Small Angle Neutron Scattering

- Eric W. Kaler, University of Delaware
- Outline
- Scattering events, flux
- Scattering vector
- Interference terms
- Autocorrelation function
- Single particle scattering
- Concentrated systems
- Nonparticulate scattering

Small Angle Neutron Scattering

- Measures (in the ideal world...)
- Particle Size
- Particle Shape
- Polydispersity
- Interparticle Interactions
- Internal Structure
- Model-free Parameters
- Radius of gyration $-R_{g}$
- Specific surface-S/V
- Compressibility: $\left(\frac{\partial \Pi}{\partial \rho}\right)^{-1} \Rightarrow$ molecular weight
- Much information as part of an integrated approach involving many techniques

References

- Vol. 21, part 6, Journal of Applied Crystallography, 1988.
- Chen, S.-H. Ann. Rev. Phys. Chem. 37, 351-399 (1986).
- Hayter, J.B. (1985)in Physics of Amphiphiles: Micelles, Vesicles, and Microemulsions, edited by V. Degiorgio, pp. 59-93.
- Roe, R.-J. (2000) Methods of X-ray and Neutron Scattering in Polymer Science.

Different Radiations

- Light (refractive index or density differences)
- laboratory scale, convenient
- limited length scales, control of scattering events (contrast)
- dynamic measurements (diffusion)
- X-rays (small angle) (electron density differences)
- laboratory or national facilities
- opaque materials
- limited contrast control
- Neutrons (small angle) (atomic properties)
- national facilities
- great contrast control

Neutrons

- Sources
- nuclear reactor
- US: NIST
- spallation sources (high energy protons impact a heavy metal target)
- US: Spallation Neutron Source (SNS)
- 1.4 billion dollars, complete 2006
- Both cases produce high energy neutrons that must be 'thermalized' for materials science studies

SNS Overview

wWw.sns.gov

Maxwell Distribution

velocity distribution: $\quad f(v)=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v^{2} \exp \left(-\frac{1}{2} m v^{2} / k T\right)$

Flux, cross-section, intensity

- Flux (plane wave): number per unit area per second
- for a wave of amplitude A, the flux $J=|A|^{2}=A A^{*}$
- Flux (spherical wave): number per unit solid angle per second
incident flux J_{0}

Bragg Condition for Interference

$\sin \theta=\frac{B C}{A C}$
$\sin \theta=\frac{D C}{A C}$
$B C+C D=2 d \sin \theta$

When extra distance is equal to one wavelength

$$
m \lambda=2 d \sin \theta
$$

Dealing with Colloidal Dimensions

Recall that interference between two particles is a function of the scattering angle and the separation between scattering centers

so the size explored varies inversely with the scattering angle
For $\mathrm{d}=100 \mathrm{~nm}, \mathrm{n}=1 \mathrm{~nm}, \sin \theta=0.005$, so $\theta \approx 0.005$

Example of Interference

Constructive and destructive interference can lead to more (or less) intensity

Another Example of Interference

Light waves only interfere if they are polarized in the same direction.

Interference Calculation

Consider a plane wave

Then the phase difference between the two waves scattered
from O and P is $\Delta \varphi=\frac{2 \pi \delta}{\lambda}=\frac{2 \pi(Q P-O R)}{\lambda}=\frac{2 \pi\left(k_{o} \cdot r-k \cdot r\right)}{\lambda}=-q \cdot r$

The scattering vector

$$
\begin{aligned}
& \vec{q}=\left(\vec{k}-\vec{k}_{o}\right) \\
& |\vec{q}|=q=\frac{4 \pi \sin \theta}{\lambda}
\end{aligned}
$$

q lies in the plane of the detector
Notation: $q, k, h, s=q / 2 \pi$

The Value of the Scattering Vector Corresponds to a Distance in Real Space

Light
Scattering

Small Angle

Comparison of light and small-angle x ray or neutron scattering

Light scattering

CHRNS 30 METER SANS INSTRUMENT

NGT

Nationol Institute of Standards and Technology

Small Angles... Big Machines

http://www.ncnr.nist.gov/instruments/ng3sans/ng3_sans_photos.html

Small Angle Scattering Instrument (NG-7) at NIST, Gaithersburg, MD

SANS Data Reduction NIST examples

Two Dimensional Data

Reduced to $I(q)$

Interference continued

- Now write the (spherical) scattered wave from particle 1 (at O)

