Nanotechnology in the life sciences **A FRONTIS LECTURE SERIES** organized by **Pieter Stroeve Department of Chemical Engineering and Materials Science University of California, Davis Davis, CA 95616, USA**

Nanotechnology in the life sciences

February 13	13:30	Pieter Stroeve (UC Davis)- Size, measurement and sensing	
	14:30	Mieke Kleijn (WUR)- Surface forces using AFM	
February 20	13:30	Pieter Stroeve- (Bio)materials	
	14:30	Ernst Sudholter (WUR)- Hybrid organic semiconductor	
		FETs	
February 27	13:30	Pieter Stroeve- Self assembling molecular structures	
	14:30	Richard Schasfoort (U Twente)- Surface modification and	
		microfabrication strategies	
Friday, March 5	13:30	Pieter Stroeve- Environment	
	14:30	Keurentje (TU Eindhoven)- Micellar systems for nanoscale	
		engineering of reaction and separation processes	
Friday, March 12 13:30		Pieter Stroeve- Life sciences and medicine	
	14:30	Ton Visser (WUR)- Single-molecule fluorescence in	
		microfluidic devices	

Nanotechnology: (bio)materials

- Rocket science?
- Engineered proteins for nanotechnology
- GeneChip
- Nanotubes, nanowires, nanocables
- Protein separation in nanopores

Lithium ion battery

Creation of LiMn₂O₄ Cathode

Experimental stages

Capacity Measurement of LiMn₂O₄ Before Storage

Degradation: Capacity Measurement of LiMn₂O₄ After Storage at 70 C

Proposed Surface and Solvent Degradation

F. Quinlan et al., Chem. Mat. 2002

Surface coating (adsorption) with ~1 nm PDDA on LiMn₂O₄ to inhibit surface degradation

LiMn₂O₄ Particle

Treated cathodes show better capacity.

The variation of the measured capacity with the number of cycles for the cathodes obtained from the PDDA coated powder (Vidu and Stroeve, in press).

Another approach: coating LiMn₂O₄ powder with LiCoO₂ nanoparticles

- Objective to stop surface degradation of the cathode material
- Use LiCoO₂ which does not degrade at elevated temperatures
- Protect the LiMn₂O₄ material with the LiCoO₂ coating

Why LiCoO₂ over LiMn₂O₄?

• No significant capacity fading of LiCoO₂ at elevated temperatures

Why LiMn₂O₄ over LiCoO₂?

- Less Toxic
- Less Expensive
- Easily synthesized

XRD of Coated LiMn₂O₄ Powder With LiCoO₂

SEM elemental mapping of coated Powder

Co

Mn

SEM compositional mapping (left panel) of nanoparticles on $LiMn_2O_4$ powder particles with Mn shown in red and Co in pink. The SEM micrograph for the identical sample location is shown in the right panel. Nanoparticles are 100 nm. Surface modification on the nanoscale can lead to large changes in the macroscopic behavior of systems. Surface modification can be done in a standard laboratory

Nanotechnology: (bio)materials

- Rocket science?
- Engineered proteins for nanotechnology
- GeneChip
- Nanotubes, nanowires, nanocables
- Protein separation in nanopores

Biomaterial: biological mortar as a glue for composites

Peptide glue

Biological hard tissues: (a) TEM cross-section and (b) SEM fractured surface of nacre (mother-of-pearl) showing brick-mortar microarchitecture of the biocomposite, where the mortar is mostly composed of proteins. (c) and (d) SEM images of layered structure of sponge spicules in which layers are separated by an organic substance (M. Sarikaya).

Thiol- and silane-based self-assembled monolayers are chemical linked onto noble metals or oxides, respectively. Engineered proteins could bind to a given material specifically. While (a) thiol- and (b) silane-linkages are non-specific, (c) genetically engineered polypeptides could be material specific with a variety of conformational architectures (M. Sarikaya).

A flowchart of phage display protocol (from M. Sarikaya)

For quality of life

Flowchart of cell surface display protocol (from M. Sarikaya)

(c) Washing and enrichment

Some Examples to Inorganic Binding Polypeptides			
Nobel Metals	Metal Oxides		
Au Binders: ^{21,23} Au ^o BP1: MHGKTQATSGTIQS (14 AA) Au ^o BP2:SKTSLGQSGASLQGSEKLTNG(21AA) Au ^o BP3:QATSEKLVRGMEGASLHPAKT(21AA) Ag ^o BP3:QATSEKLVRGMEGASLHPAKT(21AA) Ag ^o BP1: AYSSGAPPMPPF (12 AA) Ag ^o BP1: AYSSGAPPMPPF (12 AA) Ag ^o BP2: NPSSLFRYLPSD (12 AA) Ag ^o BP3: SLATQPPRTPPV (12 AA) Pt ^o BP3: SLATQPPRTPPV (12 AA) Pt ^o BP1: DRTSTWR (7 AA) Pt ^o BP1: DRTSTWR (7 AA) Pt ^o BP2: TSPGQKQ (7 AA) Pt ^o BP2: TSPGQKQ (7 AA) Pd ^o BP3: IGSSLKP (7 AA) Pd ^o BP1: SAGRLSA (7 AA) Pd ^o BP1: SAGRLSA (7 AA) Pd ^o BP2: TLPNHTV (7 AA) Pd ^o BP3: HTSKLGI (7 AA) Uncharged polar side chains: STNQYC Charged polar side chains: KRHDE Non-polar side chains: AVGLIMPFW	Silica-Binders:25Si4-1 : MSPHPHPRHHHT (12 AA)Si4-10: RGRRRRLSCRLL (12 AA)Si3-8 : KPSHHHHHTGAN (12 AA)ZnO Binders:30pJKS9: RSNTRMT ARQHRS ANHKSTQR ARSpJKS15: RS YDSRSMRPHRS (9 AA)Cr.O. Binders:2pKKJ62: RSVVRPKAATNRS (9 AA)pKKJ66: RSRIRHRLVGQRS (9 AA)COO Binders: 2pKKJ75: RSGRMQRRVAHRS (9 AA)pKKJ76: RSLGKDRPHFHRS (9 AA)pKKJ76: RSLGKDRPHFHRS (9 AA)Hydrophobic: AG VPMILWFAcidic: DEBasic: RKHHydroxy1: STY		

