Quantum Dots as Immunoassay Probes

Roger M. Leblanc

Introduction – quantum dots

Definition

- A material that confines electrons in 3D
- 1-10 nm length scale (for most semiconductors)

Properties

- Size dependent emission
- Narrow emission band: fwhm 35 nm
- High quantum yields: \leq 85 %
- Broad excitation spectra
- Chemical/photo stability

Selectivity

Selectivity, comparison

Detected Levels

- Max. PL quenching at a Cu²⁺/QD molar ratio of 17:1 (ε_{QD} = 2 x 10⁴ M⁻¹cm⁻¹)
- R² = 0.99 exponential fit (nM detection capability)

Conclusions

 CdS-Cys-Leu-Leu-His-Gly QDs detected Cu²⁺ and Ag⁺ with high selectivity and sensitivity

 Leu-Leu and His-Gly residues played a critical role towards metallic ion selectivity

 Peptides facilitated fabrication of selective optical sensor by way of amino acid sequence design

✓ Layer-by-Layer technique (electrostatic interaction)

Chitosan
CdSe-S-CH₂-COOH QDs
Ørganophosphorus hydrolase (OPH)

Constantine, C. A.; Gattas-Asfura, K. M.; Mello, S. V.; Crespo, G.; Rastogi, V.; Cheng, T.-C.; DeFrank, J. J.; Leblanc, R. M. *Langmuir;* **2003**; *19*(23); 9863-9867.

Film growth

Constantine, C. A.; Gattas-Asfura, K. M.; Mello, S. V.; Crespo, G.; Rastogi, V.; Cheng, T.-C.; DeFrank, J. J.; Leblanc, R. M. *Langmuir;* **2003**; *19*(23); 9863-9867.

Response of film upon exposure to paraoxon

1-7 (bottom-top) = 0, 0.5, 1, 2, 5, 10, and 15 min.

Constantine, C. A.; Gattas-Asfura, K. M.; Mello, S. V.; Crespo, G.; Rastogi, V.; Cheng, T.-C.; DeFrank, J. J.; Leblanc, R. M. *Langmuir;* **2003**; *19*(23); 9863-9867.

Response of film upon exposure to paraoxon

Epifluorescence images of film $895\mu m \times 793 \ \mu m$

Conclusions

 QDs were successfully incorporated into composite films via the layer-by-layer technique and electrostatic interaction.

• The QDs/OPH ultra thin film selectively detected paraoxon at the nM levels.

Detection of paraoxon using QDs/OPH bioconjugate Surface modification

Hydrophobic

Hydrophilic

Detection of paraoxon using QDs/OPH bioconjugate Bioconjugation

Detection of paraoxon using QDs/OPH bioconjugate Secondary structure analysis of bioconjugates

CD spectra of pure OPH and OPH/QDs bioconjugates with and without paraoxon. OPH concentration is 5×10^{-7} M in all cases. The OPH/QDs molar ratio of bioconjugates is 10. Paraoxon concentration is 10^{-6} M

Secondary structure analysis of bioconjugates

	Percentage of Secondary Structure (%)							
	α-helix		β-strands		Turns	Unordered		
	α_{R}	α _D	β_R	β_{D}	(T)	(U)		
ОРН	40.03	25.53	2.40	4.43	13.67	15.53		
OPH/QDs bioconjugates	36.10	21.43	3.37	4.10	13.10	20.07		
OPH/QDs bioconjugates with paraoxon (10 ⁻⁶ M)	30.33	30.30	17.33	7.90	22.33	8.13		

Secondary structure data of OPH, OPH/QDs bioconjugates and OPH/QDs bioconjugates in 10⁻⁶ M of paraoxon. The subscripts "R" and "D" represent "ordered" and "disordered", respectively.

575

Wavelength (nm)

600

0.2

0.0

525

550

Photoluminescence spectra of **(a)** 10:1 and **(b)** 100:1 molar ratio OPH/QDs bioconjugates; **(c)** pure QDs in different concentrations of paraoxon. All samples were excited at 350 nm.

