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-Why Are We Interested in Ultrafine PM

-Technologies for measuring their physical , chemical and
toxicological properties

- What do we know (or do not) about thelr sources, and
formation mechanisms In urban areas

-What do we know about the impact of new technologies In
Improving air quality




Why Are We Interested in Atmospheric Ultrafine PM
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Ultrafine particle have a much higher deposition fraction in the
lower lung than accumulation mode PM.
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Overview of our Work
Alr Pollution, Particulate Matter and Health Effects

9 million drivers daily
500,000 diesel trucks

5% busiest airport in world

biggest US harbor

-



e Continuous Monitors for:

- Particle Size Distribution
- Mass and Surface Area
- Chemical Composition

 Time Inteqrated Monitors for:

- Size Distribution
- Mass
- Chemical Composition

« Particle Concentrator Technologies for High Volume
Collection for Toxicological In Vitro and In Vivo Studies

e Personal Ultrafine Particle Samplers




Condensation Particle Counter (TSI 3022)

Number Concentration Measurements




Scanning Mobility Particle Sizer (TSI 3936)
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Schematic of an Impactor
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Geller, et al. Aerosol Science and
Technology, 36(6): 748-763, 2002
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UC Davis Real
Time Mass
Spectrometer

Negative lon MS Positive lon MS

ArF Excimer Laser
193 nm @ 5-10 mJ

Figure 1. RSMSIII design for the Pittsburgh and Baltimore Supersites




Concentration Enrichment To Increase Sampling Efficiency of
Ultrafine PM Samplers

Figure 1. USC Ultrafine Concentrator/Nano-MOUDI System
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Averaged ambient and concentrated outdoor aerosol size
distributions at USC.
major flow = 30 [pm, minor flow: 1 l[pm)
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Ambient and Concentration Enriched PM Size Distribution. Total
flow=600 LPM; Minor Flow: 30 LPM

® ambient
¢ Concentrated - 30 Ipm
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Concentrator — BioSampler Tandem
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Near Continuous Ultrafine Mass Concentration Monitor
(Chakrabarti et al., Aerosol Science and Technology, 2002

16.7 Ipm J

0.15 um
Impactor

|

BAM Monitor
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Figure 2. BAM vs. MOUDI Ultrafine PM concentration
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Fractal-like combustion particles have a high
surface area, hence electrical mobility, but a
low density




Geller et al.,
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AS&T, 2006
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FIGURE 1. Schematic diagram of DMA-APM set-up

where p. 1s the effective density., X1s dynamic shape factor, d.. 1s the volume

equivalent diameter, dy. 15 the mobility equivalent diameter, C 1s the Cunningham

correction factor, and pine 15 the bulk density of the material (McMurry et al., 2002).
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Figure 7. Effective density variation with respect to particle mobility diameter at I-710. Data labels indicate
percentage of number concentration measured for each particle size with respective effective density.

Geller et al., AS&T, in press,
2006




Table 4. Summary of average effective densities of different field
locations and their fractal dimensions

Average Effective densitg !EE!’ g cm”

Mobility
diameter
(dl'l"ll nm}

USC

71{]-freeway

1 1U-freeway

Riverside

Coast

50
118
146
202
322
414

1.14+ 0.1
1.12+£0.14
121+ 0.08
1.14 £0.24
0.86 £0.11
0.73 £0.10

1.13+£0.10
1.00+£0.12
094+ 0.16

1 0.49 +0.07
0.31+0.02

1.45+£0.12
1.17 £0.02

0.99 £ 0.09
0.59 £ 0.27
0.58 £ 0.06

1.40£0.10
1.40 £ 0.06
1.29 £ 0.06
1.06 £0.09
NA
NA

1.19 £0.10
1.14 £0.23
0.99+£0.10
1.06 £ 0.20
NA
NA

Fractal

Dimension

241 +0.22

2.83 £ 0.06

292 +0.15

Geller et al., AS&T,

In press, 2006
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The ratio of the surface area monitor / total particle counts can also be used
to provide very rapid estimate of the average particle size:




High-Volume, Very Low
Pressure Drop Impactor
for Separation of Coarse-
Fine-Ultrafine PM

Misra et al Journal of
Aerosol Science, 33(5): 735-
752, 2002




High Volume Low Pressure Drop PM Collector

Collects 500 LPM of Coarse, Fine and Ultrafine PM under a very low
pressure drop

- Light weight, low powered and portable

- Allows high volume collection of size fractionated PM for chemical
composition as well as in vitro toxicology studies

Figure 4. Evaluation of the USC High Volume Low Cutpoint Impactor with an Uncoated Quartz Substrate
and Different Types of Test Aerosols
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Ultrafine Organics — Vehicular Emissions

Sum of three predominant hopanes:
17a(H),21b(H)-hopane, 17a(H),21b(H)-29-norhopane, 22,29,30-trisnorneohopane
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Personal Cascade Impactor

Misra et al.,
Journal of
Aerosol Science,
33(7), 1027-1047,
2002

*Time integrated samples in 5 size ranges (2.5 - 10; 1-2.5;
0.5-1.0;0.2-0.5; and < 0.2 um)

*Currently testing for combined ICP/MS and GC/MS on a
single substrate, will provide enough data for source
apportionment of personal exposure to PM of different sizes




Contribution of a Source with a Known Tracer, I, to
personal exposures in the size range |

(j :<0.2,0.2-05,05-1.0,1-25,2.5-10 um)

Amount of PM
/ \ mass measured In
Amount of Amount of size range J

tracer | In tracer | In on personal sample
Size range J size range J

on personal on outdoor
sample sample
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Source and Receptor Areas in the Los Angeles Basin
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Seasonal and spatial trends in PN concentrations and size distributions Singh et al.

