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Sargent Group at The University of Toronto

Current Research 
• Performance optimization of colloidal quantum-dot optoelectronic devices

• PbS CQDs
o short-wavelength infrared (SWIR) absorption and emission (1 um – 2 um)

• Photodetection G. Konstantatos et al., Nature 442 180 (2006)

• Energy Conversion E. Klem et al., Appl. Phys. Lett. 90, 183113 (2007)

• Photoemission and Lasing S. Hoogland et al., Optics Express 42, 3273 (2006)

• Photomodulation



Photodetection
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Naturally Occurring Illumination in SWIR 
• 24 hour availability
• No dependence on artificial sources 
• Emitted by hydroxyl (HO) radical 

reactions in upper atmosphere

SWIR Imaging
• Reflected light – natural appearance
• Performance dependent on intensity

Silicon

InGaAs

PbS CQD



The Bandgap Problem

Silicon
• Ubiquitous, mature, platform for nearly all integrated circuits
• Bandgap at 1100nm prevents absorption or emission of light beyond 1100 nm

Infrared Optoelectronics
• Extensive applications in communication and imaging

o night vision, thermal imaging, biomedical imaging, astronomy, etc.

• IR sensitive materials not structurally compatible with Si
o high-cost, low yield mechanical hybridization of two semiconductor substrates

• Opportunity for development of IR materials suitable for direct Si integration



The Solution - Colloidal Quantum Dots

Lead Sulfide
• Group II-IV semiconductor 
• 0.42 eV bulk bandgap

PbS Colloidal Quantum Dot (CQD)
• Crystalline semiconductor core 

o ~5 nm diameter
o determines fundamental optoelectronic properties

• Oleate shell 
o Passivated surface bonds of core
o Prevent NC aggregation
o Provide solubility

• Quantum-Size-Effect
o Controlled absorption and emission wavelengths
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The Solution - Colloidal Quantum Dots

CQD Synthesis
• Colloidal chemistry 

o Simple, cheap, fast

CQD Film Deposition
• Spin coating 

o CQDs suspended in organic solvents
o Simple, cheap, fast

• Multiple advantages
o No lattice matching of CQDs and substrate
o No limitations on materials combinations
o Near-ambient conditions
o Large area deposition



Photodetector - Architecture and Operation

Structure
• CQD film between 2 ohmic contacts (Au)

Conductivity
• Transport of mobile holes injected from contacts
• Hopping or tunneling between proximal CQDs 
• Ohmic I-V characteristics

o for identical, efficiently injecting contacts

Photoconductivity
• Photogeneration of electron-hole pairs in CQDs
• In PbS, electrons captured in traps on surface of CQDs
• Holes are excess carriers and increase conductivity

High Detectivity (Sensitivity)
• High photoconductive gain
• Multiple carrier transit events for a single absorbed photon
• Gain = Tlife / Ttransit

• Tunable absorption spectrum
• Limited thermal noise – room temperature operation

NC Film
AuAu

h+ h+

G. Konstantatos et al., Nature 442 180 (2006)



Photodetector - Optimization

Ligand Exchange
• As synthesized NCs – oleic acid (~2.5 nm)
• Solution phase exchange
• Primary butylamine ligand (~0.6 nm)
• Some oxidation
• Significant increase in conductivity

o Increased mobility
o Enables sensitization

Sensitization
• Controlled oxidation of PbS

o Oxides form electron traps
o Increase hole lifetime
o Maintain carrier pathways in film

• Observation of PbS04 – similar to bulk PbS

Independent Measurement of Gain
• Hole transit time ~0.5 μs
• Electron life time ~70 ms

G. Konstantatos et al., Nature 442 180 (2006)



Photodetector - Optimization

Sensitization and Noise
• Sensitization strategies 

o similar responsivities
o dramatic differences in noise 

• Minimal noise – neck-then-oxidize

• D* ~1013 Jones
o FemtoWatts per cm-2

Temporal Performance
• Speed limited by trap state lifetime
• 3-dB bandwidth 18 Hz
• D* > 1012 Jones up to 100 Hz
• Higher sensitivity than InGaAs at frequencies 

of interest for imaging applications

G. Konstantatos et al., Nature 442 180 (2006)



Energy Conversion



Energy Conversion - Motivation

Solution Processed Solar Cells
• low-cost
• large area
• substrate compatibility

Current solution-processed devices 
• Solar power conversion efficiency 3% - 5% 
• Most limited to visible light absorption
• Sensitive to < 50% of available solar energy

PbS CQD photovoltaic devices
• Absorb light in visible and IR
• All cost and manufacturing benefits of organic 

photovoltaics

Silicon

Polymer

PbS CQD



Energy Conversion – Device Architecture

Architecture
• Type-II heterojunction
• Nanoporous metal oxide / infiltrated CQD film
• ITO – superior conductivity (~0.5 Ω.cm-1)
• Mg cathode – low work function

Operation
• Light absorption in PbS CQD film
• Charge separation at distributed ITO/CQD 

interface
• Hole transport in PbS CQD
• Electron transport in nanoporous ITO

h+

e-

ITO / CQD Film

Glass

Mg

E. Klem et al., Appl. Phys. Lett. 90, 183113 (2007)



Energy Conversion – Device Architecture

Device efficiency limited by low mobility 
of CQD film

Bulk Heterojunction
• Reduce transport distance  

o before and after carrier separation
o reduce recombination

• Increase scattering
o increase absorption



Energy Conversion - Optimization

Nanoporous ITO
• High surface area – very rough

CQD Infiltration
• Soak substrate in PbS CQD soln.
• Exposed ITO – shorting

Linking CQDs
• Ethane dithiol (~0.7 nm long)
• Connects CQDs laterally & vertically
• Smooth continuous CQD films
• Coverage of ITO
• Eliminates shorting