- And the spherical scattered wave from particle 2 (at P)

$$
A_{2}(x, t)=A_{1}(x, t) \exp (i \Delta \phi)=A_{o} b \exp (-i 2 \pi(v t-x / \lambda)) \exp (-i q \cdot r)
$$

- The combined wave on the detector is $A=A_{1}+A_{2}$

$$
A(x, t)=A_{0} b \exp (-i 2 \pi(v t-x / \lambda))(1+\exp (-i q \cdot r))
$$

- And the flux is

$$
J=A(x, t) A^{*}(x, t)=A_{o}{ }^{2} b^{2}(1+\exp (-i q \cdot r))(1+\exp (i q \cdot r))
$$

which only depends on $q \cdot r$

Interference continued

- For N scatterers,

$$
A(q)=A_{0} b \sum_{j=1}^{N} \exp \left(-i q \cdot r_{j}\right)
$$

- and for a distribution of scatterers

$$
A(q)=A_{o} b \int_{V} n(r) \exp (-i q \cdot r) d^{3} r
$$

- where $n(r) d r$ is the number of scatterers in a volume element and V is the sample volume.

So What is Special About Neutrons?

- Neutrons have spin $\frac{1}{2}$
- Neutrons are scattered from atomic nuclei, and the scattering event depends on the nuclear spin.
- There are coherent and incoherent scattering lengths tabulated for elements and isotopes
- coherent - information about structure
- incoherent - arises from fluctuations in scattering lengths due to nonzero spins of isotopes and has no structural information

Neutron cross-sections

- Hydrogen is special. Spin $=1 / 2$, with different spin up and spin down scattering, gives rise to a very large incoherent scattering (this is bad for structure measurements, but good for dynamics)
- Deuterium is spin 1, with much lower incoherent scattering

Element	$\mathrm{b}_{\text {coh }}\left(10^{-12} \mathrm{~cm}\right)$
${ }^{1} \mathrm{H}$	-0.374
${ }^{2} \mathrm{D}$	0.667
C	0.665
O	0.580

For a molecule, the scattering length density

SLD $=\Sigma b_{i} /$ molecular volume

H/D substitution changes the scattering power and gives control of $n(r)$: this is called contrast variation.

Autocorrelation Function

- Setting $A_{0}=1$, defining the scattering length density $\rho(r)=\Sigma n(r) b$ then
weak scattering

$$
\begin{aligned}
& A(q)=\int_{V} \rho(r) \exp (-i q \cdot r) d^{3} r \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& I(q)=|A(q)|^{2}=\left|\int_{V} \rho(r) \exp (-i q \cdot r) d^{3} r\right|^{2} \\
& \left.I(q)=|A(q)|^{2}=\left.\langle | \int_{V} \rho(r) \exp (-i q \cdot r) d^{3} r\right|^{2}\right\rangle
\end{aligned}
$$

really an ensemble average...

