölfen

Max-Planck-Institute of Colloids and Interfaces, Colloid Chemistry, Am Mühlenberg 2, D-14424 Potsdam Email: Coelfen@mpikg-golm.mpg.de

Why fractionating analytics in solution ? Light Scattering Microscopy

No fractionation Counting of Se particles bigge Drying artifacts c

Problem: Statistics Sensitive to bigger particles / dust as

Problem: Big particles Absorption multiple scattering Fractionation Every particle is detected, simultaneous multiple detection possible

Svedbergs Colloid Research

- T. Svedberg, J.B. Nichols, *J. Amer. Chem. Soc.* 45 (1923) 2910
- T. Svedberg, H. Rinde, J. Amer. Chem. Soc. 45 (1923) 943
- T. Svedberg, H. Rinde, J. Amer. Chem. Soc. 46 (1924) 2677
- T. Svedberg, Kolloid-Z. Zsigmondy Festschrift, Erg.-Bd. Zu 36 (1925) 53

1925: Nobel prize for colloid work

1926: First protein work

Principle of AUC

Experiments very simple, evaluation not always

Different AUC experiments

Sedimentation velocity

High centrifugal force Sedimentation stronger than back diffusion

Sedimentation equilibrium

Moderate centrifugal force Sedimentation in the order of back diffusion

Density gradient

High centrifugal force for distribution of a low molecular salt or a second solvent

Lamm equation

$\frac{\partial \mathbf{c}}{\partial \mathbf{t}} = \frac{1}{\mathbf{r}}$	$\frac{d}{dr} \left(\begin{array}{c} r D \frac{dc}{dr} - s \omega^2 r^2 c \\ \underbrace{Oiffusion \ term} \\ \text{Sedimentation \ term} \end{array} \right)$	erm
Experiment	Effective term in the Lamm equation	Characteristics
Sedimentation velocity	Sedimentation term much bigger than diffusion term	High rotational speed
Synthetic boundary experiment for the determination of D	Only diffusion term effective	Synthetic boundary cell, low rotational speed
Sedimentation velocity	Sedimentation and diffusion term effective / equilibrium between sedimentation and diffusion	Moderate / low rotational speed
Density gradient (special case of sedimentation equilibrium)	Sedimentation and diffusion term effective / equilibrium between sedimentation and diffusion	Moderate / high rotational speed, locally dependent solution density

Basic evaluation important for nanoparticles

1 step means 1 component

Flat baseline indicates purity

- a) Determine distance travelled in given time interval
- b) Calculate sedimentation coefficient s or its distribution
- c) Calculate particle size or distribution

$$s = \frac{u}{\omega^2 r}$$
 $s = \frac{\ln(r/r_m)}{\omega^2 t}$ $d_i = \sqrt{\frac{18\eta s_i}{\rho_2 - \rho}}$

$$M = \frac{sRT}{D(1 - \bar{v}\rho)} \qquad f = \frac{RT}{N_A D} \qquad d_i = \sqrt{\frac{18\eta s_i}{\rho_2 - \rho}}$$

Sedimentation velocity depends on:

Molar mass / particle size Density Shape / Friction Charge

for given exptl. parameters (temperature, solvent density & viscosity etc.)

Particle size distributions calculated on a hard sphere basis

Sedimentation velocity

Gold in H₂O at 5000 RPM, 25 °C

a) Raw data

b) Sevaluation

c) sdistribution

d) ddistribution

Common Problems

- Extremely broad s-distributions, Big aggregates or small impurities are not detected
- Colloids aggregate or grow during centrifugation (concentration dependent aggregation)
- Density of hybrid colloids is unknown to access particle size
- Electrostatic stabilization complicates analysis due to charge contributions
- Particle polydispersity in size, shape, density and hydration
- High particle density often makes density gradients or density variation methods impossible
- Often multicomponent mixtures

Fractionation of heterogeneous samples

Latex mixture

A. Völkel

High resolution PSD

Pt colloid in MeOH / HAc

0.1 nm Baseline resolution

Problem: Elimination of diffusion broadening by selfsharpening effects is not common

Baseline resolution > 1 Angström

Particles slightly bigger than from AUC (Density)

coalescence are conserved

dt

Mechanism in G.A. Braun, Ph-D dissertation, Aachen 1997

Growing ZnO Colloid

Zn(Ac)₂ (1 mmol/l) + 20 mmol/l NaOH in water free Isopropanol

Arbitrary units

Dilution 1 : 5 and Heating to 65 °C

Start of heating defines start of the reaction

Problem: AUC has a low time resolution

T. Pauck

D.I.Gittins and F.Caruso

Phase transfer and bio-labeling

D.I.Gittins and F.Caruso

Dopamine functionalized TiO₂

M. Niederberger

Concept of turbidimetric immunoassay

Big particles aggregate first, then the small ones

TEM of Immunoassay

0 mg/L CRP

Statistics, drying artifacts ?

