

Lipid Nanoparticles

for the delivery of actives in pharma, cosmetics & consumer care

Cornelia M. Keck

PharmaSol GmbH Berlin / Germany

Content

- Short look into history of liposomes
- Definitions & special features
- → Structure of lipid particle matrix
- Production process & large scale production lines
 - oral bioavailibility case studies
 - cyclosporine and testosteronundecanoate (TU)
- dermal application
- Make-ability of products products in the market
- Lipid Nanoparticles versus liposomes
- Summary

Let us go back in cosmetic history.....

1968 Invention of liposomes by Bangham

(liposome size in nanometer range, i.e. liposomes were nanotechnology)

1986 Introduction of first cosmetic product to market: Capture[®] by Dior

.....to learn from history for future innovative products

Extraordinary market success:

Most people did not know what a liposome is

but

they bought the product when the name liposome was on the packaging!

Association: liposome = quality

Nanocarrier history since the liposomes

- many attempts to develop a similar successful system
- examples: nanoemulsions microemulsions multiple emulsions transfersomes (by Cevc / Munich, Germany)

2005

The novel approach in cosmetics & pharma:

NLC = Nanostructured Lipid Carriers

Content

- Short look into history of liposomes
- Definitions & special features
- → Structure of lipid particle matrix
- Production process & large scale production lines
 - oral bioavailibility case studies
 - cyclosporine and testosteronundecanoate (TU)
- dermal application
- Make-ability of products products in the market
- Lipid Nanoparticles versus liposomes
- Summary

Development of

Definitions

→ Lipid Nanoparticles in solid state:

- derived from o/w emulsions
- simply replacing the liquid lipid (= oil) by a solid lipid
- (i.e. solid at body temp.)

SLN – Solid Lipid Nanoparticles

produced from 1 solid lipid

NLC – Nanostructured Lipid Carriers:

- produced from blend of solid and liquid lipids
- but particles are in solid state at body temperature

- → Lipid nanoparticles with <u>solid</u> matrix
- → Mean particle diameter: 80 1000nm
- Production by dispersion techniques, e.g. high pressure homogenization
- \rightarrow Loading* with active compounds, e.g.
 - → 1-2% prednicarbate, prednisolone, cyclosporine etc...
 - → 10% Benzophenone-3, Allure
 - → 6% Retinol (Vitamin A)
 - → 24% Tocopherol (Vitamin E)
 - (* calculated as %age of solid lipid matrix)

NLC Technology / Nanopearls[®]

- → novel particulate carrier
 - for pharmaceutical / cosmetic / nutraceutical products
- → Nanoparticles **based on**
 - regulatory accepted excipients
 - physiological / natural solid lipids (renewable resources)
- → Application examples:
 - protection of chemically labile active compounds &
 - controlled release (CR) because of solid matrix
 - penetration enhancement of actives
 - dermal CR (e.g. drugs, perfumes, repellents)
 - oral absorption enhancement

What exactly is the improvement? & & What are the benefits of NLC?

Chemical stabilisation

NLC: Compritol ATO 888 10% stabilized with Miranol C32 Emulsion: 10% Miglyol,1.5% Tween 80

¹V. Jenning (1999), Ph.D. thesis, Free University of Berlin No. 14

Problems of "old" SLN

formation of "perfect" crystalline structure during storage (β modification) \Rightarrow drug expulsion

NLC the more intelligent system

<u>SLN:</u>

tendency to form perfect crystals -> active expulsion

NLC:

inhibit crystallization process by mixing "spatially" very different molecules

→ imperfections in lattice → more space for drug

mixture solid & <u>liquid</u> lipids

e.g. tristearin

🖊 drug

Content

- Short look into history of liposomes
- Definitions & special features
- → Structure of lipid particle matrix
- Production process & large scale production lines
 - oral bioavailibility case studies
 - cyclosporine and testosteronundecanoate (TU)
- dermal application
- Make-ability of products products in the market
- Lipid Nanoparticles versus liposomes
- Summary

PharmaSol Production Technology

Basic principle:

high pressure homogenization

- equipment can be qualified & validated
- accepted by regulatory authorities in production lines used for pharmaceutical parenterals
- existing industrial production lines for cosmetics / i.v. pharmaceutical parenteral emulsions can be used

(according to SLN patent: solid lipids, 0.1% - 30% solid)

Principle: High pressure homogenization

1. Melt lipid (>40 °C) & dissolve active compound

2. Disperse active-containing lipid melt in <u>hot</u> surfactant solution **= pre-emulsion**

 3. Homogenize pre-emulsion at >40°C, 250 bar, 2 cycles = nanoemulsion cooling ______ solidification
NLC

Lipid nanoparticles of increasing concentration

conc: from 10% to about 50%

AF-MICROGRAPH of Q10-loaded Nanoparticles

LAB 40 discont. - 40 g batch

LAB 60 - 2-10 kg batch

Gaulin 5.5 - 150 kg/h

Content

- Short look into history of liposomes
- Definitions & special features
- → Structure of lipid particle matrix
- Production process & large scale production lines
 - oral bioavailibility case studies
 - cyclosporine and testosteronundecanoate (TU)
- dermal application
- Make-ability of products products in the market
- Lipid Nanoparticles versus liposomes
- Summary