- With some calculus...

$$
\begin{aligned}
& I(q)=A(q) A(q)^{*} \\
& =\left[\int \rho\left(u^{\prime}\right) e^{-i q u^{\prime}} d u^{\prime} \iint \rho(u) e^{-i q u} d u\right] \text { and set } r=u^{\prime}-u \\
& =\int\left[\int \rho(u) \rho(u+r) d u\right] e^{-i q r} d r \\
& =\int p(r) e^{-i q r} d r \\
& \text { where } p(r) \equiv \int \rho(u) \rho(u+r) d u
\end{aligned}
$$

is the autocorrelation function of $\rho(r)$ and is the Fourier transform pair of $I(q)$

Data Analysis

$$
\begin{aligned}
& I(q)=\int p(r) e^{-i q r} d r \\
& p(r) \equiv \int \rho(u) \rho(u+r) d u
\end{aligned}
$$

To find $\rho(r)$, either

1. Inverse Fourier Transform
2. Propose a model and fit the measured $I(q)$

Data Interpretation

Method of Global Indirect Fourier Transform

IFT

Indirect Fourier Transform

DILUTE LIMIT: Scattering from Particles Intraparticle Interference

Scattering from larger particles can constructively/destructively interfere, depending on size (relative to the size of the object) and shape of the particles.
> Size (how big is big?)

- Scattering vector, q, which gives the length probed
- Introduce dimensionless quantity, ' $q R$ ', that indicates how big the particles are relative to the wavelength.
> Shape
- Introduce the Form Factor, $P(q)$, the define the role of particle shape in the scattering profiles
- $P(q)$ for Spheres, leading to Guinier Plots
- $P(q)$ for vesicles, which are different than spheres
- $P(q)$ for Gaussian Coils/Polymers, leading to Zimm Plots

Intraparticle Interference Arises from Scattering from the Particle

Generate constructive and destructive interference which is related to FORM

A some angle, the effect depends on the wavelength of the light, size of the aggregate and the shape of the aggregate.

Introduce a Dimensionless Quantity to Answer the Question 'How Long is Long?'

small-q limit
$q R \ll \pi$
$q R \approx \pi$
large-q limit
$q R \gg \pi$

collective properties

individual properties

Intraparticle Form Factor, $P(q)$ is an Integral Over the Structure

Integral over the volume of the sample

$$
A(q)=\int_{\substack{v \\ \text { radial density of } \\ \text { the particle }}}^{\downarrow} \rho(r) e^{-i q \bullet r} d^{3} r
$$

Each shape is different, so each integral and each form factor will be different

$$
I(q)=\frac{1}{V} N_{p}|A(q)|^{2}=n_{p} P(q)
$$

$P(q)$ is the particle form factor

Form Factors for Spheres

Form Factor for a Cow

Perry, R.L., and Speck, E.P. "Geometric Factors for Thermal Radiation Exchange Between Cows and Their Surroundings", American Society of Agricultural Engineers Paper \#59-323.

For evaluating thermal radiant exchange between a cow and her surroundings, the cow can be represented by an equivalent sphere. The height of the equivalent sphere above the floor is $2 / 3$ of the height at the withers. The origin of the sphere is about $1 / 4$ of the withers-to-pin-bone length back of the withers. The sphere size differs for floor and ceiling, side walls, and front and back walls. For the model surveyed, the radius of the equivalent sphere is 2.13 feet for exchange with floor and ceiling, 2.38 feet for side walls, and 2.02 feet for the front and back walls. These values are 1.8, 2.08, and 1.78 times the heart girth. An equation in spherical coordinates is given for the variation of the size of the equivalent sphere with the angle of view measured from the vertical and transverse axes.

The shape factor for exchange with an adjacent cow in a stanchion spacing of $3^{\prime} 88^{\prime \prime}$ was found to be 0.1.

Form Factor for Sphere

Integrate the scattering over the entire sphere, which gives an analytical solution to the intraparticle form factor.

