# SANS from Concentrated Dispersions

Steve Kline

NCNR Summer School

Neutron Small Angle Scattering and Reflectometry from Submicron Structures June 5 - 9 2000

## Outline



➤ How dilute is "dilute"?

Effect of concentration on Rg determination

- > The structure factor and the radial distribution function
- What information is in S(q) and how do I get it? Data fitting
- > The real world of polydispersity

Approximations

Exact methods

- Example I: Colloidal silica Size polydispersity
- Example II: Surfactant micelles

Charge interactions

➤ Summary



### SANS from Dilute Systems



$$I(q) = n_p P(q)$$

 $n_p$  = number density of particles P(q) = Form factor (<u>Intra</u>particle structure)

Guinier Approximation:

If the scatterers are "sufficiently dilute":

$$I(q) \approx I(0) \exp\left(-q^2 R_g^2/3\right)$$

Linear Plot:

$$\ln I(q) = \ln I(0) - q^2 R_g^2 / 3$$

For a uniform sphere:

$$R_g^2 = \frac{3}{5}R^2$$





How dilute is "sufficiently dilute"?



#### $\blacktriangleright Guinier Plot for Hard Spheres$ R = 100 Å

| Volume Fraction | R <sub>sphere</sub> (Å) | Average Separation (Å) |
|-----------------|-------------------------|------------------------|
| 10-1            | 5.4                     | 350                    |
| 10-2            | 93.3                    | 750                    |
| 10-3            | 99.7                    | 1600                   |
| 10-4            | 100.0                   | 3500                   |

 $\phi \leq 10^{-3}$  is "dilute" for spheres with hard sphere interactions





 $\blacktriangleright \frac{\text{Guinier Plot for Charged Spheres}}{\text{R} = 100 \text{ Å}, \text{Z} = 50, \text{[salt]} = 10^{-3}, \text{ }\kappa^{-1} = 100 \text{ Å}}$ 

| Volume Fraction | R <sub>sphere</sub> (Å) | Average Separation (Å) |
|-----------------|-------------------------|------------------------|
| 10-3            | 41.2                    | 1600                   |
| 10-4            | 96.2                    | 3500                   |
| 10-5            | 100.0                   | 7500                   |
| 10-6            | 100.0                   | 16000                  |

 $\phi \le 10^{-3}$  is "dilute" for spheres with screened Coulomb interactions



### Interparticle Interference Effects





> Scattered Intensity:

$$\frac{d\Sigma}{d\Omega}(\vec{q}) = \frac{1}{V} \sum_{k=1}^{N_p} \left\langle \left| f_k(\vec{q}) \right|^2 \right\rangle + \frac{1}{V} \left\langle \sum_{k=1}^{N_p} \sum_{\substack{j=1\\j \neq k}}^{N_p} f_k(\vec{q}) f_j^*(\vec{q}) e^{i\vec{q}\cdot(\vec{r}_k - \vec{r}_j)} \right\rangle$$



Scattering Amplitude (Intraparticle):

$$f_{k}(\vec{q}) = \iint_{\text{particle }k} [\rho_{k}(\vec{r}) - \rho_{\text{solv}}] e^{i\vec{q}\cdot\vec{r}} d\vec{r}$$

$$\mathbf{P}(\mathbf{q}) = \left\langle \left| \mathbf{f}_{k}(\mathbf{q}) \right|^{2} \right\rangle$$

the "Form Factor"



### The Structure Factor

> For monodisperse spheres:

$$\frac{d\Sigma}{d\Omega}(\vec{q}) = n_p \left\langle \left| f(q) \right|^2 \right\rangle \left\{ 1 + \left\langle \sum_{k=1}^{N_p} \sum_{\substack{j=1\\j \neq k}}^{N_p} e^{i\vec{q} \cdot (\vec{r}_k - \vec{r}_j)} \right\rangle \right\}$$
$$\frac{d\Sigma}{d\Omega}(\vec{q}) = n_p P(q) \cdot S(\vec{q})$$

If isotropic, we can average over orientation:

$$\langle \mathbf{S}(\mathbf{\vec{q}}) \rangle = \mathbf{S}(\mathbf{q}) = 1 + 4\pi n_p \int_{0}^{\infty} [\mathbf{g}(\mathbf{r}) - 1] \frac{\sin q\mathbf{r}}{q\mathbf{r}} r^2 d\mathbf{r}$$

Note:

- S(q) is proportional to the number density of particles
- S(q) depends on g(r), the pair correlation function



### The Pair Correlation Function



Spatial arrangement set
by interparticle
interactions and indirect
interactions



The form of the interparticle potential has a great effect on the low q value of S(q)

S(q) and Statistical Thermodynamics



The low q limit is proportional to the osmotic compressibility

$$S(q=0) = kT\left(\frac{\partial n}{\partial \pi}\right)$$

- Attractive interactions ⇒ more compressible
- Repulsive interactions ⇒ less compressible

## S(q) Reflected in the Low-q Intensity



- The form of the interparticle potential has a great effect on the low q value of S(q)
- Example of charged spheres:
  - development of "interaction peak"
  - change in low-q slope and I(0)
- Must fit model to data
  - know P(q)
  - ?calculate S(q)?







