

Zissis Samaras and Leonidas Ntziachristos

## **Road transport particle emissions characterization: focus on ultrafine particles**



Ultrafine Particles: Science, Technology & Policy Issues, May 1, 2006

## Contents

Based on the EU *Particulates* Research project activities, results and database (<u>http://lat.eng.auth.gr/particulates/</u>)

- Development of a measurement protocol to address both semi-volatile and solid particles
- Results from LDVs and HDVs
- Comparison of Diesel particle exhaust emissions from Light Duty vehicles and Heavy Duty engines
- Diesel Particulate Filter Efficiency
- Conclusions and follow-up



#### The Particulates Consortium

#### Partners

Aristotle Univ. (GR) – Coordinator CONCAWE (B) Volvo (S) Tampere University (FIN) EMPA (CH) AEATechnology (UK) Institut Français de Pétrole (F) AVL (AUT) AVL-MTC (S) Graz Technical University (AUT) Aachen University (D) Joint Research Center (NL) VTT (FIN) Ford Research Center Aachen (D)

#### Associate partners

Renault (F) INRETS (F) Dekati (FIN) Stockholm Univ. (S) Athens Univ. (GR) TRL (UK) INERIS (F) LWA (UK)

Consultants

David Kittelson (USA) Georg Reischl (AUT)



# Contents

Based on the EU *Particulates* Research project activities, results and database (<u>http://lat.eng.auth.gr/particulates/</u>)

- Development of a measurement protocol to address both semi-volatile and solid particles
- Results from LDVs and HDVs
- Comparison of Diesel particle exhaust emissions from Light Duty vehicles and Heavy Duty engines
- Diesel Particulate Filter Efficiency
- Conclusions and follow-up



#### **Motivation to Develop a Sampling System**

- Primary aim was to develop a database with emission factors of several particle properties from various engine concepts and fuels and aftertreatment systems for evaluation of technology potential.
- Non-solid particles also of interest to understand their origin and occurrence.
- CVS not practical due to variance in sampling conditions. A dedicated sampling system was developed to establish the same sampling conditions in all laboratories, even over transient tests.



#### **Typical Diesel Particle Size Distributions Number, Surface Area, and Mass Weightings**





## **Particulates Sampling System Schematic**



#### **Picture of Sampling System and Instrument Configuration**



At Shell Global Solutions



#### **Particle Properties Recorded in** *Particulates*

| Instrument                                                            | Property                                                                     | Size resolution                                                   | Temporal resolution     |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|
| Condensation Particle<br>Counter (CPC)                                | Particle<br>number concentration                                             | One channel<br>>7 nm                                              | 1 s (transients)        |
| Scanning Mobility<br>Particle Sizer (SMPS)                            | Particle64 channels persizing anddecade 7-300 nm ofconcentration10-450 nm of |                                                                   | 90 s<br>(steady states) |
| Electrical Low<br>Pressure Impactor<br>(ELPI) +<br>thermodenuder (TD) | Solid particle sizing<br>and concentration                                   | First 8 channels<br>considered with filter<br>stage<br>7nm - 1 µm | 1 s (transients)        |
| Diffusion Charger<br>(DC)                                             | Diffusion Charger (DC) Active surface                                        |                                                                   | 1 s (transients)        |
| Gravimetric Impactor<br>(DGI)                                         | Mass-based particle<br>sizing                                                | 5 stages<br><10 μm                                                | Integral<br>over a test |



#### Selection of Sampling Conditions Dilution Ratio (DR) & Dilution Ait Temperature (DAT)



Aerosol Science and Technology, 38:1149–1160, 2004



#### **Selection of Sampling Conditions – Residence Time**



Vehicle: Euro 1 VW Golf Condition: 50 km/h Load: 7.6 kW DR: ~25:1, DAT: 22°C



#### **Thermodenuder Performance**



#### Particle penetration and efficiency of the TD



Engine: **Euro 1 VW TDI**, DR setting: **5:1**, TDR to SMPS: **~1000:1**, Speed: **2000 rpm**, Load: **10%** 



#### **Primary Dilution Ratio Variation (Steady states)**



Engine: **Euro 1 VW TDI** DR setting: **12,95:1** (1500 rpm, 25% load)

