CABOT

Surface Modified Pigments for Inkjet Ink Applications

Mark Kowalski

Boston Chapter IS&T, May 2001

Outline

2

- Cabot Corporation and Inkjet Colorant Division
- Pigment Requirements in Inkjet Inks
- Pigment Particle Stabilization Overview
- Surface Modification Technology by Cabot
 - Pigment Surface Modification Chemistry
 - CAB-O-JET[®] Colorants for Inkjet Inks
 - Properties of CAB-O-JET[®] Colorants
 - Versatility of Surface Modification Technology
- Next Generation Pigments (Paul)

Cabot Corporation

- Founded in 1882, public 1963 on NYSE
- Operates 39 plants in more than 20 countries
- 4,500 employees
- 2000 sales of \$1.8 billion
- Technical Competencies:
 - Nano-particle manufacturing
 - carbon black, fumed metal oxides
 - Nano-particle surface modification technologies

Cabot's Inkjet Colorants Business

- Division created in 1995
- Provides pigment dispersions for Inkjet printing applications
- Headquarters in Billerica, MA
 - Offices in:

4

- Billerica, MA
- Tokyo, Japan
- Stanlow, UK
- Atlanta, GA
- Manufacturing facilities in
 - Woburn, MA
 - Wilmington, MA

The Ink Challenge

6

0.25 mSec

- Contains a colloidally stable black pigment
- Reliably jets from a thermal ink jet head

- Contains a colloidally stable black pigment
- Reliably jets from a thermal ink jet head
- Hits, wets, and penetrates the media

- Contains a colloidally stable black pigment
- Reliably jets from a thermal ink jet head
- Hits, wets, and penetrates the media
- Bulk of the non-colored ink vehicle penetrates the media
- Pigment stratified with some penetration into the media

- Contains a colloidally stable black pigment
- Reliably jets from a thermal ink jet head
- Hits, wets, and penetrates the media
- Bulk of the non-colored ink vehicle penetrates the media
- Pigment stratified with some penetration into the media
- Once stratified and dried the pigment and non-volatile ink components form a cohesive network with each other and adhesive bond with the media

The Challenges

- Find treatments that give colloidally stable inks
- Find chemistry to promote flocculation and immobilization during absorption, penetration, and drying
- Find polymers that once dried form mechanically strong networks

Stability Requirements in Inkjet Inks

11

Pigment dispersions need

- Colloidal stability: No particle size growth
- Compatibility with various ink components
- Purity for the Inkjet environment
- Particle size less than 150 nm
- Favorable physical properties:
 - Low viscosity and high surface tension

Pigment Stabilization Technologies

	Conventional Method	Cabot's Technology			
•	Stabilizing groups are adsorbed to pigment surface - Small molecules and/or polymers - Non-ionic and/or ionic	 Stabilizing groups are attached to pigment surface Small molecules and/or polymers Non-ionic and/or ionic 			
•	Milling is generally required	Pigments are self-dispersible			
•	 Dynamic equilibrium Particle surface and stabilizing groups 	 No dynamic equilibrium Better compatibility with other ingredients 			
		+Na -OOC +Na -OOC +Na -OOC HOOC COO- Na+			

COO- Na+

CAB

Surface Modification with Diazonium Salts

Dispersion Purification - Ultrafiltration

- Essential to remove reaction byproducts, excess salts and unreacted starting materials
- Purification is done using ultrafiltration with DI water makeup
 - Soluble impurities pass through membrane leaving surface modified pigment and its counterion

