Mechanistic Aspects of Nanoparticle Toxicology -Particle Deposition and Clearance

What can we learn from the ultrafine particles?

Tobias Stöger

GSF-National Research Centre for Environment and Health

Institute of Inhalation Biology

Munich - Germany

GSF-National Research Centre for Environment and Health Member of the Helmholtz Association

IHB-Institute for Inhalation Biology

Mechanistic Aspects of Nanoparticle Toxicology -Particle Deposition and Clearance

Object: Draw parallels from NP to PM toxicity

Deposition & Clearance Mechanism

Translocation to Secondary Organs

What do we know about Particle-Toxicology? PubMed

"Nanotechnology for Remediation Technical Nanotechnology for modivied from Kevin Dreher, US EPA: Remediation Technical" Workshop, Okt'05

Routes of Exposure to Ambient Particles:

Organ systems exposed:

• Skin

surface area:1.5-2 m²

• Gastrointestinal Tract surface area: 200 m²

10¹²-10¹⁴ fine particles are ingested per person/day

"Ambient" Nanoparticles, a Fraction of Particulate Matter (PM)

mainly carbonaceous NPs, derived from combustion processes

Iow-solubility in aqueous/physiological solutions

Iow-toxicity, no cytotoxic effects below 100 µg/ml ("the dose makes the poison")

Size distribution of fine ambient particles (PM_{2.5}) $10 nm - 2.5 \mu m$

mass burden: PM_{2.5}: 0.1 μm – 2.5 μm

number burden: ultrafine particles < 0.1 μm

Size Relation at Cellular Scale

Size Relation at Cellular Scale

Shape of soot particles

Shape of soot particles

Deposition & Clearance

Particle Deposition in the Respiratory System

Mechanisms of Defense – Alveolar Region

Morgenroth & Takenaka

Pathways of Particle Clearance

Figure 9. Pathways of particle clearance (disposition) in and out of the respiratory tract. There are significant differences between NSPs and larger particles for some of these pathways (see "Disposition of NSPs in the respiratory tract"). Drawing courtesy of J. Harkema.

Oberdörster 2005

Biphasic Clearance Kinetics

Impact of Particle Size

Particles lavaged or retained 24h post exposure

Figure 10. *In vivo* retention of inhaled nanosized and larger particles in alveolar macrophages (*A*) and in exhaustively lavaged lungs (epithelial and interstitial retention; *B*) 24 hr postexposure. The alveolar macrophage is the most important defense mechanism in the alveolar region for fine and coarse particles, yet inhaled singlet NSPs are not efficiently phagocytized by alveolar macrophages.

Oberdörster 2005

Small particles escape form AM clearance!

Biphasic Clearance Kinetics

Impact of Particle Size

Particles lavaged or retained 24h post exposure

Figure 10. In vivo retention of inhaled nanosized and larger particles in alveolar macrophages (A) and in exhaustively lavaged lungs (epithelial and interstitial retention; B) 24 hr postexposure. The alveolar macrophage is the most important defense mechanism in the alveolar region for fine and coarse particles, yet inhaled singlet NSPs are not efficiently phagocytized by alveolar macrophages.

Oberdörster 2005

upper airways: fast clearance alveolar region: slow clearance

Small particles escape form AM clearance!

Acute Pulmonary Effects

Acute Effects of Pulmonary Deposited Particles?

Particle Exposition:

Intratracheal Instillation in Mice

Lung of a mouse 24h after intratracheal instillation of 20 µg ufCP

Semithin section, Staining: toluidine blue, x 63, © Sinji Takenaka (2005)

Carbonaceous nanoparticles induce acute pulmonary inflammation 24h after instillation

Carbonaceous nanoparticles induce acute pulmonary inflammation 24h after instillation

In search of the most relevant parameter for quantifying pulmonary inflammation ?

In search of the most relevant parameter for quantifying pulmonary inflammation ?

For the poorly soluble nanoparticles the deposited **particle surface area**

serves as a suitable dose metric!

