Colloidal Crystallization: Nucleation and Growth

Dave Weitz Harvard

Urs Gasser Rebecca Christianson Peter Schall Eric Weeks

Konstanz Harvard Harvard Emory Andy Schofield Peter Pusey Frans Spaepen John Crocker Edinburgh Edinburgh Harvard UPenn

Colloids as model systems – soft materials
Nucleation and growth of colloidal crystals
Defect growth in crystals
Binary Alloy Colloidal Crystals

NSF, NASA

http://www.deas.harvard.edu/projects/weitzlab

EMU 6/7//04

Colloidal Crystals

Colloids

1 nm - 10 μ m solid particles in a solvent

Ubiquitous

ink, paint, milk, butter, mayonnaise, toothpaste, blood

Suspensions can act like both liquid and solid Modify flow properties

Control: Size, uniformity, interactions

Colloidal Particles

- •Solid particles in fluid
- •Hard Spheres
 - •Volume exclusion
- •Stability:
 - •Short range repulsion
 - •Sometimes a slight charge

Colloid Particles are:

•Big •~ *a* ~ 1 micron •Can "see" them Slow

- $\tau \sim a^2/D \sim ms$ to sec
- •Follow individual particle dynamics

Model: Colloid \rightarrow Atom

Phase behavior is similar

Hard Sphere Phase Diagram Volume Fraction Controls Phase Behavior

maximum packing $\phi_{RCP} \approx 0.63$

maximum packing

 $\phi_{HCP} = 0.74$

Increase $\phi \implies$ Decrease Temperature

F = V - TS

Entropy Drives Crystallization $F = \cancel{U}^0 - TS$

Entropy => Free Volume

Disordered: •Higher configurational entropy •Lower local entropy •Higher Energy

maximum packing $\phi_{\rm RCP} \approx 0.63$

Ordered: •Lower configurational entropy •Higher local entropy •Lower Energy

maximum packing $\phi_{\rm HCP} = 0.74$

Soft Solids

Easily deformable \rightarrow Low Elastic Constant:

Easily deformed \rightarrow Shear melt to randomize

Colloidal Particle → Atom Watch each atom!

Confocal Microscopy

Confocal microscopy for 3D pictures

Scan many slices, reconstruct 3D image

Microscopy and Tracking

Confocal microscopy:

•30 images/s (512×480 pixels, 2D)
•one 3D "cube" per 6 s
•67 × 63 ×10 μm³
•100× oil / 1.4 N.A. objective
•Identify particles within 0.03 μm (*xy*) 0.05 μm (*z*)

Particle tracking:

Follow 3000-5000 particles, in 3D
200-1000 time steps = hours to days
≈ 4 GB of images per experiment

First direct 3D observation of dynamics

Brownian Motion in Real Time

Bragg scattering of visible light Hexagonal close-packed layers (FCC/HCP)

1 cm

Nucleation and Growth of Colloidal Crystals

2.3 μ m diameter PMMA spheres

Questions:

- •How do crystals nucleate?
- •What is structure of pre- and post-critical nuclei?
- •How does structure evolve with time?
- •What is free energy barrier?

Crystallization

 $\Delta G = \gamma \left(4\pi r^2 \right) - \Delta \mu \left(\frac{4}{3}\pi r^3 \right)$

Surface energy

Chemical potential

How to Identify Crystals

2.3 μ m diameter PMMA spheres

Must identify incipient crystal nuclei

Voronoi polyhedra --Delaunay triangulation

("Wigner-Seitz cell")

defines nearest neighbor particles

Local Crystallization Order Parameter

P. R. ten Wolde, M. J. Ruiz-Montero,D. Frenkel: *J. Chem. Phys.* 104, 9932 (1996)

•Find nearest neighbor connections r_{ij}

•Resolve connections in spherical harmonics:

$$q_{lm}(i) = \langle Y_{lm}(r_{ij}) \rangle_j$$

- •Examine *l*=6
- •Define Order Parameter: $q_{6m}(i) \cdot q_{6m}(j)$

•If $q_{6m}(i) \cdot q_{6m}(j) > 0.5$, then bond (ij) is "crystal-like"

•if particle has \geq 8 "crystal-like" bonds, it is a <u>crystal-like particle</u>

Colloidal Crystallization

Determination of Size of Critical Nucleus

Crystal Nucleus Structure $R \sim R_c \quad \phi = 0.47$

Structure of Crystal Nucleus

ϕ	bcc	fcc	hcp	liquid
0.49	0.00(3)	0.10(3)	0.32(6)	0.58(1)
0.45	0.00(1)	0.58(7)	0.20(3)	0.22(6)
0.43	0.00(3)	0.34(5)	0.25(4)	0.41(1)

RHCP: Random Hexagonally Close Packed

A B 🙆 freep

Nucleation Rate

Comparable to light scattering measurements Faster than simulations

Finding Surface Tension $\Delta G = \gamma \left(4\pi r^2 \right) - \Delta \mu \left(\frac{4}{3}\pi r^3 \right)$ Surface energy Chemical potential

$$P(r) \approx \exp\left(\frac{-\Delta G}{k_B T}\right) \approx \exp\left(-\gamma r^2\right)$$

(for small r)

Measurement of Surface Tension

Surface tension is very low

Depletion Zone near Surface

Crystal Structure through Interface

No bcc structure at all Random stacking of hexagonal planes

Fractal Structure of Growing Crystallites

Single Crystal Growth - Principle

Fixed stacking sequence \implies fcc single crystal

Templated Growth of Single Crystals

SEM micrograph

Confocal micrograph

Thin Film of Single Crystal

Imaging Dislocations: Excitation Error

Imaging Dislocations: Nearly perfect crystal

Exact two beam condition

"good" lattice constant

Imaging Dislocations

Exact two beam condition

Two beam with excitation error

Template stretched by 1.5 %

Nucleation and Growth of Dislocations

• template lattice constant off by 1.5 %

(film recorded immediately after settling of ~ 8 additional crystalline layers recording time 3.5 hours

Stacking Faults induced by Lattice Mismatch

Growth of Defects

•Exponential functional form

Dislocation Dynamics and Interactions

Indentation

Binary Colloidal Crystals

(Schofield, et al)

AB_6

- AB6 occurs in three different structures: simple cubic, BCC and FCC, which occur at different size ratios from 0.3 to 0.4
- BCC is the fastest to crystallize, with crystals forming overnight at the optimal size ratio of 0.4

AB₆ Binary Alloy Crystal

- Very intense Bragg scattering
- Very large crystals

AB₆ Binary Alloy Crystal

Very well ordered FCC structure
Small particles induce effective long-range intereaction
Creates highly ordered large particle lattice

Nucleation and Growth of AB₆

Look only at large particles \rightarrow perfect BCC lattice

AB₁₃

- Icosahedra of small particles, at center of simple cube of big particles
- Found naturally in bimetallic alloys such as NaZn₁₃
- Stable at size ratios from 0.5-0.7

AB₁₃ Space Sample R_B/R_A = 0.57, N_B/N_A = 19

Mixed Sizes: AB₁₃ Binary Alloy Crystal

Very well ordered FCC structure
Small particles induce effective long-range intereaction
Creates highly ordered large particle lattice

Conclusions

Real space imaging of colloidal structure and dynamics

•3D observation of crystallization
•Defect growth in crystal films
•Binary Alloy Colloidal Crystals

http://www.deas.harvard.edu/projects/weitzlab