$$
P(q R)=\left(\frac{3}{(q R)^{3}}(\sin (q R)-q R \cos (q R))\right)^{2}
$$

Form Factor for Sphere

$$
P(q)=|A(q)|^{2}=\left|\int_{v} \rho(r) e^{-i q \cdot r} d^{3} r\right|^{2}
$$

solid sphere of radius $R, \Delta \rho=\rho-\rho_{\text {solvent }}$

$$
\begin{aligned}
& A(q)=\Delta \rho \int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi} e^{-i q \bullet r} r^{2} d r \sin \theta d \theta d \phi \\
& q \cdot r=q r \cos \theta \\
& A(q)=\Delta \rho(2 \pi) \int_{0}^{R} \int_{0}^{\pi} e^{-i q r \cos \theta} r^{2} d r \sin \theta d \theta \\
& =\Delta \rho(2 \pi) \int_{0}^{R} \int_{0}^{1} e^{-i q r x} r^{2} d r d x \\
& =\Delta \rho(2 \pi) \int_{0}^{R} \frac{e^{i q r}-e^{-i q r}}{i q r} r^{2} d r \\
& =\Delta \rho(2 \pi) \int_{0}^{R} \frac{2 i \sin q r}{i q r} r^{2} d r
\end{aligned}
$$

$$
\begin{aligned}
& A(q)=\Delta \rho \frac{4 \pi}{q} \int_{0}^{R} r \sin q r d r \\
& =\Delta \rho \frac{4 \pi}{q}\left[\frac{\sin q R}{q^{2}}-\frac{q R \cos q R}{q^{2}}\right] \\
& =\Delta \rho\left(4 \pi R^{3}\right)\left[\frac{\sin q R}{(q R)^{3}}-\frac{q R \cos q R}{(q R)^{3}}\right] \\
& =3 \Delta \rho V_{p}\left[\frac{\sin x-x \cos x}{x^{3}}\right] \\
& P(q)=|A(q)|^{2}=(\Delta \rho)^{2} V_{p}^{2}\left[3 \frac{\sin x-x \cos x}{x^{3}}\right]^{2}
\end{aligned}
$$

Shape of the Form Factor

Interference Plots for Spheres

The sizes denote the diameter of the particles; the red lines denote the q values accessible with typical light scattering measurements

Interference Plots for Spheres

Sphere Form Factor

- 6 nm monodisperse sphere

Guinier Expression

Back in the day... intensities were weak, so special care was taken at the low-q region

$$
\frac{I}{I_{o}}=P(q) \approx 1+a q^{2}+b q^{4} \ldots \approx 1-\frac{R_{g}^{2} q^{2}}{3}
$$

Note that an exponential can be expanded as a power series

$$
e^{-x} \approx 1-x+\frac{x^{2}}{2!}-\ldots
$$

so this suggested that in general

$$
I=I_{o} e^{-\frac{R_{g}{ }^{2} q^{2}}{3}}
$$

where R_{g} is the radius of gyration
(Guinier radius)

General Feature - Guinier Region ($q a<\pi$)

Onset of the angle dependence of the scattering
$I(q)=I_{o} P(q) \approx I_{o} e^{-\frac{R_{g}^{2} q^{2}}{3}}$

Then, taking the natural logarithm of the expression
$\ln I=\ln I_{o}-\frac{R_{g}{ }^{2} q^{2}}{3}$

The plotting the \ln I versus q^{2}, leads to a plot with the slope proportional to the square of the scattering vector

Guinier continued

- In general, for monodisperse objects

$$
R_{g}^{2}=\frac{\int r^{2}\left(\rho(r)-\rho_{s}\right) d^{3} r}{\int\left(\rho(r)-\rho_{s}\right) d^{3} r}
$$

- Example-solid sphere

$$
R_{g}^{2}=\frac{\int r^{2} r^{2} d r}{\int r^{2} d r}=\frac{3}{5} R^{2} \quad \text { or } R_{g}=0.77 R
$$

- Aside - for polydisperse spheres measure $\left\langle R_{g}{ }^{2}\right\rangle_{z}$

How Good Are Guinier Approximations?