BET (cm²)

BET (cm²)

Influence of Surface Reactivity

BAL Infux - Surface Area Correlation

Influence of Surface Reactivity

BAL Infux - Surface Area Correlation

Influence of Surface Reactivity

BAL Infux - Surface Area Correlation

Oxidative Surface Reactivity of Carbon-Nanoparticles

Hypothesis of Particle Induced Inflammation

(Particle – Cell Interaction)

Gene Expression Analysis at "threshold level": Inhalation of Carbon Nanoparticles Induces Proinflammatory Response

TABLE 1 Changes in gene expression after inhalation of ultrafine particles

Identifier	Name/Description	Gene symbol	4h inhalation	24h inhalation	
			Fold Induction		
M12571 L40406 AF101164 AW124318 U27830 U16162 U2392	Heat shock protein, 1A Heat shock protein, 105 kDa CEA-related cell adhesion molecule 2 suppression of tumorigenicity 13 stress-induced phosphoprotein 1 prolyl 4-hydroxylase alpha(I)-subunit osmotic stress protein 94	Hsp1a Hsp105 Ceacam2 St13 Stip1 P4ha1 Osp94	4 2,6 2,2 2,2 2 2 2 2	1,2 1,1 1,3 1 1,2 1,1 0,9	4h
X03505	Serum amyloid A 3	Saa3	1,1	5,4	
X69620 X13986 M34141 AW230891 V00755 M64086 M62470 X81627	Inhibin beta-B osteopontin, secreted phosphoprotein Prostaglandin-endoperoxide synthase 1 leucine-rich alpha-2-glycoprotein 1 TIIMP-1 spi2 proteinase inhibitor (spi2/eb4) Thrombospondin 1 24n3 linocalin2	Inhbb Spp1 Ptgs1 Lrg1 Timp1 Serpina3n Thbs1	2,5 ^a 1,1 1,4 1,3 1,1 3,0 ^b 1	3,8 3,4 3 2,8 2,4 2,4 2,4 2,4	24
L41352 AV300608 M26071 AF023919 M15131 M36120 M35970 X16834	Amphiregulin SH2 domain binding protein 1 Coagulation factor III PK-120 precursor Interleukin 1 beta Keratin complex 1, acidic, gene 19 expressed in non-metastatic cells1 Galectin-3, Mac-2	Areg Sh2bp1 F3 Itih-4 II1b Krt1-19 Nme1 LgaIs3	1,2 0,8 1,1 0,9 0,9 1 0,8 1 5014 Be	2,4 2,2 2,2 2,2 2 2 2 2 2 2 2 2 2 2 2	h
K02588 X58289 Y07693 D38216 X84037 Al152867	Cytochrome P450,1a1 Protein tyrosine phosphatase, receptor typeB Nuclear factor I/C RyR1 skeletal muscle ryanodine receptor E-selectin ligand-1, golgi apparatus protein 1 eukaryotic translation initiation factor 2C	Cyp1a1 Ptprb Nfic Ryr1 Glg1 Eif2c2	1,2 1,6 1,2 1 1,4 1,6	2,6 2,4 2,4 2,2 2 2 2	

Numbers in bold indicate genes induced or repressed twofold or more after 4h or 24h ufCB particle inhalation ^a excluded from analysis because absent in test sample (see methods)

^b excluded from analysis because fold change between clean air controls (4h and 24h) twofold or more

Biphasic reaction:

1. Stress response:

Heat shock proteins (*hsp70*)

2. Proinflammatory response:

- Interleukin 1 beta
- Cyclooxygenase 1
- Serum amyloid A3
- Osteopontin
- TIMP 1
- Lipocalin 2
- Galectin 3
- Amphiregulin
- Coagulation factor III
- Thrombospondin 1

Translocation to Secondary Organs

Do inhaled nanoparticles penetrate the tissue of the lung?

Geiser et al. 2005, Environ Health Perspect. 113

IHB-Institut für Inhalationsbiologie

Do inhaled nanoparticles penetrate the tissue of the lung?

GSF-Forschungszentrum für Umwelt und Gesundheit

Geiser et al. 2005, Environ Health Perspect. 113

Translocation into secondary target organs

WKY Rats exposed via endotracheal intubation, single 1- to 1.5-h inhalation of 192Ir UFP, mass conc.: 0.2 mg m⁻³, CMD: 15 nm

Lung

Pulmonary retention and excretion during 6 mo after inhalation of ¹⁹²IrUFP.

Extra Pulmonary Organs

Translocated fractions into secondary target organs during 6 mo after inhalation of ¹⁹²IrUFP.

Semmler et al. 2004, Inhal Toxicol.

Translocation into secondary target organs

WKY Rats exposed via endotracheal intubation, single 1- to 1.5-h inhalation of 192Ir UFP, mass conc.: 0.2 mg m⁻³, CMD: 15 nm

Lung

Extra Pulmonary Organs

Long-term translocation of ultrafine ¹⁹²Ir particles from lungs to secondary target organs does not steadily increase the particle burden in those organs but is superimposed by clearance from these organs, yielding a constant but very slow fraction of about 0.001 of the deposited amount of particles.

Semmler et al. 2004, Inhal Toxicol.

