
Small Angle Neutron Scattering

• Eric W. Kaler, University of Delaware

• Outline
– Scattering events, flux
– Scattering vector
– Interference terms
– Autocorrelation function
– Single particle scattering
– Concentrated systems
– Nonparticulate scattering



Small Angle Neutron Scattering
• Measures (in the ideal world…)

• Particle Size
• Particle Shape
• Polydispersity
• Interparticle Interactions
• Internal Structure

• Model-free Parameters
• Radius of gyration – Rg
• Specific surface – S/V

• Compressibility: ⇒ molecular weight

• Much information as part of an integrated approach 
involving many techniques
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Different Radiations

• Light (refractive index or density differences)
– laboratory scale, convenient
– limited length scales, control of scattering events (contrast)
– dynamic measurements (diffusion)

• X-rays (small angle) (electron density differences)
– laboratory or national facilities
– opaque materials
– limited contrast control

• Neutrons (small angle) (atomic properties)
– national facilities
– great contrast control



Neutrons
• Sources

– nuclear reactor
• US:  NIST

– spallation sources (high energy protons impact a 
heavy metal target)

• US:  Spallation Neutron Source (SNS)
– 1.4 billion dollars, complete 2006

• Both cases produce high energy neutrons that 
must be ‘thermalized’ for materials science 
studies



SNS Overview

www.sns.gov



Maxwell Distribution

velocity distribution: ⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛= kTmvv

kT
mvf /

2
1exp

2
4)( 22

2/3

π
π

Cold Neutrons:  D2O at 25K
Thermal Neutrons: D2O at 300K
Hot Neutrons: Graphite at 2000K

mv
h

=λ

T = 25K
v = 642 m/s
E = 2.16 meV
λ = 6.2 A



Flux, cross-section, intensity
• Flux (plane wave):  number per unit area per second

– for a wave of amplitude A, the flux 
• Flux (spherical wave):  number per unit solid angle per 

second
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Bragg Condition for Interference
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Dealing with Colloidal Dimensions
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Recall that interference between two particles is a function of the 
scattering angle and the separation between scattering centers

θ d

θ2

so the size explored varies inversely with the scattering angle

For d = 100 nm, λ = 1nm, sinθ = 0.005, so θ ≈ 0.005



Constructive 
interference

Destructive 
interference

Example of Interference

Constructive and 
destructive 
interference can 
lead to more (or 
less) intensity



Another Example of Interference

Constructive and 
destructive 
interference from path 
length differences

Light waves only interfere if they are polarized in the same direction.



Interference Calculation
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The Value of the Scattering Vector 
Corresponds to a Distance in Real Space

Characteristic distance, d, that is measured in the experiment
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Comparison of light and small-angle x-
ray or neutron scattering
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q (Ǻ-1)
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Small angle scattering

Light scattering





Small Angles… Big Machines

http://www.ncnr.nist.gov/instruments/ng3sans/ng3_sans_photos.html



Small Angle Scattering Instrument 
(NG-7) at NIST, Gaithersburg, MD



SANS Data Reduction
NIST examples

Two Dimensional Data Reduced to I(q)



Interference continued
• Now write the (spherical) scattered wave from particle 1 (at O)

• And the spherical scattered wave from particle 2 (at P)

• The combined wave on the detector is A = A1 + A2

• And the flux is 
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Interference continued

• For N scatterers,

• and for a distribution of scatterers

• where n(r)dr is the number of scatterers in a 
volume element and V is the sample volume.
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So What is Special About Neutrons?

• Neutrons have spin ½
• Neutrons are scattered from atomic nuclei, 

and the scattering event depends on the 
nuclear spin.