Sintering
• Remove excess ligand
• Increase mobility
• Increase hole lifetime

Klem 2005
E. Klem et al., Appl. Phys. Lett. 90, 183113 (2007)



Energy Conversion - Optimization

Performance
• 46% EQE at 500 nm
• > 5% at 1st excitonic 

feature

• Absorption beyond 1700 nm

• Suitable for integration in 
multi-junction solar cells

975 nm 12 mW.cm-2

E. Klem et al., Appl. Phys. Lett. 90, 183113 (2007)



Photoemission and Lasing



Lasing – Motivation

Integration of optoelectronic devices with Si

“Si compatible emitter is the missing link for integration as 
it would enable all optical components and drive 
electronics to be fabricated on a common substrate”

Mainstream semiconductor laser sources

Epitaxial lasers => strict lattice matching on single-crystal substrate 
=> not monolithically integrable with Si

Silicon compatible sources

Silicon Raman laser => no electrical pumping possibilities
(Boyraz, et al., Opt. Expr. 12, 5269 (2004)) => need seed laser at ~1.5 μm
(Rong, H.S., et al., Nature. 433, 292 (2005))

Silicon laser => indirect bandgap – defects required for lasing
(Cloutier, et al., Nat. Mat. 4, 887 (2005)) => unable to tune to 1.5 μm

Silicon quantum dot laser => low optical gain, no lasing
(Pavesi, et al., Nature 408, 440 (2000)) => no evidence for 1.5μm operation



Lasing – Semiconductor Lasers

Quantum wells, wires, and dots
• Increase of confinement of carriers at energy band 

edge
• Tunable bandgap and emission

Emission wavelength
• Dependent on energy of carrier transition
• Carrier populations dependent on temperature
• Emission invariance for separation of states beyond kT

Epitaxial quantum dots
• Large compared to Bohr excition diameter
• Close spacing of confined states
• Require precise control of lattice mismatch

Colloidal quantum dots
• Much smaller diameter – very strong confinement 
• Large state spacing's (100’s meV)
• Excellent monodispersity (<5%)
• Compatible with wide range of substrates including Si



Lasing – Development of a CQD laser

For optically-pumped 
• Material optical gain
• Resonator (with a large finesse)
• Lack of undue loss
• modal gain equal to resonator loss + excess loss

For electrically-pumped (additional to above)
• Injection of sufficient current density to feed 

gain required
• Confinement of carriers 

CQD Laser Architecture
• Glass capillary substrate (R~50 um)
• Thin colloidal CQD film on inner-wall (<1 um)

• Whispering gallery mode resonator
o Dependent on total internal reflection within film
o Higher finesse than planar resonant structures

WGMs

WMs

Non-
feedback
WGMs

R

WM: Waveguide mode
WGM: Whispering gallery mode

S. Hoogland et al., Optics Express 42, 3273 (2006)



Lasing – Complications in PbS CQDs

Population Inversion
• Required for spontaneous emission 

PbS CQDs
• 8-fold degeneracy of lowest energy states
• 4 excitons required to achieve transparency (inversion)

o compared to 1 for Cd-based CQDs

• Increased Auger recombination of excited carriers
o Fast (Tau~10 ns) recombination

Is it possible to ensure stimulated emission rate > Auger 
recombination rate?

• Transparency achieved when absorption change equals 
linear absorption

• Yes – at a pump power of 7.8 mJ.cm-2 at 1570 nm

Observed population inversion modest
• large packing fraction of CQD film required for gain
• Achieved though ligand exchange

-50 0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

 Delay time [ps]

 

Δ
α
/α

0

S. Hoogland et al., Optics Express 42, 3273 (2006)

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

 λ = 1480nm
 λ = 1550nm
 λ = 1560nm
 λ = 1570nm

 

 

-Δ
α

/α
Incident pump fluence [mJ/cm2]



Optically-pumped lasing
• Clear lasing threshold at 

~169 uJ.cm-2

• 1532 nm emission at 80K
o Stable for several hours

• Temp sensitivity of emission
o 0.03 nm/K
o 10x smaller than current 

semiconductor QW lasers

First report of solution processed 
laser source!

Lasing – Observation of Lasing in PbS CQD

0 50 100 150 200 250 300
0

5

10

15

20

25

1400 1500 1600
0

10

20

1400 1500 1600
0

5

10

1400 1500 1600
0.0

0.5

1.0

 

Em
is

si
on

 in
te

ns
ity

 [a
rb

. u
ni

ts
]

Pump fluence [μJ/cm2]

 Wavelength [nm]

 In
te

ns
ity

 [a
rb

. u
ni

ts
]

 Wavelength [nm]

 In
te

ns
ity

 [a
rb

. u
ni

ts
]

 Wavelength [nm]

 In
te

ns
ity

 [a
rb

. u
ni

ts
]

Laser threshold
~160μJ/cm2

T = 80 K

S. Hoogland et al., Optics Express 42, 3273 (2006)



Conclusion



Conclusion

Demonstrated
• High sensitivity visible-IR photodetectors
• Photovoltaic energy conversion in visible-IR 
• Lasing in IR

Colloidal quantum dot optoelectronic devices offer real advantages
• Useful-to-excellent performance
• Low-cost
• Potential for integration
• Access to IR wavelengths

Proven feasibility of high-performance CQD device applications !
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