Guinier Approximation for 30 nm Beads

Guinier Approximation for 96 nm Beads

- Guinier Approximations work well provide 'qa' is small
(black- full expression of $\mathrm{P}(\mathrm{q})$; blue- Guinier Approximation)
- As particles get larger, the angles must be far smaller
- Limit ~ 100 nm for LS measurements, using smaller angles

Anisotropic Scatterers

- Rods or disks may not always be isotropic
- Above analysis is for $I(q)=I(q)$
- Alignment may give additional information

Porod Region (qa>> π)

Recall that...

$$
P(q R)=\left(\frac{3}{(q R)^{3}}(\sin (q R)-q R \cos (q R))\right)^{2}
$$

' q R' dominates summation
In the limit that ' $q R$ ' is large

$$
P(q R) \approx\left(\frac{-3 q R \cos (q R)}{(q R)^{3}}\right)^{2} \approx\left(\frac{1}{(q R)^{2}}\right)^{2} \cos ^{2}(q R) \approx \frac{1}{(q R)^{4}} \approx(q R)^{-4}
$$

$P(q)$ is Dominated by q^{-4} Term

Porod Scattering for 50 nm Sphere

Form Factor for Vesicles

Form Factor of Vesicles Versus Spheres

Form factor for a sphere is given as:

$$
\begin{aligned}
P(q)= & (A(q))^{2} \\
& A(q R)=\frac{3}{q R}(\sin (q R)-q R \cos (q R))
\end{aligned}
$$

Form factor for a vesicle is outside sphere minus the inside spheres
$P(q)=\left(F_{\text {outside }}(q)-F_{\text {inside }}(q)\right)^{2}$
$P(q)=\left(\frac{3}{R_{O}{ }^{3}-R_{i}^{3}}\right)^{2}\left(\frac{R_{o}^{3}}{q R_{O}} J_{1}\left(q R_{o}\right)-\frac{R_{i}^{3}}{q R_{i}} J_{1}\left(q R_{i}\right)\right)^{2}$

Where $J_{1}(q)$ is the first order Bessel Function

$$
J_{1}(q R)=\frac{\sin (q R)}{(q R)^{2}}-\frac{\cos (q R)}{q R}
$$

Form Factor of Vesicles Versus Spheres

Scattering from Vesicles

Which looks very different than a sphere, for the same size

Contrast variation

- Consider a core and shell morphology:
- and change the solvent (H/D) to match the SLD of the core and shell, separately

Contrast Variation for Composite Particle

Clean sphere scattering gives core dimension

Clean shell scattering gives shell dimension

There are Other Forms of $P(q)$

Thin Rods: Length 2H; Diameter 2R; at low 9

$$
\begin{aligned}
& P(q)=\frac{e^{-q^{2} R^{2} / 4}}{2 q H} \\
& \quad R_{g}=\frac{R^{2}}{2}+\frac{H^{2}}{3}
\end{aligned}
$$

Disk: Thickness 2H; Diameter 2R

$$
P(q)=\frac{e^{-q^{2} H^{2} / 3}}{q^{2} R^{2}}
$$

$$
R_{g}=\frac{R^{2}}{2}+\frac{H^{2}}{3}
$$

Fractal Region ($q a \sim \pi$)

q ~ size of the aggregate

- Small q ~ size of the individual particles
- Large q ~ size of the individual aggregates

The Shape of Different Fractal Particles

Random fractal objects produced by using the band-limited Weierstrass functions and employed in experiments. Assigned fractal dimension was $D=(a) 1.2$, (b) 1.5, and (c) 1.8 .

Fractal Region for Aerosol Aggregates

$$
I(q)=I_{o}(q) P(q) \approx I_{o} e^{-d_{f}} \quad \ln I \approx-d_{f} \ln q
$$

$$
\begin{aligned}
&|\vec{q}|=\frac{4 \pi(1.33)}{0.500 \mu m} \sin \left(\frac{130}{2}\right) \approx 30 \mu m^{-1} \\
& d \approx 1 \mu m \\
&|\vec{q}|=\frac{4 \pi(1.33)}{0.500 \mu m} \sin \left(\frac{30}{2}\right) \approx 8 \mu m^{-1} \\
& d \approx 0.1 \mu m
\end{aligned}
$$