SAE paper 2004-01-1439



#### **Round Robin Results (Between Lab Variability)**



**Round-Robin Tests Conducted Before the Main Measurement Campaign** 

Measurement Science and Technology 15 (2004) 1855–1866



#### **Comparison of Results during the Main Measurement Campaign**







# **Test vehicle:**

VW Golf TDI 1.9 | Euro 3 speed, fuel consumption EN590 diesel (280 ppm S)

**Ford Mobile Lab:** SMPS, CPC, NOx, CO<sub>2</sub> T and RH

# **Test track:** high speed oval, 4 km/lap

14 m distance: 0.4 s (120 km  $h^{-1}$ ) 1 s (50 km  $h^{-1}$ )

Atmospheric Environment, Vol. 39/18 (2005) 3191-3198



#### **Validation With Chasing Experiment**



Vehicle: Euro 3 VW Golf, Chasing Experiment: DR 2500:1 @ 50 km/h, 7000:1@ 120 km/h, T<sub>amb</sub>=5°C, RH=50% Lab Experiment: PDR: 12,5:1, TDR: ~1000:1, DAT: 32°C, Residence Time: 0.6-2.5 s

Atmospheric Environment, Vol. 39/18 (2005) 3191-3198



#### **Vehicle/engine characteristics**

| Emission<br>Standard       | Make                            | Engine Size [l] | Power @ engine speed<br>[kW/rpm] | After-Treatment |
|----------------------------|---------------------------------|-----------------|----------------------------------|-----------------|
|                            | Light                           | Duty Vehicles   |                                  |                 |
| Euro 2                     | VW Golf TDI                     | 1.9             | 66/4000                          | DOC             |
| Euro 2                     | Peugeot 406 HDI                 | 2.0             | 79/4000                          | DOC             |
| Euro 3                     | Renault Laguna dCi              | 1.9             | 78/4000                          | DOC             |
| Euro 3                     | VW Golf TDI (3 indiv. vehicles) | 1.9             | 74/4000                          | DOC             |
| Euro 3+                    | Peugeot 307 SW                  | 2.0             | 79/4000                          | DOC+DPF         |
| Euro 3+                    | Peugeot 607 HDI                 | 2.2             | 98/4000                          | DOC+DPF         |
| Heavy Duty Engines         |                                 |                 |                                  |                 |
| Euro 1                     | Volvo                           | 12.0            | 247/1900                         | w/o             |
| Euro 2, Euro 3+            | Volvo DH10A                     | 9.6             | 210/2000                         | w/o, CRDPF      |
| Euro 3, Euro 4             | Scania DC11                     | 10.6            | 250/1900                         | w/o, SCR        |
| Euro 3, Euro 3+            | Volvo D12C                      | 12.1            | 247/1900                         | w/o, CRDPF      |
| Euro 3                     | Scania DC12                     | 11.7            | 300/1800                         | w/o             |
| Euro 4                     | AVL Prototype                   | 10.6            | 300/1900                         | CRDPF           |
| Euro 5                     | AVL Prototype                   | 11.7            | 300/1800                         | SCR             |
| Medium/Heavy Duty Vehicles |                                 |                 |                                  |                 |
| Euro 3                     | IVECO Eurocargo                 | 3.9             | 125/2700                         | w/o             |
| Euro 3                     | Mercedes Citaro                 | 12.0            | 185/2000                         | w/o, PM Cat     |





All well maintained and <50 000 km mileage. Only ULEV and Euro 1 gasoline cars had > 100 000 km.



