Structure and Reactivity of Nano-Particles Containing Zero-Valent Iron: Bridging the Gap Between Ex Situ Properties and In Situ Performance

Paul Tratnyek Department of Environmental and Biomolecular Systems OGI School of Science & Engineering Oregon Health & Science University

> http://www.ebs.ogi.edu/tratnyek/ http://cgr.ese.ogi.edu/iron/

THE REACTION SPECIFICITY OF NANOPARTICLES IN SOLUTION

Application to the Reaction of Nanoparticulate Iron and Iron-Bimetallic Compounds with Chlorinated Hydrocarbons and Oxyanions

- Synthesis and characterization of Fe and Fe-Oxide nanoparticles
- Measurements solution and gas reactivity with Fe nanoparticles
- Vacuum based studies of supported Fe nanoparticles
- Models of particle structure and effects of structure on reactivity

Pacific Northwest National Laboratory: D. Baer, J. Amonette, J. Linehan, K. Pecher, B. Kay, Z. Dohnalek, M. Dupuis, E. Bylaska, A. El-Azab, others Oregon Health & Science University: P. Tratnyek, J. Nurmi, V. Sarathy University of Minnesota: L. Penn and M. Driessen

Iron and Iron Oxides Studied

Name	Source	Method	Particle Size (dia.)	BET Surface Area	Major Phase	Minor Phase
Fe ^{H2}	Toda Americas, Inc.	High temp. reduction of oxides with H ₂	70 nm	29 m²/g	α-Fe ⁰	Magnetite
Fe ^{BH}	WX. Zhang, Lehigh Univ.	Precip. w/ NaBH ₄	10-100 nm	33.5 m²/g	Fe ⁰	Goethite, Wustite
Fe ^{EL}	Fisher Scientific	Electrolytic	150 µm	0.1-1 m²/g	99% Fe ⁰	
Fe ₃ O ₄	PNNL	Precip from FeSO ₄ w/ KOH	30-100 nm	4-24 m²/g	Fe ₃ O ₄	
Fe ₂ O ₃	Nanotek, Corp.	Physical Vapor Synthesis (PVS)	23 nm	50 m²/g	γ- Fe ₂ O ₃	

Nurmi et al. (2005) ES&T 39: 1221-1230.

Structure from TEM

Fe^{H2} (Toda)

Fe^{BH} (Zhang)

Nurmi et al. (2005) ES&T 39: 1221-1230.

Particle Size from TEM

Composition from XPS

Fe^{H2} (Toda)

Fe^{BH} (Zhang)

Nurmi et al. (2005) ES&T 39: 1221-1230.

Name	Sample History	Mean Particle Size from TEM (nm)	Shell Thickness (nm)	TEM Structure	XRD (Grain Size nm)	XPS	STXM
Fe ^{H2}	As-received	∼38 Fe ⁰ ≥60 nm oxide plates	Fe-Oxide ~3.4	"large" plates (oxide) and smaller Fe ⁰ irregularly shaped particles with crystalline oxide shell	Fe ⁰ (~30) oxide (~60)	Fe ⁰ +Fe ⁺³	Fe ⁰ + oxide
Fe ^{H2}	Flash-dried	~44 Fe ⁰		As above with more large plates		Less Fe ⁰	
Fe ^{BH}	As-received	~59 (20-100)	~2.3	Three levels of structure: i) small crystallites (<1.5 nm), ii) 20-100 nm spherical aggregates with an amorphous coating, and iii) chains of 20-100 nm particles	Mostly Fe ⁰ (<1.5)	$Fe^{0}+Fe^{+3}$ + B and Na	Mostly Fe ⁰
Fe ^{BH}	Flash-dried	~67 (20-100)	~3.2	As above with thicker coating		Less Fe ⁰ +B and Na	

Solution Chemistry—Methods

Electrochemical Cell

- Flash drying
- Packed powder electrode
 - Fabrication
 - Validation
- Data presentation
- Electrochemical model

Batch Reactor

- Flash drying
- Pre-exposure period
- Buffer selection
- Ox/Fe ratio
- Mixing rate
- Kinetic model

Protocol for Batch Experiments

Nurmi et al. (2005) ES&T 39: 1221-1230. Sarathy and Tratnyek (in prep.)

Batch Experiments with CCl₄

 CCI_4 (CT) + Fe(0) \rightarrow CHCI₃ (CF) + Unk + Cl⁻ + Fe(II)

Nurmi et al. (2005) ES&T 39: 1221-1230. Sarathy and Tratnyek (in prep.)

 k_{sa} vs. k_m plots

From:

$$k_M = k_{SA} a_s$$

It follows that:

$$\log k_{SA} = \log k_M - \log a_s$$

Plotting log k_{SA} vs. log k_M gives contours of constant a_s .

Nurmi et al. (2005) ES&T 39:1221. Tratnyek (in prep.)

Effect of Surface Area—Our Data Only

- k_M (Nano > Micro)
- k_M (Fe^{BH} ? Fe^{H2})
- a_s (TEM < BET)
- k_{SA} (Nano \approx Micro)
- k_{SA} (Nano < Micro)

... Uncertainties in a_s are important

... No "intrinsic" nanosize effect

Nurmi et al. (2005) ES&T 39: 1221-1230

Chloroform Yield

Nurmi et al. (2005) ES&T 39: 1221-1230. Sarathy et al. (in prep.)

Application to Site Remediation

- 200 W Area of Hanford
 - 750,000 kg spilled
 - Vadose and GW zones
 - 11 km² plume
 - up to 7000 ug/L
- ITRD TAG since 1999
 - Completed PITT
 - Reviewed Natural Attenuation
 - Modeled Reactive-Transport
 - Reviewed Treatment Options
- Status
 - Active intervention probably needed soon
 - "Critical" Need for Remediation Technology (TIP No. 0006)

Summary and Credits

Summary:

- Nano Fe^0 has a shell of Fe_3O_4 , other oxides, and impurities.
- Specific surface area is an important and challenging property.
- Nano Fe⁰ gives greater k_m , but not necessarily greater k_{SA} .
- Some nano Fe⁰ gives more favorable products (low Y_{CF}).
- Low Y_{CF} and injectability offer prospects for remediation.

Funding:

- DOE Office of Science, Nanoscale Science, Engineering, and Technology Program (DE-AC05-76RLO 1830)
- DOE Office of Science, Environmental Management Sciences Program (DE-FG07-02ER63485)
- SERDP and ESTCP

Acknowledgements

1. Tratnyek Group

Vaish Sarathy, Jim Nurmi, Joel Bandstra (PSU) Bumhan Bae (Kyungwon Univ.)

2. Pacific Northwest National Laboratory

Don Baer, J. Amonette, E. Bylaska,

Z. Dohnalek, M. Dupuis, A. El-Azab,

B. Kay, J. Linehan, K. Pecher, J. Rustad

3. Other Collaborators

R. Lee Penn and M. Driessen (U. Minnesota),Y. Qiang and J. Antony (U. Idaho),Rick Johnson (OHSU)

4. Samples

K. Okinaka and Andy Jazdanian (Toda Kogyo Corp.)W.-X. Zhang (Lehigh U.)Clint Bickmore (OnMaterials, LLC)D. Vance (Arcadis), and others