Allowing Characterization Over Many Distances

Logarithm-logarithm plots result in slopes that relate to the different levels of structures

Scattering from Particulate Systems

$\operatorname{Recall}: A(q)=A_{o} b \sum_{j=1}^{N} \exp \left(-i q \cdot r_{j}\right)$ so $\left.\frac{d \sigma}{d \Omega} \approx I(q)=\left.\langle | \sum_{i} b_{i} e^{i q \cdot r_{i}}\right|^{2}\right\rangle$

Scattering from Particulate Systems

so $\left.\frac{d \sigma}{d \Omega} \approx I(q)=\left.\langle | \sum_{i} b_{i} e^{i q \tau}\right|^{2}\right\rangle$
$\left.=\left.\langle | \sum_{i=1}^{N_{g}} e^{i q R_{i}} \sum_{\text {cell }} b_{i j} e^{i q_{i} x_{j}}\right|^{2}\right\rangle$
sum over the scatterers in each cell
sum over the number of cells

Scattering from Particulate Systems

 now define a form factor' for each cell$$
A_{i}(q)=\sum_{c e l l i} b_{i j} e^{i q \cdot x_{j}}
$$

in the particle, define $\rho_{\mathrm{i}}(r)=\sum_{j} b_{i j} \delta\left(r-x_{j}\right)$ in the solvent $\rho_{\mathrm{i}}(r)=\rho_{s}$ (constant and uniform)

$$
\begin{aligned}
& \text { so } A_{i}(q)=\int_{\text {celli }}\left(\rho_{i}(r)-\rho_{s}\right) e^{i q, r} d r+\rho_{s} \int_{\text {celli }} e^{i q \cdot r} d r \\
& =0+\int_{\text {paricice }}\left(\rho_{i}(r)-\rho_{s}\right) e^{i q \cdot r} d r+\delta(q) \\
& =A(q) f r o m \text { above! }
\end{aligned}
$$

Scattering from Particulate Systems

$$
\text { so } \left.\frac{d \sigma}{d \Omega} \approx I(q)=\left.\langle | \sum_{i} b_{i} e^{i q,\left.\right|_{i}}\right|^{2}\right\rangle
$$

$$
\left.=\left.\langle | \sum_{i=1}^{N_{N}} e^{i q r_{1}} \sum_{\text {celli }} b_{i j} e^{\left.i q x_{1}\right)}\right|^{2}\right\rangle
$$

$$
=\left\langle\sum_{i=1}^{N_{s}} e^{i q R_{1}} A_{i}(q)\right\rangle_{\text {particle shape, size, polydispers }}{ }_{\text {arrangement of particle centers }}
$$

Scattering from Particulate Systems

so $\left.\frac{d \sigma}{d \Omega} \approx I(q)=\left.\langle | \sum_{i=1}^{N_{p}} e^{i q \cdot R_{i}} A_{i}(q)\right|^{2}\right\rangle$
when the particles are 'dilute' the R_{i} are uncorrelated,
so $\left.I(q)=\left.N_{p}\langle | A_{i}(q)\right|^{2}\right\rangle$ as before!

So, how do we find the R_{i} 's??

Scattering from Particulate Systems

$$
\begin{aligned}
& \text { so } \frac{d \sigma}{d \Omega} \approx I(q)=\left\langle\left\langle\left.\sum_{i=1}^{N_{g}} e^{i q R_{i}} A_{i}(q)\right|^{2}\right\rangle\right. \\
& \left.=\left.\frac{1}{V} \sum_{i=1}^{N_{g}}\langle | A_{i}(q)\right|^{2}\right\rangle+\frac{1}{V}\left\langle\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}} \exp \left(i q \cdot\left(R_{i}-R_{j}\right)\right) A_{i}(q) A_{j}^{*}(q)\right\rangle
\end{aligned}
$$