#### **Experimental: Fuel Matrix**

| Fuel Code | Sulphur mg/kg | Remarks         |
|-----------|---------------|-----------------|
| D1        | 1550          | Historic diesel |
| D2        | 280           | 2000 diesel     |
| D3        | 38            | 2005 diesel     |
| D4        | 8             | 2009 diesel     |
| D5        | 3             | Swedish Class 1 |
| D6        | 307           | pre 2000 fuel   |
| D7        | 7             | D4 + 5% RME     |
| G1        | 143           | 2000 gasoline   |
| G2        | 45            | 2005 gasoline   |
| G3        | 6             | 2009 gasoline   |

Only tested on some engines/vehicles



# Contents

Based on the EU *Particulates* Research project activities, results and database (<u>http://lat.eng.auth.gr/particulates/</u>)

- Development of a measurement protocol to address both semi-volatile and solid particles
- Results from Light Duty Vehicles and HDVs
- Comparison of Diesel particle exhaust emissions from Light Duty vehicles and Heavy Duty engines
- Diesel Particulate Filter Efficiency
- Conclusions and follow-up



#### LDV Test Cycles: Regulatory NEDC and Real World Driving Cycles (Common Artemis Driving Cycles = CADC)





#### **LDV Results: Regulated PM**



SAE Transactions Paper 2004-01-1985



#### LDV Results: Solid Particle Number (TD+ELPI)



LAT,

#### **Results: Active Surface (Diff. Charger)**



LAT,

#### LDV Results: Total Particle Number (CPC)



#### LDV Results: Total Particle Size Distribution (SMPS) - Diesel



SAE Transactions Paper 2004-01-1985



#### LDV Results: Total Particle Size Distribution (SMPS) - Gasoline



SAE Transactions Paper 2004-01-1985



# Contents

Based on the EU *Particulates* Research project activities, results and database (<u>http://lat.eng.auth.gr/particulates/</u>)

- Development of a measurement protocol to address both semi-volatile and solid particles
- Results from LDVs and Heavy Duty Vehicles
- Comparison of Diesel particle exhaust emissions from Light Duty vehicles and Heavy Duty engines
- Diesel Particulate Filter Efficiency
- Conclusions and follow-up



#### **HDV Results: Regulated PM**



- Very low PM emissions achieved with CRT equipped systems on low sulphur fuels, & with Euro-V SCR/urea prototype without DPF
- > Benefits of fuel sulphur reduction also evident



#### HDV Results: Solid Particle Number (ELPI +TD)



Conventional Euro-I to Euro-III engine technologies produced total solid particle number emissions in the range of 10<sup>14</sup> particles/kWh

Results for one Euro-III engine ca. an order of magnitude lower, needs further explanation

- > DPF systems offer the potential to reduce solid particle numbers by 3-4 orders of magnitude
- Euro-V system with SCR/urea (without DPF) produced around 10<sup>13</sup> particles/kWh, ca. 90% < typical Euro-III cases, but 2 orders of magnitude higher than best DPF systems</p>



#### **Results: Active Surface (DC)**



- Euro-I to Euro-III engines produced active surface values in the range 10<sup>5</sup> to 10<sup>6</sup> cm<sup>2</sup>/kWh. The Euro-III engine with CRT gave 1-2 orders of magnitude reduction, broadly in-line with its ELPI performance.
- The Euro-II engine with CRT gave active surface values in the same range as the Euro-I to Euro-III conventional engines, indicating formation of high number of nucleation mode particles



#### HDV Results: Total Particle Number (CPC)



- > Total particle number (CPC) emissions of conventional Euro-I to Euro-III heavy duty diesel engines were in the range 10<sup>14</sup> to 10<sup>16</sup> particles/kWh
- DPF systems operating on low sulphur fuels have the capability to reduce the total number count by ca. 3 orders of magnitude. However, some cases showed high numbers of nucleation mode particles, particularly at high temperatures
- > Sulphur effects also evident



# Contents

Based on the EU *Particulates* Research project activities, results and database (<u>http://lat.eng.auth.gr/particulates/</u>)

- Development of a measurement protocol to address both semi-volatile and solid particles
- Results from LDVs and Heavy Duty Vehicles
- Comparison of Diesel particle exhaust emissions from Light Duty vehicles and Heavy Duty engines
- Diesel Particulate Filter Efficiency
- Conclusions and follow-up



# Comparison of Diesel particle exhaust emissions from Light Duty vehicles and Heavy Duty engines

- Due to the different regulatory steps and definitions, there is no clear view on how diesel LD vehicle emissions compare to HD and results on diesel emissions that appear in the literature may contradict.
- Target is to present particle emission rates and size distributions from HD and LD vehicles, expressed on a per distance traveled and on a per unit of fuel consumed basis to enable a straightforward comparison.
- This information can be used to estimate the contribution of trucks, busses and cars to ambient concentrations and to understand differences in their emission behavior.