$$h(r) = g(r) - 1 = c(r) + n \int c(|\vec{r} - \vec{x}|)h(x)d\vec{x}$$

- c(r) = direct correlation function
- Integral = all indirect interactions
- $\succ$  A second relation is necessary to relate c(r) and g(r)
- Percus-Yevick Closure an approximation

$$c(r) = g(r) \left[ 1 - e^{\beta u(r)} \right]$$

- correct closure gives correct results
- in general a difficult problem

$$\langle \mathbf{S}(\mathbf{\vec{q}}) \rangle = \mathbf{S}(\mathbf{q}) = 1 + 4\pi n_p \int_{0}^{\infty} [\mathbf{g}(\mathbf{r}) - 1] \frac{\sin q\mathbf{r}}{q\mathbf{r}} r^2 d\mathbf{r}$$



$$\frac{d\Sigma}{d\Omega}(q) = \sum_{i}^{p} \sum_{j}^{p} \left(n_{i}n_{j}\right)^{1/2} f_{i}(q) f_{j}(q) S_{ij}(q)$$



Partial structure factors

$$S_{ij}(q) = \delta_{ij} + 4\pi (n_i n_j)^{1/2} \int [g_{ij}(r) - 1] \frac{\sin qr}{qr} r^2 dr$$

➢ Set of O-Z equations

$$h_{ij}(r) = c_{ij}(r) + \sum_{k}^{p} n_{k} \int c_{ik} (|\vec{r} - \vec{x}|) h_{kj}(x) d\vec{x}$$

Would really like 
$$\frac{d\Sigma}{d\Omega}(q) = n_p P(q) S'(q)$$





$$\frac{\mathrm{d}\Sigma}{\mathrm{d}\Omega}(q) = n_{\mathrm{p}} \overline{\mathrm{f}^{2}(q)} \cdot \overline{\mathrm{S}}(q)$$

Good for moderate polydispersity

2. "Beta" Decoupling

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}\Omega}(q) = n_{\mathrm{p}} \overline{\mathrm{f}^{2}(q)} \cdot \mathrm{S}'(q)$$

$$S'(q) = 1 + \left(\frac{\overline{f(q)}^2}{f^2(q)}\right) [S(q) - 1] = 1 + \beta(q)[S(q) - 1]$$

- ➢ Good only at low polydispersity
- ➢ Useful for non-spherical particles



Model calculations for polydisperse hard spheres



- ➢ Form factor oscillations are damped out
- Both approximations work well



Model calculations for polydisperse hard spheres



- ➢ Form factor oscillations disappear
- Both approximations fail at low q



Model calculations for polydisperse hard spheres



- "Fitting" an approximate model gives incorrect results
- More exact calculations are necessary for high concentration or high polydispersity



#### Determining the Size and Polydispersity of Colloidal Silica

Example I

- Experimental system
  - > Spherical  $SiO_2$  particles in aqueous solvent
  - Charge stabilized with negative surface charge





- For modeling of polydisperse charged spheres:
  - Must know ionic strength to calculate screening
  - ➢ Fit the particle charge, Z
  - > Must use an approximation for P(q)S(q)
- Screen the electrostatic interactions by adding salt
- Model with the analytical solution for polydisperse hard spheres



Polydisperse hard spheres - analytic solution



- Known parameters
  - $\blacktriangleright$   $\Delta \rho = 1.3 \text{ x } 10^{10} \text{ cm}^{-2}$
  - $\blacktriangleright \phi = 0.096$

 $\blacktriangleright$  [NaCl] = 0.1 M (to give hard sphere interactions)

- Fitted parameters
- ightarrow R = 115 Å
- $\succ$   $\sigma_{\rm R}/{\rm R}=0.17$



### Example II

#### Aggregation and Charge of Surfactant Micelles



- Sodium dodecyl sulfate
- $\succ$  CH<sub>3</sub>(CH<sub>2</sub>)<sub>11</sub>SO<sub>4</sub><sup>-</sup> Na<sup>+</sup>







- $\succ$  Try to measure the form factor:
  - can't dilute only monomeric surfactant upon dilution
  - can't add salt would change structure as well as interactions
- > Must fit P(q) and S(q) simultaneously
  - ▶  $P(q) \Rightarrow$  Aggregation number
  - $\succ S(q) ⇒ U(r) = f{\delta, κ(δ), r}$

### Example II





| [SDS] (M) | Agg # | Ionization |
|-----------|-------|------------|
| 0.01      | 86    | 0.20       |
| 0.05      | 86    | 0.21       |
| 0.20      | 91    | 0.25       |
| 0.30      | 96    | 0.25       |
| 0.40      | 99    | 0.22       |



## Summary

- Definition of "dilute" is relative
  - Determination of intraparticle structure
  - Very useful, model independent information
- > When not dilute:
  - Determination of interparticle structure
  - Information about interparticle interactions
  - Polydispersity approximations
  - Exact methods
- Other Concentrated Systems:
  - Non-spherical particles
  - Rod-like micelles
  - Much more complex analysis
  - Correlation between position and orientation