Debye Lecture 9

Multi-Component Nanocrystal Assemblies

C. B. Murray

Designing Nanoscale Materials Lecture Series by 2004 Debye Institute Professor Christopher B. Murray IBM Research

> Ornstein Laboratory 166 Office phone 253 2227 cbmurray@alum.mit.edu

Semiconductor Quantum Dot Arrays

Glassy QD Solids

Crystalline QD Solids

2 µm

500 nm

Most of the work in this tutorial can be found in: C. B. Murray, C. R. Kagan, M. G. Bawendi, Ann. Rev. Mat. Sci. C. R. Kagan, Thesis, MIT (1996). C. B. Murray, Thesis, MIT (1995).

Absorption and Fluorescence of CdSe Quantum Dot Solids

Quantum Dot Solids

Small Angle X-ray Scattering

Mixed QD Solids

Didn't satisy radius ratio rules to form ordered intermetallic phases

Ordered

18% 38.5 Å/82% 62Å CdSe QDs

Photoconductivity in Quantum Dot Solids

Charge Neutra

2 Charged QDs

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, M. G. Bawendi, Phys. Rev. B, **62**, 2669 (2000).

Spectral Response of Photoconductivity

Size and Interparticle Distance Dependence of Photoconductivity

- Spectral response maps the size-dependent, discrete electronic states of QDs
- Photocarriers thermalize to lowest excited state before being separated

Increased energy required to overcome binding energy with decreasing QD size

Temperature Dependence of the Photoconductivity

Decrease in photocurrent and the decrease in lifetime and Quantum Yield have the same temperature dependence

Fluorescence Quenching

Well passivated QDs

Poorly passivated QDs Deep trap emission quenched at lower fields than band edge emission

Quenching not observed in PL of isolated QDs in applied field

Quenching not directly proportional to charge separation efficiency as free charges in film may quench PL by Auger process

Measureable quenching possible sign of free charges in film

units) PL intensity (arb. PL intensity (arb. units) 2.22 2.24 2.26 Energy (eV) increasing electric field 2.21.4 1.6 1.8 2.02.4Energy (eV)

Charge Separation versus Geminate Recombination

Dipole-Dipole Interaction

Electronic Energy Transfer

h		Transfer of Charge Neutral			h	
e					···	
Excited Donor	Ground Stat Acceptor	e	Ground State Excited Donor Acceptor			
D*	+ A		I	C +	A*	
		nsfer $D^* + A \rightarrow D$) + A*	Or	One Step	
Near Field d < 100 Å		equires Coupling between Excited Donor and		Process		
		Ground State Acceptor				
Radiative Transfer Far Field		$D^* \to D + h$	V	Two Step Process		
		$A + hv \rightarrow A^*$		"Real" Photon Mediates Energy Transfer		
		Lot Domor Accortor Internet				

No Direct Donor-Acceptor Interaction

Long Range Resonance Transfer of Excitations

Quenching of Donor Luminescence Quantum Yield and Lifetime Enhancement of Acceptor Luminescence Quantum Yield and Lifetime

Spectral Overlap of Donor Emission and Acceptor Absorption

Mixed CdSe Quantum Dot Solid

Efficiency of Long Range Resonance Transfer

 $R_0 \rightarrow$ "critical radius" -- distance of donor and acceptor separation at which

Spectral Overlap of Donor Emission and Acceptor Absorption

Room Temperature $k_{DA} = 1 \times 10^{8} \text{ sec}^{-1}$

Photoluminescence of a Mixed QD Solid and Solution Containing 82% 38.5 Å and 18% 62 Å CdSe Quantum Dots

Quenching of the Luminescence QY of the small 38.5 Å QDs accompanied by Enhancement of the Luminescence QY of the large 62 Å QDs in the Mixed CdSe QD Solid

C. R. Kagan, C. B. Murray, M. Nirmal, M. G. Bawendi, Phys. Rev. Lett. 76, 1517 (1996).

Photoluminescence Excitation: The Origin of Emission

Time Dependence of Energy Transfer in Mixed QD Solids

Energy Transfer within the Inhomogeneous Distribution of Electronic States

Inhomogeneous Distribution of Emission Energies in a QD Sample **Dispersed System**