Nanotechnology: (bio)materials

- Rocket science?
- Engineered proteins for nanotechnology
- GeneChips
- Nanotubes, nanowires, nanocables
- Protein separation in nanopores

Nanotechnology in the life sciences

Affymetrix GeneChip® Arrays

Affymetrix uses a unique combination of photolithography and combinatorial chemistry to manufacture GeneChip® Arrays

Gene expression profiling predicts clinical outcome of breast cancer. Data from 78 tumors and 70

genes.

Nature **415**, 530 - 536 (31 Jan 2002)

Nanotechnology: (bio)materials

- Rocket science?
- Engineered proteins for nanotechnology
- GeneChip
- Nanotubes, nanowires, nanocables
- Protein separation in nanopores

Nanowires, nanotubes, nanocables

Nanowires

Nanotubes

Nanocables

Material: Cu, Fe, CdTe....

Applications: electronic devices, FED

Material: C, Au, Polymer.... Applications: biosensor, FED

Materials: Ag/SiO₂, Zn/ZnS Applications: electronic devices

Nanotubes

Nanoporous Substrates

1. PCTE (Polycarbonate track-etching membranes)

- Mono-disperse pore and narrow pore size distribution
- Random distribution
- Uniform diameters (10 nm ~ 20 µm, commercially available)
- Pore density ~ 10^9 pore/cm²

2. AAO (Anodic Aluminum Oxide membranes)

- Mono-disperse pore and narrow pore size distribution
- Hexagonal array
- Uniform diameters (limited pore size, commercially available)
- Pore density ~ 10^{11} pore/cm²

3. Porous silicon

- 20 nm uniform pores

SEM image of PCTE membrane with 1 um diameter pores. Ref: J. C. Hulteen and C. R. Martin, *J. Mater. Chem.*, 1997 **7**(**7**), 1075.

TEM image of AAO membrane with 70 nm diameter pores. Ref: J. C. Hulteen and C. R. Martin, *J. Mater. Chem.*, 1997 **7**(7), 1075.

Electroless Deposition:

A Technique to Deposit Metals on Complex Surfaces

Nishizawa et al., *Science*, 1995:

Electroless gold deposition in polycarbonate track-etched (PCTE) membranes

Charge-selectivity can be reversibly controlled by electrical potentials applied to gold

Procedure of Electroless Gold Plating on PCTE Membranes

1. Sensitization

Requirements : Control the pH(10~10.5) and temperature (~1°C) in the gold solution

Modification of PCTE Membranes

Pore radii of bare PCTE membranes: 12 - 28 nm Pore radii of after gold deposition: 4 - 15 nm Hou & Stroeve, Langmuir 2000; Chun & Stroeve, Langmuir 2001, 2002; Ku & Stroeve Langmuir 2004

Functionalized nanotubes with alkane thiol chains enables separation of hydrophobic from hydrophilic species

toluene: hydrophobic pyridine: hydrophilic

Transport Mechanism - General Idea

pH-Responsive Nanomembranes

External control factors

External Control Factors

pH responsive nanoporous membranes for protein Separation: proteins with similar molecular size and weight Chung, Ku, Stroeve in Langmuir, 2002, 2004

BHb (Bovine Hemoglobin) Spherical

6.4 x 5.5 x 5 nm

Molecular weight = 65 kD

BSA (Bovine Serum Albumin) Globular ellipsoid

14 x 3.8 x 3.8 nm

Molecular weight = 66 kD

pI = 4.7

Experiment Set-up - Diffusion Measurement

 $(1mg/ml \sim 0.000015M)$

Low ionic strength, I = 0.01 M, shows "molecular gating phenomena" at pl

Comparison of fluxes versus pH for single BSA and single BHb transport experiments for I= 0.01 M. The insert shows the enlarged BHb results. Ku and Stroeve, Langmuir, 2004

Mixture of BHb+BSA at low ionic strength and pl of BSA

Sink concentrations versus time for a mixture of BSA and BHb at pH = 4.7, I = 0.01 M, R= 11 nm. Ku and Stroeve, Langmuir 2004.

Protein transport in nanoporous membranes

- •At low ionic strength, protein transport occurs mainly at the pI of the protein leading to a pseudo "molecular gating effect".
- •The selectivity of BSA over BHb is improved at the pI of BSA when the buffer solution is at a low ionic strength.

Nanotechnology in the life sciences: (bio)materials

Closing comments:

Nanotechnology has produced new materials with interesting properties. Nano-materials offer unique applications in biology. Surfaces play a dominant role in nanosystems.