#### **Driving Cycles / Operation modes**





#### **Driving Cycles / Operation modes**







#### **Calculation steps for distance specific emissions of HDVs**



SAE Transactions Paper 2006-01-0866

# Typical particle emission values and ranges for different vehicle categories in urban and highway driving, using low sulfur fuel (<10 ppm wt.)

| Category                                | Emission<br>Standard | PM [g/km] | Nsol ×10 <sup>14</sup> [#/km] | Act. Surf. [m <sup>2</sup> /km] |
|-----------------------------------------|----------------------|-----------|-------------------------------|---------------------------------|
| Urb                                     | an Driving           | Emissi    | ons proportional              | to engine size                  |
| Passenger Car                           | Euro 3               | 0.06      | 1.8                           | 10-15                           |
| Pass Car + DPF                          | Euro 3+              | 0.002     | <2×10 <sup>11</sup>           | <0.0024                         |
| Urban Bus                               | Euro 3               | 0.20      | 5.2                           | 28-88                           |
| Truck (7.5 tn)                          | Euro 3               | 0.15      | 3.4                           | 18-58                           |
| Truck (16 tn)                           | Euro 3               | 0.33      | 8.7                           | 47-146                          |
| Truck (16 tn) + CRDPF                   | Euro 4               | 0.06      | ~1011                         | n.a.                            |
| Truck (16 tn) + SCR                     | Euro 5               | 0.06      | 0.48                          | n.a.                            |
| Highway Driving                         |                      |           |                               |                                 |
| Passenger Car                           | Euro 3               | 0.04      | 1.9                           | 12-15                           |
| Passenger Car + DPF                     | Euro 3+              | 0.002     | <2×10 <sup>11</sup>           | <0.0036                         |
| Coach                                   | Euro 3               | 0.11      | 2.0                           | 11-26                           |
| Truck (7.5 tn)                          | Euro 3               | 0.08      | 1.4                           | 8-19                            |
| Truck (16 tn)                           | Euro 3               | 0.18      | 2.4                           | 14-32                           |
| Truck (16 tn) + CRDPF                   | Euro 4               | 0.02      | ~1011                         | n.a.                            |
| Truck (16 tn) + SCR                     | Euro 5               | 0.02      | 0.03                          | n.a.                            |
| No visible association with engine size |                      |           | CAE Transactions Dan          |                                 |

#### **Results: Emissions per unit fuel consumed - PM**





#### **Results: Emissions per unit fuel consumed Particle Number**



Nucleation mode is associated with the low solid particle number emissions of HDVs.

SAE Transactions Paper 2006-01-0866



#### **Particle size distributions from LDVs, HDEs and HDVs**



HDE tend to produce nucleation particles at low loads probably due to high SOF



#### LDV tend to produce nucleation particles at high loads probably due to sulphates

SAE Transactions Paper 2006-01-0866

#### **Results: Effect of aftertreatment - HD**



- OEM DPF reduces solid particle number by more than 3 orders of magnitude
- Engine tuning for SCR application reduces particle number by 1 order of magnitude and leads to highest NOx reductions
- DPF retrofitting has a positive but variable effect. All reductions beyond one order of magnitude
- The PM catalyst has a negligible overall effect



#### **Results: Effect of aftertreatment - HD**

Results are more difficult to interpret due to the NM formation

SCR reduces particle number without inducing NM formation



#### Total





#### **Results: Effect of aftertreatment - LD**



#### Solid

Both retrofitted and OEM DPF seem to reduce solid particle number by at least 3 orders of (ELPI limit of detection)

SAE Transactions Paper 2006-01-0866



- Particle reduction by OEM DPF may reach up to 6 orders of magnitude
- Total particle number may reach conventional levels during regeneration
- (5) there is room for more rigorous control of condensable species in the exhaust gas



#### Total



# Contents

Based on the EU *Particulates* Research project activities, results and database (<u>http://lat.eng.auth.gr/particulates/</u>)