4.28 mg/L CRP

156 mg/L CRP

🛃 Scale bars <mark>500 nm</mark>

SLS of Immunoassay

Fast measurement without equilibration needs

- Kinetic measurements possible
- Ambient conditions without any pressure effects
- Low resolution in particle size
- Low statistical resolution (No fractionation)

92 wt-% small latices

AUC of Immunoassay

 AUC has equilibration time > 10 min before experiment

Fractionation enables to determine correct particle quantities and sizes by turbidity detection (MIE correction) with speed profile even over decades of svalues

92 wt-% small latices in mixture correctly detected

PNIPAM Microgels

Fringe shift of crosslinked part: 7.9076%Fringe shift of free chains: 2.3724%

Swelling degree distribution

Solvent density variation

PS₁₂₃-P4VP₁₄₅ in toluene resp. d-toluene

Combination of 2 s-distributions in 2 chemically identical solvents yields particle size and density distribution

- Density in good agreement with values from density meter
- Particle size in agreement with results from DLS or viscosity measurements

K. Schilling

• Same result for core crosslinked micelles

PS-PMAA Latex mixture 40 : 60

A: Star like crystals/whisker, d = 17 nm, l = 184 nm B: Transversal growth, destabilization of filaments, further densification of core

C: Compact aggregates with periodicity ("Chrysanthemun" structure)

M. Breulmann

Synthetic hybrid colloids

density increase

 Clear monitoring of density increase upon Ca²⁺ complexation

 Global Analysis could reveal density and molar mass

Combination of AUC with DLS or better FI-FFF is highly desirable

Particle size and density

Hybrid Colloids

- Iron storage protein Ferritin forms robust hollow sphere from 24 dimeric subunits
- Ferritin oligomerizes
- Different amounts of ferrihydrite inside the core (up to 4500 Fe)
- Simultaneous particle size and density distribution
- Size and amount of oligomers ?
- Amount of ferrihydrite inside the core for the different oligomers ?

Ferritin

FI-FFF separates only according to particle size, AUC according to particle size and density

AUC no baseline separation of oligomers (density distribution)

Global analysis

	Monomer	Dimer	Trimer
s* at 25 °C (AUC)	59.8 S	96.9 S	127.9 S
D* at 25 °C (FI-FFF)	3.68 x 10 ⁻⁷ cm ² /s	2.41 x 10 ⁻⁷ cm ² /s	1.90 x 10 ⁻⁷ cm ² /s
d _H (FI-FFF)	11.9 nm	18.1 nm	23.0 nm
ρ _Ρ	1.764 g/cm ³	1.531 g/cm ³	1.436 g/cm ³
M _w	586,700 g/mol	954,100 g/mol	1,367,400 g/mol
Oligomer amount	69.4 wt%	19.5 wt%	11.1 wt%
n Fe ³⁺	1476	667	34

First direct observation of near critical size clusters by AFM

S.T. Yau, P.G. Vekilov "Quasi-planar nucleus structure in apoferritin crystallization", Nature **406**, 494 - 497; 3 August 2000

D.W. Oxtoby "Catching crystals at birth", Nature 406, 464 - 465; 3 August 2000:

"Although the first small crystallites involved in nucleation form in the bulk of the solution, Yau and Vekilov can observe them only once they have fallen to the bottom of the vessel and attached themselves to the surface there. How can the authors be sure that they are observing the critical early stages of crystallization described by nucleation ?"

Synthetic boundary cell of the Vinograd Type

Reactant () containing solution is layered onto the second reactant via the capillary () Formation of a sharp reaction boundary

Particle formation in a synthetic boundary cell

Transformation of a time distribution into a radial distribution

Synthetic boundary crystallization ultracentrifugation

All known stable CdS growth species simultaneously accessible in one experiment. Even subcritical clusters detectable in solution

Conclusion

- AUC is a very versatile instrument for colloid chemistry (Range of possible methods still not fully explored !!!)
- Fractionation allows the investigation of complex mixtures or very polydisperse samples with s ranging over decades (speed profile)
- High statistical accuracy
- Critical crystal nuclei and subcritical clusters can be resolved
- Crystal growth reactions can be investigated by transformation of time distribution into radial distribution
 BUT:
- Colloids can express various unfavourable properties which makes them problematic to investigate
- Fast multidetection systems together with global analysis can potentially adress even most complex mixtures with particle size and VBAR distribution but role of charge still unadressed

Future Perspectives

- Fast speed profiles and detectors to suppress diffusion broadening
- Multi-detection systems (RI, UV-Vis, SLS and others)
- Global Analysis (promising with SEDVEL & SEDEQUIL + DLS & FI-FFF) to obtain s, M, D & VBAR distributions
- New ultracentrifugation methods could allow to access new quantities

Surface tension from phase transfer, particle charge determination via sedimentation in pH or charge gradient, Conformational changes in solvent quality gradients, new synthetic boundary techniques for membrane / crystal growth investigations or chemical reactions in the AUC, etc.

Recommended reading

. Svedberg, K.O. Pedersen, The ultracentrifuge, Clarendon Press, Oxford (1940)

he classical textbook about analytical ultracentrifugation still with much impact today

.K. Schachman, *Ultracentrifugation in biochemistry*, Academic Press, New York (1959)

compact and useful book covering experimental and theoretical aspects

.E. Harding, A.J. Rowe and J.C. Horton; *Analytical ultracentrifugation in biochemistry and polymer science*, The royal society of chemistry, Cambridge, ISBN 0-85186-345-0 (1992)

he most comprehensive modern book about analytical ultracentrifugation. A very good overview about methods & techniques of analytical ultracentrifugation and a valuable source of modern applications.