IHB-Institut für Inhalationsbiologie

Extra-pulmonary Effects

Cardio Vascular System (CVS)

- Disturbance of vegetative balance stress response
- Disturbance of vasomotor function vasoconstriction
- Cardiac Arrhythmia
- Systemic/endothelial inflammation
- Procoagulative state
- Endothelial dysfunktion
- Aggravation of atherosclerotic process

=> Infarction – Coronary failure

Central Nervous System (CNS)

- Inflammation / neurodegeneration (activation of microglia cells)

ApoE-Modell + Mexico City Daten

Cardio Vascular System (CVS)

- Disturbance of **vegetative** balance – stress response

Harder 2005: Rats exposed to UfCP (180µg/m³) for 24h

 \Rightarrow increased heart rate

 \Rightarrow reduced heart rate variability

sympathetic stress response ?

=> Interction – Coronary failure

Central Nervous System (CNS)

- Inflammation / neurodegeneration (activation of microglia cells)

ApoE-Modell + Mexico City Daten

GSF-Forschungszentrum für Umwelt und Gesundheit

Cardio Vascular System (CVS)

- Disturbance of vegetative balance stress response
- Disturbance of vasomotor function vasoconstriction

Harder 2005: (Telemetric study)

Hypertensive rats exposed to UfCP (180µg/m³) for 24h

- \Rightarrow increased heart rate
- \Rightarrow increased diastolic blood pressure

Elder 2004:

On-Road Exposure of Aged Rats

 \Rightarrow Increased plasma levels of Endothelin

Dvonch 2004:

Rats exposed to PM_{2.5} (Detroit, 354µg/m³, 3 days, 8h/day)

⇒ Increased plasma levels of ADMA (asymmetric dimethylarginie, eNOS inhibitor)

! vasoconstriction, endothelial dysfunktion !

ApoE-Modell + Mexico City Daten

oglia cells)

Cardio Vascular System (CVS)

- Disturbance of vegetative balance stress response
- Disturbance of vasomotor function vasoconstriction
- Cardiac Arrhythmia
- Systemic/endothelial inflammation
- Procoagulative state

Khandoga 2004:

intra-arterial infusion of UfCP in healthy mice (107/ mouse)

- \Rightarrow induced platelet adhesion
- \Rightarrow increased fibrin deposition and vWF expression on the endothelial surface

! Prothrombotic effect !

Inflammation / neurodegeneration (activation of microglia cells)

ApoE-Modell + Mexico City Daten

Cardio Vascular System (CVS)

- Disturbance of vegetative balance stress response
- Disturbance of vasomotor function vasoconstriction
- Cardiac Arrhythmia
- Systemic/endothelial inflammation
- Procoagulative state
- Endothelial dysfunktion
- Aggravation of atherosclerotic process

Sun 2005:

ApoE^{-/-} mice (+ high fat diet) exposed to 85 µg/m³ PM_{2.5} for 6 month

- \Rightarrow increased atherosclerotic plaque development
- \Rightarrow increased vascular inflammation
- \Rightarrow increased vasomotor tone

! potentiated atherosclerosis !

Cardio Vascular System (CVS)

- Disturbance of vegetative balance stress response
- Disturbance of vasomotor function vasoconstriction
- Cardiac Arrhythmia
- Systemic/endothelial inflammation
- Procoagulative state
- Endothelial dysfunktion
- Aggravation of atherosclerotic process

=> Infarction – Coronary failure

Central Nervous System (CNS)

Inflammation / neurodegeneration (activation of microglia cells)

ApoE-Modell + Mexico City Daten

PM and frequency in heart attacks (Augsburg 1995-2000)

Association of particle mass - or number-concentration with infarct rate

Peters et al.

Mechanism of cardiovascular effects

GSF-Forschungszentrum für Umwelt und Gesundheit

Mechanistic Aspects of Nanoparticle Toxicology -Particle Deposition and Clearance

- 1. Deposition & Clearance Mechanism
 - high alveolar deposition
 - ineffective clearance
- 2. Acute Pulmonary Effects
 - surface area as dose metric
 - NP cause oxidative stress to cellular structures
- 3. Translocation to Secondary Organs - translocation efficiency ~0.1%
- 4. Extra-pulmonary Effects
 - aggravation of inflammatory & cardiovascular diseases

Mechanistic Aspects of Nanoparticle Toxicology -Particle Deposition and Clearance and Effects

Thank you for your attention!

And special thanks to:

Prof. Holger Schulz

Dr. Wolfgang Kreyling

GSF-National Research Center for Environment and Health member of the Helmholtz Association