again, in the simpliest case of monodisperse spheres, all $\left.\left.\langle | A_{i}(q)\right|^{2}\right\rangle=P(q)$
$I(q)=\frac{N_{p} P(q)}{V}+\frac{P(q)}{V}\left\langle\sum_{\substack{i=1}}^{\left.\left.N_{\substack{j \\ j \neq i}}^{N_{p}} \exp \left(i q \cdot\left(R_{i}-R_{j}\right)\right)\right\rangle\right)}\right.$
$=n_{p} P(q)\left(1+\frac{1}{N_{p}}\left\langle\sum_{i=1}^{N_{p}} \sum_{\substack{j=1 \\ j \neq i}}^{N_{p}} \exp \left(i q \cdot\left(R_{i}-R_{j}\right)\right)\right\rangle\right)$

Scattering from Particulate Systems

$$
\frac{1}{N_{p}}\left\langle\sum_{i=1}^{N_{0}} \sum_{j=1}^{N_{N}} \exp \left(i q \cdot\left(R_{i}-R_{j}\right)\right)\right\rangle
$$

is related to the thermodynamic radial distribution function $g(r)$, so we can finally write the master working equation as

$$
I(q)=n_{p} P(q)\left[1+4 \pi n_{p} \int_{0}^{\infty}(g(r)-1) \frac{\sin q r}{q r} r^{2} d r\right]
$$

Fundamental working equation for monodisperse spherical particles, with the term in brackets called the structure factor, so

$$
I(q)=n_{p} P(q) S(q)
$$

Structure Factor

- For 5 nm hard spheres, 20% volume fraction

Scattering from Particulate Systems

So how do we get $S(q)$?
Various thermodynamic models relate $g(r)$ (and thus $S(q)$) to the interparticle potential

There are two questions:

1. What is the nature of the potential?

Hard sphere?
Electrostatic?
Depletion?
Steric?
2. What thermodynamic formalism do you use to calculate $g(r)$?

Scattering from Particulate Systems

Potential Solution (closure) Comments
Hard Sphere
Excellent

Percus-Yevick
Rogers-Young analytic, can be extended to polydisperse

Monodisperse Approximation
Mean-Spherical

Electrostatic

Square Well Sharma\&Sharma (PY) Monodisperse
And many more... verified by computer simulations

Scattering from Particulate Systems

What about the real world... polydisperse, nonspherical...

Various 'decoupling approximations' to deal with the issues of

$$
\frac{1}{V}\left\langle\sum_{i=1}^{N_{p}} \sum_{\substack{j=1 \\ j \neq i}}^{N_{p}} \exp \left(i q \cdot\left(R_{i}-R_{j}\right)\right) A_{i}(q) A_{j}^{*}(q)\right\rangle
$$

These are best for repulsive potentials.
Data workup:
http://www.ncnr.nist.gov/programs/sans/manuals/available_SANS.html

Non-Particulate Scattering

Example: Teubner-Strey model for bicontinuous microemulsions

Using a free energy model derive correlation function for bicontinuous structures

Scattering Function
3-D Correlation Function

$$
\mathrm{I}(\mathrm{q})=\frac{8 \pi\left\langle\eta^{2}\right\rangle \mathrm{c}_{2} \mathrm{~V} / \xi}{\mathrm{a}_{2}+\mathrm{c}_{1} \mathrm{q}^{2}+\mathrm{c}_{2} \mathrm{q}^{4}} \stackrel{\text { Fourier }}{\text { Transform }} \gamma(\mathrm{r})=\frac{\mathrm{d}}{2 \pi \mathrm{r}} \sin \left(\frac{2 \pi \mathrm{r}}{\mathrm{~d}}\right) \exp (-\mathrm{r} / \xi)
$$

Structure characterized by 2 parameters:
d : repeat length of microemulsion (oil + water domain)
ξ : correlation length

Amphiphilicity Factor