Oral administration

Example: cyclosporine

annual sales: appr. 1.2 billion US \$

"old" Sandimmun: problem: variation in BA

<u>"new" Sandimmun:</u> problem: high plasma peak (microemulsion) (> 1000 ng/ml)

target of previously developed SLN: combine advantage of "old" & "new" Sandimmun i.e. no plasma peak & low variation in bioavailability

Oral administration - cyclosporine study

animal: pigs (n=3)

application: via gastric catheter

comparison:

- SLN dispersion vs.
- Sandimmun[®] Neoral vs

one of the volunteers

Oral cyclosporine - blood profiles

Oral drug delivery with lipid nanoparticles

What are the mechanisms?

→ What are the advantages?

Mechanisms of oral lipid nanoparticles

- general adhesiveness of very fine particles (nanoparticles)
- adhesion processes very reproducible (= little variation in bioavailability)
- lipids known to support absorption of a number of drugs* (Trojan horse)

* W. N. Charman, Proc. of 26 th Int. Symp. of CRS, Boston 1999

Content

- Short look into history of liposomes
- Definitions & special features
- → Structure of lipid particle matrix
- Production process & large scale production lines
 - oral bioavailibility case studies
 - cyclosporine and testosterone undecanoate (TU)
- dermal application
- Make-ability of products products in the market
- Lipid Nanoparticles versus liposomes
- Summary

- oral testosterone formulation on the market
- use as testosterone supplement therapy in case of lack of endogene production
- regular dose: 4 capsules a day
- very fragile & sensitive product:
 - · has to be kept away from light and
 - stored at temperatures between 15°C-25°C

- comparison of Andriol vrs NLC
- → 3 groups of 4 male Wistar rats were used
- animals were deprived from food 12 hours prior to sample administration
- oral administration by using a feeding needle
- \rightarrow blood sampling was performed at t=0h, 1h, 2h, 3h, 4h, 6h, and 8h after administration. Approx. 400µl of blood were collected
- serum was stored at -80°C directly after

centrifugation

smaller size (200 nm) is more effective

No. 36

Content

- Short look into history of liposomes
- Definitions & special features
- → Structure of lipid particle matrix
- Production process & large scale production lines
 - oral bioavailibility case studies
 - cyclosporine and testosteronundecanoate (TU)
- dermal application
- Make-ability of products products in the market
- Lipid Nanoparticles versus liposomes
- Summary

How work NLC in cosmetic creams and lotions?

No. 38

Situation on damaged skin

Reduced protection, moisture loss, distorted cell function

Film formation on skin - principle mechanism **Occlusion effect** tightly packed large lipid layer of lipidmicroparticles nanoparticles H₂O evaporation 200 nm $2\,\mu m$ skin **Top view:** -> large pores small "capillary pores" No. 41

Occlusion effect Cream vs. Cream with Nanopearls[®]

cream cream + Nanopearls

Occlusion factor of a commercial o/w cream (left) and a cream with incorporated Nanopearls[®] (right) as a function of time.

(Dingler et al., J. Microencapsulation, 1999)

Increased penetration of actives

Penetration of:

(cumulative amount of skin strips 2-9; skin strip 1 = non-penetrated fraction).

Protection by incorporation of TiO₂ in NLC

Potential Problem: TiO₂ might penetrate into skin, side effects

Solution: firm encapsulation of TiO_2 into NLC should avoid/minimize potential penetration into the skin

Summary: Performance & Effects on Skin

- adhesiveness to skin
- → film formation, repair of stratum corneum
- ➡ occlusion effect
- \rightarrow skin hydration \uparrow
- \rightarrow wrinkle depth \downarrow
- increased / modulated penetration of actives
- → UV protection system

⇒ i.e. skin healing, caring & protective effects!

Examples for use in consumer care

- → sunscreen products (more efficient, "safe-nano")
- mouth sprays/washs
- → tooth pastes
- → hair conditioning products
- isinfectant sprays
- insect repellents
- ➡ fabric softeners.....etc...etc....

Content

- Short look into history of liposomes
- Definitions & special features
- → Structure of lipid particle matrix
- Production process & large scale production lines
 - oral bioavailibility case studies
 - cyclosporine and testosteronundecanoate (TU)
- dermal application
- Make-ability of products products in the market
- Lipid Nanoparticles versus liposomes
- Summary

Lipid Nanoparticles in the German Pharmaceutical Press

Lipid Nanoparticles

Smart delivery system for dermal actives

No. 51

Nanopearls[®]

Measurement of skin hydration: Corneometer

MPA5 with Corneometer 825 (Courage and Khazaka, Köln)

- Not invasive method
- Measuring time: 1 sec
- Principle: capacity changes
- Capacity changes are dependent upon the water content in stratum corneum (ε = 78 at 32 °C)

