

Surface Properties		Application examples
•	Mechanical properties (e.g. tribology, hardness, scratch- resistance)	Wear protection of machinery and equipment, mechanical protection of soft materials (polymers, wood, textiles, etc.)
•	Wetting properties (e.g. antiadhesive, hydrophobic, hydrophilic)	Antigraffiti, antifouling, Lotus-effect, self-cleaning surface for textiles and ceramics, etc.
•	Thermal and chemical properties (e.g. heat resistance and insulation, corrosion resistance)	Corrosion protection for machinery and equipment, heat resistance for turbines and engines, thermal insulation equipment and building materials, etc.
•	Biological properties (biocompatibility, anti- infective)	Biocompatible implants, abacterial medical tools and wound dressings, etc.
•	Electronical and magnetic properties (e.g. magneto- resistance, dielectric)	Ultrathin dielectrics for field-effect transistors, magnetoresistive sensors and data memory, etc.
•	Optical properties (e.g. anti- reflection, photo- and electrochromatic)	Photo- and electrochromic windows, antireflective screens and solar cells, etc.

Products	s of Nanotechnology:			
		Te	st & Measurement (9%):	
	Industrial Imaging (8%):	Components (8%):	Strain Film Thickness	
nd User Applications (9%):	TEM	Transistors Fillers	Surface Topography	
	STEM	Catalytic Converters		
Tennis Balls, Rackets	SEM	Fenders	Materials (44%):	
Comence	E-Beams	Mirror Housings	Nanatubas	
Respirators	X-Ray, Confocal Microscopes	Sten Assists	Fullerenes	
Razor Blades	· · · · ·	Polarizers/Wave Plates	Quantum Dots	
Cosmetics Beer Bottles		Displays-OLED Surgical Eusions	Metal oxides	
Sunscreens	Capital Equipment (15%):	our great rustons	Dendrimers	
			Nanoclays	
	Positioners			
	Cantilevers		Nano metals - Gold, Silve	
	Coaters Probes/Manipulators		Nanocomposites	
	Lithography: Masks, Resists	Therapeutic System (3%)		
Software (4%):	AFM's			
ALC: NOT THE REAL OF	Women's cream	n designed for short-term use (Estr	rasorb)	
Modeling	An antibacteri	al protocol available to doctors and	researchers (NanobacTX)	
Arm software	Nanoparticle-b	ased nutraceutical spray to deliver	nutritional supplements	
CAD navigation	Automating eq	upment for biomedical sample prep	aration process	
and hanganon	Immunosuppre	mmunosuppressive drug (Rapamune)		
	Ultrasmall silve	er nanocrystals (Acticoat Burn Dres	(August, 2004	

Electronics research moving to new products						
Thursday, April 27, 2006 Free Electricity from Nano Generators Throw away your batteries. Tiny nanowires could power medical implants, even your iPod. By Kevin Bullis						
A graph showing spikes of electrical scharge as the nanowires are scanned. (Courtesy of Zhong Linwang, Georgia Tech.)	Today's portable electronics (except for self-winding watches and crank radios) depend on batteries for power. Now researchers have demonstrated that easy-to-make, inexpensive nanowires can harvest mechanical energy, possibly leading to such advances as medical implants that run on electricity generated from pulsing blood vessels and cell phones powered by nanowires in the soles of shoes. "When you walk, you generate 67 watts. Your finger movement is 0.1 watt. Your breathing is one watt. If you can convert a fraction of that, you can power a device. From the concept we've demonstrated, we can convert 17-30 percent of that," says Zhong Lin Wang, professor of materials science at Georgia Tech and one of the researchers of the work, published in the journal <i>Science</i> . sch Biotech Nanotech Biztech Magazine Blogs MIT News					
[1 Monday, February 13, 2006						
The Ultra Battery						
A new type of ultracapacitor could eventually have you throwing out your conventional batteries. By Kevin Bullis						
A breakthrough technology is holding forth the promise of charging electronic gadgets in minutes, never having to replace a battery again, a dropping the cost of hybrid cars. Indeed, the technology has the potential to provide an energy storage device ten times more powerful that even the latest batteries in hybrid cars while outliving the vehicle itself.						

