Nanomaterials in the Environment An application and comment on implications

Nanotechnology and the Environment Brussels, Belgium March 30, 2006

Dr. Vicki Colvin Director, CBEN Prof essor of Chemistry Rice University

U.S. Activities in Nano-Envi

- EPA basic research and regulatory policy
 - \$7M/year in academic research
 - Last three calls <u>exclusively</u> implications research
- Department of Energy very active in area (remediation, clean-up)
- NSF does fund some interdisciplinary work in fundamental nano-envi

- CBEN is a NSF funded research center

Today's Talk				
Benefits	Risks			
 1. Exploiting size in environmental remediation Nanosized magnetite for arsenic removal 				
2. Is size dangerous? Imp	lications of nanotechnology			

Water Treatment Technologies: A Real Need

From 1900 to 2000:

- life expectancy at birth increased from 47 to 76 years
- infant mortality decreased from 165 to 7 (per 1000 births)
 - Waterborne illnesses major cause of death
 - Increasing contamination in water
 - Population growth increasing demand

Arsenic in Drinking Water

- Arsenic in water linked to cancer
- EPA standards: 50 ug/L to 10 ug/L
- Natural and anthropogenic sources
- Enormous interest in removal
 - Plants (phytofiltration)
 - Muds and sediments
 - Zero valent iron in-situ
 - Mine tailings (e.g. iron oxides)

Ayotte et al, Envi. Sci. Tech. 2003 37, p.2075

Existing Sorbents for Arsenic Removal

" Our two year study showed that none of the (18) Arsenic Removal Plants could maintain arsenic in ... water ... below the WHO guidelines" - Hossain *et al* in ES&T 2005, p. 4300

Material	Sorbent (kg) / month	1 gram treats L water	Waste to dispose of kg (1 yr)	Backwash frequency (day)
Alumina + Metal Oxide	0.24	3.8	2.88	14
Red Mud [As(III)]	360.7	0.002	4328.1	Periodic
lon Exchange	No Removal of Toxic As(III)			~ 3

For a family of four, using 900 L water/month, at 500 ppb As levels (7.9 pH)

Arsenic sorption onto iron oxides

- Strong and specific sorption
- Chemical transformation
- Subjected to interferences
 - Silicate and phosphates
 - Humic acids

Models for surface interactions*

Are <u>Nano</u>scale iron oxides are good candidates for sorbents?

MASON TOMSON, AMY KAN, SUJIN YEAN

* D. M. Sherman, S. R. Randall Geochimica et Cosmochimica v. 67 no. 22 p. 4223

Commercial nanoscale iron oxides

As particle size gets smaller sorptive area increases with R²

- 20 nm Magnetite can sorb both As(V) and As(III)
- Sorption capacities (A) of .1 % (w/w)
- Arsenic is irreversibly sorbed (**^**) stable in storage

Synthesis of monodisperse nano-Fe₃O₄

Commercial nano-oxides have problems

- Agglomerated \rightarrow poor magnetic separation
- Larger nanoparticles \rightarrow lower sorption
- Bad size distribution \rightarrow no optimization

Nanomagnets: Large Sorption Capacity

Volume of water treatable by 1 Kg magnetite

Particle Size (nm)		Volume of Water (L)
12	As(III)	2,283
20	As(III)	594
300	As(III)	21
12	As(V)	1,435
20	As(V)	1,145
300	As(V)	150

Remaining Challenge: Nanoparticles are difficult to remove

Magnetic Separations in Water Treatment

- Gravitational settling
- Filtration
- Induced coagulation
- Magnetic Separations

Kakihara, Y., T. Fukunishi, et al. (2004). "Superconducting high gradient magnetic separation for pulification of wastewater from paper factory." <u>leee Transactions on Applied Superconductivity</u> **14**(2): 1565-1567.

Magnetic Separation: possible for d < 40nm?