Ji, X. J.; Zheng, J.; Xu, J.; Rastogi, V. K.; Cheng, T. C.; DeFrank, J. J.; Leblanc R. M. J. Phys. Chem. B 2005, 109, 3793-3799.

625

Fluorescence responses of bioassay

- 1. The quenching of the PL is dependent to the concentration of paraoxon
- 2. The quenching of the PL has a maximum value in certain range of concentrations
- 3. The decrease of the PL intensity does not show a linear relationship to the [paraoxon]

Detection of paraoxon using QDs/OPH bioconjugate Effect of OPH:QDs molar ratio on the sensitivity of the bioassay

Concentration effect of OPH to the sensitivity of bioassay

Conclusions

- The OPH and CdSe(ZnS) QDs can form stable bioconjugate through electrostatic interaction
- CD spectrum indicate a secondary structure change of OPH in presence of paraoxon
- The intensity of photoluminescence of OPH/QDs bioconjugate was quenched in presence of paraoxon
- The secondary structure change of OPH was responsible for the observed PL quenching
- Increasing the molar ratio of OPH over QDs will not increase the sensitivity of OPH/QDs biosensor

Structures of the synthetic peptides with cysteine linker and covalently bonded Dansyl group: (A) NH₂-Cys-**Ile-Ile-Gly-Leu-Met**-OH, (B) NH₂-Cys-Ile-Ile-Pro-Leu-Met-OH, (C) NH₂-Cys-Leu-Ile-Met-Ile-Gly-OH, (A') Dansyl-**Ile-Ile-Gly-Leu-Met**-OH, (B') Dansyl-Ile-Ile-Pro-Leu-Met-OH, and (C') Dansyl-Cys-Leu-Ile-Met-Ile-Gly-OH

Schematic illustration of the surface coating of synthetic peptide on TOPO-coated CdSe/ZnS

Steric configuration analysis by Circular Dichroism spectroscopy

Circular Dichroism spectra of (a) three model peptides and (b) full length peptides.

Secondary structural data of A β (1-40), and A β (1-42) peptides. The subscripts "R" and "D" represent "ordered" and "disordered", respectively.

	Percentage of Secondary Structure							
	α-helix		β-strands		Turns	Unorder		
	α_{R}	α _D	β_R	$\beta_{\rm D}$	(T)	ed (U)		
Αβ (1-40)	12.5	11.3	18.5	8.5	19.0	30.2		
Αβ (1-42)	11.8	9.5	22.6	14.5	14.0	27.5		

Imaging the formation of β -sheet using QDs/peptide conjugates Epifluorescence micrographs of 31-35 model peptides and controlled peptides

QDs-CIIGLM-OH

QDs-CIIPLM-OH

Dansyl-CIIGLM-OH

Dansyl-CIIPLM-OH

QDs-CLIMIG-OH

Dansyl-CLIMIG-OH

Epifluorescence micrographs of full length peptides

Aβ (1-40) / QDs mixture

Aβ (1-40) / Dansyl acid mixture

 $A\beta$ (1-42) / QDs mixture

Aβ (1-42) / Dansyl acid mixture

Conclusions

- The model 31-35 Aβ peptides with cystein linker and Dansyl group were designed and synthesized
- A phase transfer approach was applied to conjugate the peptides onto the surface of the QDs
- The steric configuration study by CD spectroscopy revealed that the main secondary structural component of the aggregation is β-strands
- Epifluorescence microscopic research showed that QDs luminescent label approach showed a much higher intensity and better contrast for imaging than organic dye

PhD Graduate Students:

- Jiayin Zheng (March 2006)
- Kerim M. Gattás-Asfura (December 2005)
- Xiaojun Ji (December 2005)
- David Naistat (December 2005)
- Changqing Li (June 2005)
- Robert Triulzi
- Jianmin Xu
- Liang Zhao

Sr. Research Associate:

• Jhony Orbulescu

Funding

National Science Foundation U.S. Army Research Office