CAB-O-JET® Colorants: KCMY set

CAB-O-JET® 300

Na+ +Na -₃OS +Na -₃OS +Na -₃OS +Na -₃OS Na+ SO₃- Na+ SO₃- Na+ SO₃- Na+ SO₃- Na+

CAB-O-JET® 200, 250, 260, 270

Physical Properties of CAB-O-JET® Colorants

CAB-O-JET® Colorants

Properties	300	250	260	270
Color	Black	Cyan	Magenta	Yellow
Pigment Type	Carbon Black	PB 15:4	PR 122	PY 74
Pigment Loading	15%	11%	11%	11%
Viscosity ¹	3.7 cP	2.1 cP	2 .4 cP	2 .0 cP
Surface Tension ²	70 dynes/cm	70 dynes/cm	72 dynes/cm	72 dynes/cm
рН	7.8	7.0	7.5	6.5
Particle size ³	130 nm	91 nm	105 nm	137 nm

¹Brookfield viscometer ²Kruss Digital Tensiometer K-10 ³Mean volume particle size determined by Microtrac[®] Ultrafine Particle Analyzer (Honeywell)

UV-VIS Comparison (PB15:4)

17

Colloidal Stability Testing

Testing Conditions

- Pigment dispersion at 10%
- Generic ink
 - 5% pigment
 - 10% 2-pyrrolidone
- Four-month aging at 70°C
- Monitor particle size growth

Aging test of CAB-O-JET® Colorants

CAB-O-JET®		Mean volume particle size (nm) ¹		Number of p > 0.5 µ	oarticles Im
		INITIAL	AGED	INITIAL	AGED
300	Dispersion	130	130	3.0E+9	3.5E+9
	Generic Ink	130	130	3.0E+9	3.0E+9
250	Dispersion	92	91	2.7E+8	1.8E+8
	Generic Ink	89	90	2.4E+8	1.6E+9
260	Dispersion	110	94	3.8E+8	1.5E+8
	Generic Ink	105	100	4.0E+8	1.3E+8
270		135	130	1.6E+8	1.3E+8
		105	105	1.7E+8	5.0E+7

¹Mean volume particle size determined by Microtrac[®] Ultrafine Particle Analyzer (Honeywell) ²Determined by AccuSizer Model 780 available from Particle Sizing Systems NICOMP

Printing Performance on Plain Papers

CAB-O-JET® Colorants in generic inks

	Pigment	L*1	a*	b*	OD	WF ²	LF ³
300	Carbon Black	-	-	-	1.5	< 1hr	>99%
250	PB 15:4 Cyan	52	-18	-37	1.0	5 min	90%
260	PR 122 Magenta	56	47	-9	1.0	5 min	93%
270	PY 74 Yellow	89	-6	84	1.2	5 min	<50%

¹L*a*b* readings determined by a Hunter LabScan II

²WF: Waterfastness is time taken by print to dry sufficiently that the runoff of .25 ml DI water does not cause colorant transfer

³LF : lightfastness expressed as % OD retention after 400 hrs of continuous UV-A irradiation using a Accelerated Weathering QUV/SE Instrument (Q-Panel Co.)

Summary of CAB-O-JET® Properties

Conclusions

- Favorable physical properties: low viscosity, high surface tension
- Particle size of all pigment dispersions and inks grew less than 10% after aging
- Number of particles greater than 0.5 µm did not change after aging
- Color and light stability of pigment seem unaffected by surface modification
- No dye appears to be formed by surface modification

Benefits of Surface Modification

Technology

 Ability to tailor surface properties and impart functionality to the pigment

Physical Properties of Pigment Dispersions

- High surface tension (~ 70 dynes/cm)
- Low viscosity (< 2.5 cP at 10% solids)
- Superior colloidal stability
- High purity (material covalently attached)
- Ink
 - Formulation flexibility
 - No dispersants required
 - Superior reliability

Formulation Flexibility

23

Surface Modification Versatility

Magenta

Yellow

Summary

- High performance pigments are required for IJ to grow into new applications
- Surface modification technology can deliver performance
 - Stable IJ quality dispersions (C, Y, M, K)
 - Ink functionality on pigment surface
 - Provides unique and valuable properties for the end use applications
- Ideally suited for Digital Imaging Applications

www.cabot-corp.com inkjet@cabot-corp.com