B_{ext}

$$F_m = \mu_0 \chi v_p H \nabla H$$

2. Thermal diffusive Force

$$F_d = -\frac{kT^*}{n} \nabla n$$

3. Viscous Drag

$$F_{0r} = -6\pi\eta b \frac{dr}{dt} \quad F_{0\theta} = -6\pi\eta br \frac{d\theta}{dt}$$

Convention to expect no separation below 40 nm

Cotton et.al., Separ. Sci. Technol 37 (16): 3755-3779 2002; Fletcher., IEEE T Magn 27 (4): 3655 – 3677 Jul 1991

"Nano" Improves Magnetic Behavior

Small cluster: Supraparamagnetic Easyto magnetize

Larger cluster: Single Domain Magnetization can shift

Bulk solid: Permanent magnet Small magnetization

Library of nanoparticles for optimization

Lower fields = Simpler Systems

Best to use larger nanoparticles that reduce needed fields

Size dependent separation

Arsenic Removal, with Magnetic Field

Partide Size (nm)	As(V) or As(III)	Initial As Concentration (mg/L)	Residual As Concentration (mg/L)	% Removal
12	As (III)	500	3.9	99.2
20	As (III)	500	45.3	90.9
300	As (III)	500	375.7	24.9
12	As (V)	500	7.8	98.4
20	As (V)	500	17.3	96.5
300	As (V)	500	354.1	29.2

Existing Sorbents for Arsenic Removal

Material	Sorbent (kg)/ month	1 gram treats L water	Annual waste to dispose kg [3]	Backwash Frequency (day)	Efficiency[1]
Alumina + Metal Oxide	0.24	3.8	2.88 ³	14	0.003
Red Mud [As(III)]	360.7	0.002	4328.1 ³	Periodic	~0.003
Ion Exchange	No Removal of Toxic As(III)			~ 3	0.014
Nanoscale Iron Oxides	0.09	10	1.1	0	~7.5 to 75 [2]

1. "Efficiency" as defined by NAE in the "Granger Challenge, June, 2005" The object is to maximize the efficiency

2. 12 nm magnetite cost estimated as a synthesized chemical at \$2.00/lb and a multiplication factor of cost by 3x to 30x for estimated conditioning chemicals and packaging.

3. The amount (kg) + the backwash frequency

The WOW to YUCK trajectory

DDT cured malaria

- Pesticides improved crop yields
- Refrigerants made houses cool
- Asbestos improved insulation

- Endangered birds
- Toxic to animals
- Lead to ozone hole
- Liability expenses

Early examination of nanomaterial's effects will create a responsible technology

NanoX: Not Toxicology As Usual

Are single-walled carbon nanotubes toxic?

4 manufacturing types (trace impurities)
Lengths ranging from 5 – 300 nm
5 methods of purification
10 possible surface coatings

20 major types of SWNT

Basic structure-function relationships for nanomaterials and biological impacts are necessary

Systematic Variation of Surface Chemistry

Structure-Function: Nanoscale Carbons

Information Supports Risk Management

- Development of pre-treatment schemes for waste
 - Mild oxidation for fullerenes
 - > Thermal treatments for titania
- Simple ex-vivo screens for nanoparticle formulators
- Foundation for testing structure-function hypotheses

Early stage toxicology: Framing a new question Are engineered nanoparticles dangerous? How can we engineer safe nanoparticles?

Challenges for nano-envi (US)

- Funding sources for research!
 - EPA only at \$7M/year -
 - Ownership of area by one agency is not clear
- Business cases for environmental technology
 - People will not pay a premium for environmental tech.
 - · Link environmental issues to public health
 - · Developing nations are potentially huge markets
- Pilot testing is material intensive
 - Limits of material cost, material amount

Today's Talk

Benefits

Risks

- 1. Nanocrystalline magnetite irreversibly sorbs Arsenic
- 2. "Nano" makes magnetic separations practical 1. Higher removal at lower fields
 - 2. Very high surface areas increase capacity
- 3. Ongoing implications work improves technology

Acknowledgements

- Dr. Christie Sayes
- John Fortner
- Dr. Joe Hughes
- Dr. Jennifer West
- Joe Mendez
- Delina Lyon
- Adina Boyd
- Andre Gobin
- Yi Yang
- Raj Wahi

- Dr. David Warheit (DuPont)
- Dr. Wenh Guo
- Dr. Yitzhi Jane Tao
- Dr. Mason Tomson
- