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» How dilute is “dilute”?
Effect of concentration on Rg determination
» The structure factor and the radial distribution function
» What information 1s in S(q) and how do I get it?
Data fitting
» The real world of polydispersity
Approximations
Exact methods
» Example I: Colloidal silica
Size polydispersity
» Example II: Surfactant micelles
Charge interactions
» Summary
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I(q)=n,P(q)

n, = number density of particles

P(q) = Form factor (Intraparticle structure)

> QGuinier Approximation:

If the scatterers are “sufficiently dilute’:

I(q) = 1(0)exp(-q’R? /3)

Linear Plot:
Inl(q) = InI(0)—q° Ré / 3

For a uniform sphere:
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» Guinier Plot for Hard Spheres
R=100 A
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» Guinier Plot for Hard Spheres

R=100 A
Volume Fraction R, here (A) Average Separation (A)
10-1 5.4 350
10-2 93.3 750
1073 99.7 1600
104 100.0 3500

¢ <107 is “dilute” for spheres with hard sphere interactions
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» QGuinier Plot for Charged Spheres
R =100 A, Z=50, [salt] = 103, k! =100 A
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» QGuinier Plot for Charged Spheres

R =100 A, Z =50, [salt] = 103, ! = 100 A

Volume Fraction R, here (A) Average Separation (A)
1073 41.2 1600
104 96.2 3500
10- 100.0 7500
10-6 100.0 16000

¢ <107 is “dilute” for spheres with screened Coulomb
interactions



» Scattered Intensity:
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» Scattering Amplitude (Intraparticle):

£,(@)=Jlp.F)=py dr

particle k

P(q) = ([f,()’)

the “Form Factor”



» For monodisperse spheres:
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The Structure Factor

o|[f@)” )

dx

.......

1 & a6
+ 2 Ze J

k=1 j=1
J#k

—(q) n,P(q)-S(q)

[f 1sotropic, we can average over orientation:

(S(3)) = S(q) = 1+ 47n j[gm—l]

Note:
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— S(q) 1s proportional to the number density of particles
— S(q) depends on g(r), the pair correlation function
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and Statistical Thermodynamics pugr
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» The form of the interparticle potential has a great effect on
the low q value of S(q)
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<« Coulomb Repulsion

0 5 10 15 20
q*diameter

» The low q limit is proportional to the osmotic

compressibility M

= Attractive interactions = more compressible
= Repulsive interactions = less compressible
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» The form of the interparticle potential has a great effect on the low q
value of S(q)

» Example of charged spheres:
= development of “interaction peak”
= change in low-q slope and I(0)

» Must fit model to data

= know P(q)
= ?calculate S(q)?



Calculation of S(q)

r,

» Ornstein Zernicke Equation:

h(r) = g(r) -1 = c(r) + n[c(F — | )h(x)dx

= ¢(r) = direct correlation function

» Integral = all indirect interactions
» A second relation is necessary to relate c¢(r) and g(r)

» Percus-Yevick Closure - an approximation

e(r)=g(r)i—e"" ]

= correct closure gives correct results

* in general a difficult problem
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r2dr

(S(3)) = S(q) = 1+ 47n j[gm—l]
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Real colloidal systems are not monodisperse
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» For p-components:

2—3(@: %E ninj)%fi(q)fj (9)S;i(q)



# Real Life Comphcatlons Polydlsper31ty
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> Partial structure factors

_ 1 sinqr ,
S; (q)= 0;; + 4n(ninj %J‘ [gij (r)- 1] or rdr
» Set of O-Z equations

h; (r)= C; (r)+ an_[cler )th (x )dx

Would really like Cz (q)=n,P(q)S'(q)
a




1.  Average Structure Factor

%(q)= n,£*(q)S(q)

Good for moderate polydispersity
2.  “Beta” Decoupling

o @=n, @S

|

S'(q)=1+(f(q)2

}s<q>—11=1+ﬁ<q>[s<q>—1]

£*(q)

» Good only at low polydispersity
»  Useful for non-spherical particles
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»  Form factor oscillations are damped out
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»  Both approximations work well
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»  Both approximations fail at low q

30% polydispersity
¢ =0.30

M|

10”
q (A
»  Form factor oscillations disappear
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»  Model calculations for polydisperse hard spheres

Beta Decoupling

10° 15% polydispersity

10° E

1 Average S(q)
10 3 37% polydispersity

I(q)

10° - R =100 A
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»  “Fitting” an approximate model gives incorrect results

»  More exact calculations are necessary for high concentration or high
polydispersity



Determining the Size and Polydispersity of Colloidal
Silica

»  Experimental system

»  Spherical SiO, particles in aqueous solvent

»  Charge stabilized with negative surface charge



Example I
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» For modeling of polydisperse charged spheres:
»  Must know ionic strength to calculate screening
»  Fit the particle charge, Z
»  Must use an approximation for P(q)S(q)

»  Screen the electrostatic interactions by adding salt

»  Model with the analytical solution for polydisperse hard
spheres



Example I
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» Known parameters
>  Ap=13x10""cm?
> 6=0.096
»  [NaCl] = 0.1 M (to give hard sphere interactions)
»  Fitted parameters
> R=115A
» ©,/R=0.17
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» Sodium dodecyl sulfate
» CH,(CH,),,SO, Na*
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Example 11

»  Micelles form in solution above the CMC of the
surfactant

»  Try to measure the form factor:
» can’t dilute - only monomeric surfactant upon dilution

» can’t add salt - would change structure as well as interactions

»  Must fit P(q) and S(q) simultaneously
» P(q) = Aggregation number
> S(q) = U(r) = £{9, (), r}
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Example 11

SANS and Modeling Results

I(9)=nP(q)-S'(@)
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10%
10°
[SDS] (M) Agg # Ionization
0.01 86 0.20
0.05 86 0.21
0.20 91 0.25
0.30 96 0.25
0.40 99 0.22




» Definition of “dilute” is relative
» Determination of intraparticle structure
» Very useful, model independent information

> When not dilute:

» Determination of interparticle structure

» Information about interparticle interactions
» Polydispersity approximations

» Exact methods

» Other Concentrated Systems:
» Non-spherical particles
» Rod-like micelles
» Much more complex analysis
» Correlation between position and orientation
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