Synthesis, Self-Assembly and Magnetic Properties of L1₀ Phases, FePt, FeCoPt, CoPt and FePd Nanoparticles

David E. Nikles and Min Chen Center for Materials for Information Technology The University of Alabama

This project was sponsored by the NSF Materials Research Science and Engineering Center Award DMR-9809423

Fall Review, November 2001.

THE UNIVERSITY OF ALABAMA

Project Objectives

Repeat the Synthesis and Self-Assembly of FePt Nanoparticles

Understand the magnetic behavior of these particles (collaboration with J. W. Harrell)

Extend this particle chemistry to the synthesis of other $L1_0$ phases

FePd, CoPt and FeCoPt

Learn how to control the magnetic anisotropy

Annealing in either longitudinal or perpendicular magnetic fields

Synthesis of FeCoPt Nanoparticles

Pt(acac)₂ (200 mg, 0.500 mmol) + Co(acac)₂ + 1,2-hexandecane diol (390 mg, 1.5 mmol) + dioctylether (20 mL) \downarrow (heat to 100°C under nitrogen) Add Fe(CO)₅ (0.13 mL, ~1 mmol) + oleic acid (0.16 mL) + oleylamine (0.17 mL) \downarrow (reflux at 286°C for 30 min) Particle Dispersion \downarrow (add 40 mL ethanol) Isolate Particles by Centrifuging

Chemical Composition of FeCoPt Nanoparticles

EDS Analysis of As-Prepared Particles (mole percent)

Batch		Fe	Co	Pt	Diameter (nm)
1	Charged	67	0	33	3.5
	Found	48	0	52	
2	Charged	63	6	31	3.4
	Found	49	7	44	
3	Charged	57	14	29	3.5
	Found	40	17	43	
4	Charged	47	21	32	3.6
	Found	34	19	47	
5	Charged	37.5	25	37.5	3.6
	Found	23	27	50	

THE UNIVERSITY OF ALABAMA

Fe₄₉Co₇Pt₄₄ Nanoparticles

Thin film: "Honeycomb" array comes from ABAB stacking of the particles

Thick film: hexagonal close-packed array comes from ABC stacking

THE UNIVERSITY OF ALABAMA

Coercivity of Annealed of FeCoPt

Temperature (°C)	550	600	700	700	700
Time (hr)	0.5	0.5	0.5	1.0	3.0
$\mathrm{Fe}_{48}\mathrm{Pt}_{52}$	3,970	6,500	>11,600*		
Fe ₄₉ Co ₇ Pt ₄₄	2,430	4,500	8,700		
$\mathrm{Fe}_{40}\mathrm{Co}_{17}\mathrm{Pt}_{43}$		3,800	6,500		
Fe ₃₄ Co ₁₉ Pt ₄₇		2,180		6,630	6,990
$\mathrm{Fe}_{23}\mathrm{Co}_{27}\mathrm{Pt}_{50}$		242		4,590	9,090
* Minor loop					

THE UNIVERSITY OF ALABAMA

CoPt Nanoparticles

Particle Synthesis

 $Pt(acac)_2 (0.500 \text{ mmol}) +$

1,2-hexandecane diol (1.50 mmol) +

dioctylether (20 mL)

 \downarrow (heat to 100°C under nitrogen)

Add $Co(CO)_3NO(1.00 \text{ mmol}) +$

oleic acid (0.5 mmol) +

oleylamine (0.5 mmol)

 \downarrow (reflux at 286°C for 30 min)

Black Particle Dispersion

 \downarrow (add 20 mL ethanol)

Isolate Particles by Centrifuging

Average particle size about 7 nm

Need to further refine the particle size distribution in order to get self-assembly

THE UNIVERSITY OF ALABAMA

FePd Nanoparticles

Particle Synthesis

 $Pd(acac)_2$ (0.500 mmol) +

1,2-hexandecane diol (390 mg, 1.5 mmol)

+ dioctylether (20 mL)

 \downarrow (heat to 100°C under nitrogen)

Add $Fe(CO)_5 (0.75 \text{ mmol}) +$

oleic acid (0.50 mmol) +

oleylamine (0.50 mmol)

 \downarrow (reflux at 286°C for 30 min)

Particle Dispersion

 \downarrow (add 40 mL ethanol)

Isolate Particles by Centrifuging

 $Fe_{50}Pd_{50}$

Average particle size about 11 nm

Need to further refine the particle size distribution in order to get self-assembly

THE UNIVERSITY OF ALABAMA

Conclusions

- The procedure published by Sun, et al* has great utility
- We have used their procedure to prepare FePt nanoparticles
- We have modified their procedure to prepare FeCoPt, CoPt and FePd nanoparticles
- We have demonstrated the FeCoPt particles self-assemble into hexagonal closepacked arrays in a manner similar to FePt nanoparticles
- The addition of Co into FePt appear to lower the coercivity of the annealed films.
- We have not demonstrated self-assembly of the CoPt or the FePd particles, because of the broad particle size distribution.
- This particle chemistry provide new opportunities to develop granular media for future high density media hard drive systems.
- * Shousheng Sun, C. B. Murray, D. Weller, L.Folks and A. Moser Science, 287, 1989-1991, 2000