No Interaction between QDs

Close Packed System

Energy Transfer between Proximal QDs

QDs Dispersed in Solution \rightarrow Close Packed in QD Solid

- → Red Shift
- → Narrowingof the Emission Lineshape
- → Asymmetric

C. R. Kagan, C. B. Murray, M. G. Bawendi, Phys. Rev. B 54, 8633 (1996).

Energy Transfer within the Sample Inhomogeneous Distribution

Probability of Energy Transfer

$$P_{DA} = \frac{R_{o}^{6}}{R_{o}^{6} + R_{DA}^{6}},$$

Spectral Overlap from the Absorption Spectrum for the QD Solid, Emission Spectrum for the QDs in Solution Quantum Yield of the QD Solid Nearest Neighbor Distance in QD Solid

Absorption and Emission Spectra decreases

Broad versus Narrow Size Distribution

Peak in Emssion Shifts Red

Narrow Distribution $\Delta E = 14.6 \text{ meV}$ Broad Distribution $\Delta E = 29.6 \text{ meV}$

Emission Lineshape Narrows

Narrow Distribution Δ FWHM=11 meV Broad Distribution Δ FWHM=23 meV

Energy Transfer as a Function of Sample Inhomogeneous Distribution

Red Shift Increases with Increasing Sample Inhomogeneous Distribution

 $\begin{array}{l} \mbox{Emission Lineshape Narrows} \\ \mbox{from Solution} \rightarrow \mbox{Film} \end{array}$

Narrowning Increases with Increasing Sample Inhomogeneous Distribution

Concentration Dependence of Luminscence Lineshape

Exchange-Spring Nanocomposites via Self-Assembly

Nanoscale Engineering for Optimum Exchange-Coupling

Nature, 420, 395 (2002)

TEM images of the binary composite assemblies of

- (A) $Fe_{3}O_{4}(4 \text{ nm}):Fe_{58}Pt_{42}(4 \text{ nm});$
- (B) $Fe_{3}O_{4}(8 \text{ nm}):Fe_{58}Pt_{42}(4 \text{ nm});$
- (C) $Fe_{3}O_{4}(12 \text{ nm}):Fe_{58}Pt_{42}(4 \text{ nm});$
- (D) FePt)Fe₃O₄ core-shell

Hysteresis loops of FePt-Fe₃Pt nanocomposite derived from Fe₃O₄:FePt binary assembly (A) 4 nm:4 nm; and (C) 12 nm:4 nm

36% energy product enhancement compared to singlephase FePt!

Binary nanocomposites

TEM images of two different binary assemblies prepared directly from particle dispersions of 4 nm FePt as well as 4 nm Fe_3O_4 and 8 nm Fe_3O_4 .

HRTEM image of an exchange-coupled nanocomposite (FePt-Fe₃Pt) made from 4nm FePt and 4nm Fe₃O₄ nanoparticles under reductive annealing. Shown here is a modulated structure with FePt and Fe₃Pt in intimate contact, resulting in exchangecoupling.

H. Zeng et al, *Nature*, **2002**, *420*, 395.

Hysteresis loops at room temperature with the composites from 4nm:4nm and 4nm:8nm nanoparticles respectively.

(BH)max, energy product, reflects the ability for a composite to store the magnetic energy, the larger the better. **Binary Nanocrystal Array's a New Class of Nanostructured Materials Franz Redl, Kyung-Sang Cho and C. B. Murray**

Composites of:Ferromagnets, Noble Metals, Semiconductor QDs, Ferroelectrics, Superconductors, may all be possible.

New Near IR Magneto-Optic Composite ~13nm Fe2O3 and 5nm PbSe QDots

Binary nanocomposites via self-assembly of two kinds of NPs

aggregation.

Binary nanocomposite: Magnetic-magnetic composite or magnetic-semiconductor composite.

PbSe – Au binary mixture

Fe₂O₃ – Au binary mixture

PbSe – Ag binary nanoparticle mixture

PbSe (large) – Ag (small) binary nanoparticle mixture

PbSe (large) – Ag (small) binary nanoparticle mixture

PbSe – Ag binary nanoparticle mixture

Complex Compositions and Multi-Component Structures

Simultaneous Reaction A & B Compounds & Alloys

Ferromagnets, Noble Metals, Semiconductor QDots, Ferroelectrics, Superconductors

150 nm

50 nm

Customize organic linkers (molecular wires)

Dicyanobenzene linked Cobalt Nanocrystals