- Development of a measurement protocol to address both semi-volatile and solid particles
- Results from LDVs and HDVs
- Comparison of Diesel particle exhaust emissions from Light Duty vehicles and Heavy Duty engines
- Diesel Particulate Filter Efficiency
- Conclusions and follow-up



- Ce-based additive (CeDPF) at 25 ppm
  - NGK SiC Ø144 mm×L 152.4 mm (5.66"×6"),
  - cell density of 200 cpsi and wall thickness of 0.38 mm.
- > Catalyzed soot filter (CSF) with Pt-based catalyst
  - NGK SiC Ø144 mm×L 152.4 mm (5.66"×6"),
  - cell density of 300 cpsi and a wall thickness of 0.30 mm
  - material porosity and mean pore size were also larger than the CeDPF (before the washcoat application).
- Test Vehicle
  - 2001 model year Renault Laguna 1.9 dCi meeting Euro 3 emission standards
- > Two fuels complying with EN590 specifications were used
  - A higher sulphur fuel (HSF) 38 ppm wt.
  - A lower sulphur fuel (LSF) 8 ppm wt.
- Lubrication oil
  - 15W-40 grade (ACEA A3/B3) with ~6000 ppm wt. sulphur



# Particle mass (PM) and particle properties for the fuel and vehicle configurations studied (1/2)



Error bars correspond to min-max of two measurements conducted at different days.



# Particle mass (PM) and different airborne particle properties for the fuel and vehicle configurations studied (2/2)



Error bars correspond to min-max of two measurements conducted at different days.



#### Effect of CSF soot loading level on particle size distributions 120 km/h



H, L correspond to "higher" and "lower" loadings respectively.



#### Filtration efficiency (expressed in %) of DPFs, based on different particle properties

|                         |                  | CSF      |         | CeDPF   |
|-------------------------|------------------|----------|---------|---------|
| Measure                 | Driving<br>Cycle | 38 ppm S | 8 ppm S | 8 ppm S |
| PM                      | NEDC             | 96.94    | 98.12   | 98.39   |
|                         | Artemis          | 97.44    | 95.30   | 98.59   |
| Active Surface<br>(DC)  | NEDC             | 99.96    | 99.93   | 99.95   |
|                         | Artemis          | 99.71    | 99.88   | 99.95   |
| Solids Number<br>(ELPI) | NEDC             | 99.94    | 99.93   | 99.96   |
|                         | Artemis          | 99.93    | 99.91   | 99.98   |
| Total Number<br>(CPC)   | NEDC             | 99.92    | 99.89   | 99.87   |
|                         | Artemis          | 99.95    | 99.88   | 99.94   |
| Total Number<br>(SMPS)  | 50 km/h          | 99.94    | 99.95   | 99.87   |
|                         | 90 km/h          | 99.94    | 99.96   | 99.92   |
|                         | 120 km/h         | 35.67    | 99.96   | 99.94   |

Due to nucleation



Semi-volatile (or Nucleation Mode – NM) nanoparticles can be measured in a reliable and repeatable manner, at both LDVs and HDVs

## > Nucleation mode formation in HDVs:

- Frequent due to low specific solid particle number
- More prominent at low loads (higher SOF emissions)
- Decreases at high loads
- Decreases with oxidation catalysts

### > Nucleation mode formation in LDVs:

- Not present at low loads due to efficient oxidation catalysts
- Possibility to form at high load, due to sulfate formation, even with sub 10 ppm S fuel and medium S lube oil



#### > Aftertreatment systems:

- DPFs are most effective for solid particle number (reductions up to 6 orders of magnitude). NM particles may form in some configurations.
- SCR+advanced engine tuning leads to one order of magnitude less solid particle numbers with no NM formation appearing (+NOx reduction)
- A "PM-Catalyst" reduced NM particles more effectively than a DOC but had little effect on solid particle number over transient tests.
- Further research continues to be needed on the health relevance of measurements of "nucleation" mode particles, their chemical composition and their fate in the atmosphere



#### Proposal for a European Centre of Expertise on Road Transport Related PM (ECERT-PM)





# Thank you for your attention