• There are coherent and incoherent scattering 
lengths tabulated for elements and isotopes
– coherent – information about structure
– incoherent – arises from fluctuations in scattering 

lengths due to nonzero spins of isotopes and has no 
structural information



Neutron cross-sections
• Hydrogen is special.  Spin =1/2, with different spin up 

and spin down scattering, gives rise to a very large 
incoherent scattering (this is bad for structure 
measurements, but good for dynamics)

• Deuterium is spin 1, with much lower incoherent 
scattering

Element bcoh(10-12cm)
1H -0.374
2D 0.667
C 0.665
O 0.580

For a molecule, the
scattering length density

SLD=Σbi/molecular volume

H/D substitution changes the scattering power and gives
control of n(r): this is called contrast variation.



Autocorrelation Function

• Setting Ao = 1, defining the scattering length
density ρ(r) = Σn(r) b then
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• With some calculus…
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u'-ur set and 

is the autocorrelation function of ρ(r) and is
the Fourier transform pair of I(q)



Data Analysis
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To find ρ(r), either
1.  Inverse Fourier Transform
2.  Propose a model and fit the measured I(q)



Data Interpretation

aggregate structure
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Glatter, O. J. Appl. Cryst. 1977, 10, 415-421; 1980, 30, 431-442

Direct Model



experiments

assumption # of splines

distance pair 
distribution function

IFT
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Indirect Fourier Transform
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DILUTE LIMIT:  Scattering from Particles
Intraparticle Interference

Scattering from larger particles can constructively/destructively interfere, 
depending on size (relative to the size of the object) and shape of the 
particles.

Size (how big is big?)
• Scattering vector, q, which gives the length probed
• Introduce dimensionless quantity, ‘qR’, that indicates how big the 
particles are relative to the wavelength.

Shape
• Introduce the Form Factor, P(q), the define the role of particle 
shape in the scattering profiles
• P(q) for Spheres, leading to Guinier Plots
• P(q) for vesicles, which are different than spheres
• P(q) for Gaussian Coils/Polymers, leading to Zimm Plots



Generate constructive 
and destructive 
interference which is 
related to FORM

A some angle, the effect depends on the wavelength of the light, size of the 
aggregate and the shape of the aggregate.

each point scatters

Intraparticle Interference Arises from 
Scattering from the Particle



Introduce a Dimensionless Quantity to 
Answer the Question ‘How Long is Long?’

π>>qR

small-q limit

π≈qRπ<<qR

large-q limit

collective properties individual properties



Intraparticle Form Factor, P(q) is an 
Integral Over the Structure
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P(q) is the particle form factor



Form Factors for Spheres



Perry, R.L., and Speck, E.P. "Geometric Factors for Thermal Radiation 
Exchange Between Cows and Their Surroundings", American Society of 
Agricultural Engineers Paper #59-323. 

For evaluating thermal radiant exchange between a cow and her surroundings, 
the cow can be represented by an equivalent sphere. The height of the 
equivalent sphere above the floor is 2/3 of the height at the withers. The 
origin of the sphere is about 1/4 of the withers-to-pin-bone length back of 
the withers. The sphere size differs for floor and ceiling, side walls, and 
front and back walls. For the model surveyed, the radius of the equivalent 
sphere is 2.13 feet for exchange with floor and ceiling, 2.38 feet for side 
walls, and 2.02 feet for the front and back walls. These values are 1.8, 2.08, 
and 1.78 times the heart girth. An equation in spherical coordinates is given 
for the variation of the size of the equivalent sphere with the angle of view 
measured from the vertical and transverse axes. 

Form Factor for a Cow

The shape factor for exchange with an adjacent cow in 
a stanchion spacing of 3'8" was found to be 0.1. 
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Form Factor for Sphere
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analytical solution to the intra-
particle form factor.