Long Beach Riverside
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1Thra temperature data for Mira Loma was not available. The data plotted above
was takan from tha nearast available site Riverside firestation (around 10 kms east of Mira Loma)




Seasonal and spatial trends in PN concentrations and size distobutions

Singh et al.
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Relative Particle Number, Mass, Black Carbon, CO Concentration,
Vs. Downwind Distance from Freeway , but not by the same degree
(Zhu et al.,, JAWMA 52:1032-1042, 2002)
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Major
differences in
PN between day
Vs. evening in
winter suggest
condensation or
semi-volatile
species as a
major aerosol
formation
mechanism
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The Issue of PM Volatility and Why it Is Important

*Exposure and dose of semi-volatile species may differ according to
whether they are in the gas or particle phases.

* The semi-volatile component of these particles may likely be present in
Its gaseous phase or associated with smaller sizes in indoor environments

 Finally, given that the majority of people’s exposure during commute
will be dominated to these particles, it would be useful to know whether
the non-volatile or semi-volatile material is more toxic.




» Impact on new emissions control technologies that better protect the public
health.

» This is because particle traps remove non-volatile soot particles but not always
the precursors of the smaller semi-volatile particles

» Also, the reduction of the larger, non-volatile particles from the exhaust may

Increase the formation-emission of the smaller, semi-volatile PM

 Our recent studies at the Caldecott tunnel showed that while PM mass emitted
by LDV and HDV decreased by 50-70% over the past 7 yrs in California, particle
numbers increased by 2-3 fold. See:

- Geller, M.D., Sardar, S., Fine, P.M. and Sioutas, C. “Measurements of
Particle Number and Mass Concentrations in a Roadway Tunnel
Environment”. Environmental Science and Technology, in press




TABLE 7. Comparison of the Current Measured Concentrations

of C0; and Emission Factors of PM;s and PN to

%fleasulrements Made in Previous Studies at the Caldecott
nnne

vehicle Co, PM;c particle number
type study (g/ky) (particles/kq)

LDV  this work 384 n 07 4+ 0.02: EIE.E + 1.4) = 1n1E:

LDV Hirzzgﬁteﬂer et al. 665 ! 011 % {}{}1: (4.6 + 0.7) = 1{]1"'5

LDV Allen etal. (200  738.5 0.07 + 0.054 :b

HDV  this work 516 | 1.02 + 0.04] i{{8.2 + 2.5) = 10

HDW Hirfgﬁte’[ter et al. 373 E 5+ 0.2 6.3 + 1.9) = 1{]"5;

HDV Allen et al. (20) 435. 5 '1.285 + 0. E* b

a Hepresents PM, o. ® Mot available.
»PM, - emissions have declined by 37% (LDV) and 60% (HDV) since 1997

»PN emissions have increased
»Factor of 5.4 for LDV
»Factor of 1.3 for HDV




Table 1. Houtly Pearson Correlation Coefficient, r, of PN vs. Co-pollutant concentrations for the entire calendar year 2002, all sites

| Glendora | LongBeach | MiraLoma | Riverside | Upland
CO 0.13 0.46 047 0.52 0.66
NO 0.06 0.44 0.60 0.59 0.65
NO; 021 0.50 0.24 0.32 0.17
PMyp 0.18 027 0.00 0.16 0.14
0; 030 022 034 004 -0.26

Table 2. 24-hr Average Pearson Correlation Coefficient, r. of PN vs. Co-pollutant concentrations for the entire calendar year 2002, all sifes

_
O 04 0.39 063
m 030 048 034 032 0.6
NO, 0.07 0.68 011 % 0.08
PMyg 018 010 017 032 019
0; 031 .63 033 026 054

- Generally low to moderate correlations between PN and gaseous co pollutants
as well as PM10

- Hourly associations > 24 hr associations

- (Sardar et al, JAWMA, 2004)



Sardar et al, JAWMA, 2004

< All other hours r=0.74
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-Glendora and Upland are only 6 km apart

- Influence of morning traffic in Upland decreases Pearson
coefficient, r, between PN in the two sites
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Particle Counts 500 Meters Downwind of
North Runway During Landings at Site B

(32)
=
O

~~
[%2)

+—
[
>
o
@)
o
(&)
—
—
)
(a

Freeways are not the only source of ultrafine particles!

CARB Study; Westerdahl et al., 2005




LAX Study Area
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Particle Number Distribution
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Particle Counts Near LAX and On Area Freeways
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Figure 4. Drnal trends of size-segregated particle number, O,

_ Figure 6. Diurnal trends of size-segregated particle number, Q5 and
NO, at USC during (a) Dec 2002-Jan 2003 and (b) Sep 2003.

NO,, at Riverside during (a) Nov 2002 and (b) Mar-Apr 2002.

Photochemical Secondary Formation of Ultrafine PM in LA

Sardar et al., ES&T, 2005




TAEBLE 4. Size Fractionated PN vs Gas Pollutants — Pearson
Correlation Coefficients {r) at Source and Receptor Sites

Sardar et al.,

size range {nm} cCo N0, 03
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Renewed Southern California Particle Center, funded by US EPA:

o Determine the of ultrafine PM
(UFP) from real-world : , to
evaluate how exposure to UFP vary with respect to:

e ASsess the of these outdoor sources to
and toxicity.

Determine the physical, chemical and toxicological characteristics
of the UFP components that originate from
mobile sources.