Q10 skin hydration in vivo: NLC vs. NLC-free

Long-term study, 42 days, measurement 12 h after last application

South Korean

Top Model no. 1

for the introduction of the

NLC Supervital products

in the pretigous line

IOPE

by Amore Pacific

1. Sept. 2006

No. 54

IOPE SUPER VITAL extra moist cream

Contains Nano Lipid Carrier PLANT EXTRACTS :43.7% DERMATOLOGIST TESTED

PharmaSol PharmaSol Solubility People

Dr. Rimpler GmbH – partner of PharmaSol

for introducing NLC technology

Dr.Rimpler GmbH

Neue Wiesen 10

D-30900 Wedemark

Founded 1986 by Prof. Dr. Manfred Rimpler

Health & Care development, production Cosmetic-GMP & approved by §13 AMG

Company Profile

54 employees

Production capacity 2500 kg per shift

www.Rimpler.de

Examples of commercially available loaded NLC

- Coenzyme Q10
- Vitamin E
- Tocotrienol
- ➡ Retinol
- ➡ Black current oil (BCO)
- 👄 KuKui oil
- \mapsto 🛛 Makui oil
- ➡ use of special lipids: e.g. Carnauba wax

Content

- Short look into history of liposomes
- Definitions & special features
- → Structure of lipid particle matrix
- Production process & large scale production lines
 - oral bioavailibility case studies
 - cyclosporine and testosteronundecanoate (TU)
- dermal application
- Make-ability of products products in the market
- Lipid Nanoparticles versus liposomes
- Summary

Technical advantages of NLC vs. liposomes

Problems of liposomes:

- 1. physical stability in o/w systems
- 2. quantitative analysis difficult
- 3. chemical stability of labile actives

Advantages of NLC:

- 1. high physical stability due to solid state of particle matrix
- 2. physical stability easy to prove (DSC)
- 3. chemical stabilisation of actives due to solid character

Physical stability: Incorporation into cream

Melting peaks of Nanopearls[®] aqueous dispersion and after its incorporation into an o/w cream (reference: DSC thermogram of cream - no melting event).

Chemical stability of incorporated actives

Nanoemulsions and Liposomes:

Limited protection of actives because:

- lipophilic actives are in exchange with water due to fluid character of oil droplet / liposome bilayer
- hydrophilic actives in liposome core diffuse through bilayer in outer water phase

NLC:

Enhanced protection of actives:

• solid state minimizes exchange of actives with water phase (diffusional law by Einstein)

Content

- Short look into history of liposomes
- Definitions & special features
- → Structure of lipid particle matrix
- Production process & large scale production lines
 - oral bioavailibility case studies
 - cyclosporine and testosteronundecanoate (TU)
- dermal application
- Make-ability of products products in the market
- Lipid Nanoparticles versus liposomes
- Summary

Summary Pharmaceuticals

- NLC can be made with regulatory accepted excipients
- NLC are produced with production technology already available in pharmaceutical industry
- Make-ability of technology proven by cosmetics products on the market
- primary delivery routes:
 - dermal application
 - oral administration (poorly soluble drugs)

Summary Cosmetics/Consumer Care

- unloaded NLC have own skin effects
- loaded NLC increase chemical stability & "bioactivity" of actives
- NLC can easily be incorporated into creams, etc.
- physical stability high, easy to prove quantitatively
- extremely short time from invention to market (6 years)
- Products: > 40 in about 4 years

(including La Prairie /Beiersdorf group)

Perspectives for Nutraceuticals

- increase bioavailibility of poorly soluble plant actives
- increase bioavailability of actives like coenzyme Q10 (nano Q10 is 100% available!)
- delivery of unsaturated fatty acids (incl. fish oil NLC)
- NLC for delivery of lipophilic vitamins in a diet
- NLC as physically stable taste enhancer?

NLC Product Examples

Summary – SLN/NLC in general

- Lipid nanoparticles can be made with regulatory accepted excipients (lipids, surfactants)
- they are produced with production technology already available in pharmaceutical industry
- Make-ability of technology proven by cosmetics products on the market
- primary delivery routes:
 - dermal application
 - oral administration (poorly soluble drugs)
 - intravenous (replacement of liposomes !)

No. 69

Summary – NLC for oral delivery

- NLC proved effective in BA enhancement of the drugs cyclosporine, fenofibrate, T and TU
- fenofibrate: competitive products to exclusive nanocrystal products are possible by using NLC as alternative technology

especially for TU:

- a competitive product to Andriol seems feasible: same BA, but only 1 tablet (NLC – lipid 1)
- higher BA with NLC also possible by optimizing NLC - lipid 2: smaller particle size

Summary – perspectives for <u>Nutraceuticals</u>

- increase bioavailability of poorly soluble plant actives (e.g. rutin, hesperidin etc....)
- increase bioavailability of actives like coenzyme Q10 (nano Q10 is 100% available!)
- delivery of unsaturated fatty acids
 - incl. fish oil NLC
- → NLC for delivery of lipophilic vitamins in a diet
- → NLC as physically stable taste enhancer?