θ

Form Factor for Sphere
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Interference Plots for Spheres

q (A-1)
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Shape of the Form Factor
Interference Plots for Spheres
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The sizes denote the diameter of the 
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values accessible with typical light 
scattering measurements



Sphere Form Factor

• 6 nm monodisperse sphere



Guinier Expression
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General Feature - Guinier Region (qa < π)
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Guinier continued

• In general, for monodisperse objects

• Example- solid sphere

• Aside – for polydisperse spheres measure <Rg
2>z
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How Good Are Guinier Approximations?
Guinier Approximation for 30 nm Beads
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• Guinier Approximations work well provide ‘qa’ is small 
(black- full expression of P(q); blue- Guinier Approximation)

• As particles get larger, the angles must be far smaller
• Limit ~ 100 nm for LS measurements, using smaller angles

Guinier Approximation for 96 nm Beads
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Anisotropic Scatterers

• Rods or disks may not always be isotropic
– Above analysis is for I(q) = I(q)

• Alignment may give additional information



Porod Region (qa >> π)
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P(q) is Dominated by q-4 Term

Porod Scattering for 50 nm Sphere
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Form Factor for Vesicles



Form Factor of Vesicles Versus Spheres
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Form factor for a sphere is given as:

Form factor for a vesicle is outside sphere 
minus the inside spheres

Where J1(q) is the first order 
Bessel Function



Form Factor of Vesicles Versus Spheres
Scattering from Vesicles
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Which looks very different than a sphere, for the same size



Contrast variation
• Consider a core and shell morphology:

• and change the solvent (H/D) to match the 
SLD of the core and shell, separately



Contrast Variation for Composite Particle

Clean sphere scattering Clean shell scattering
gives core dimension gives shell dimension



There are Other Forms of P(q)
Thin Rods: Length 2H; Diameter 2R; at low q
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Fractal Region (qa ~ π)

q ~ a
q ~ size of the 

aggregate

• Small q ~ size of the individual particles
• Large q ~ size of the individual 
aggregates



Random fractal objects produced by using the 
band-limited Weierstrass functions and 
employed in experiments. Assigned fractal 
dimension was D = (a) 1.2, (b) 1.5, and (c) 1.8. 

The Shape of Different Fractal Particles



Fractal Region for Aerosol Aggregates
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Allowing Characterization Over Many Distances

Logarithm-logarithm plots result in slopes that relate to the different 
levels of structures



Scattering from Particulate Systems
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Scattering from Particulate Systems
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Scattering from Particulate Systems
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Scattering from Particulate Systems
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Scattering from Particulate Systems
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Scattering from Particulate Systems
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Fundamental working equation for monodisperse spherical
particles, with the term in brackets called the
structure factor, so 

I(q) = npP(q)S(q)



Structure Factor

• For 5 nm hard spheres, 20% volume fraction



Scattering from Particulate Systems

So how do we get S(q)?

Various thermodynamic models relate g(r) (and thus S(q))
to the interparticle potential

There are two questions:
1.  What is the nature of the potential?

Hard sphere?
Electrostatic?
Depletion?
Steric?

2.  What thermodynamic formalism do you use to
calculate g(r)?



Scattering from Particulate Systems
Potential Solution (closure) Comments

Hard Sphere Percus-Yevick Excellent
Rogers-Young analytic,

can be extended
to polydisperse

Electrostatic Mean-Spherical Monodisperse
Approximation

Square Well Sharma&Sharma (PY) Monodisperse

And many more… verified by computer simulations



Scattering from Particulate Systems
What about the real world…

polydisperse, nonspherical…

Various ‘decoupling approximations’ to deal with the
issues of 

These are best for repulsive potentials. 

Data workup:  
http://www.ncnr.nist.gov/programs/sans/manuals/available_SANS.html
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Non-Particulate Scattering

Using a free energy model derive 
correlation function for 
bicontinuous structures
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3-D Correlation FunctionScattering Function

Fourier
Transform

d :  repeat length of microemulsion
(oil + water domain)

ξ :  correlation length

Structure characterized by 
2 parameters:

Example: Teubner-Strey model for bicontinuous microemulsions



Amphiphilicity Factor
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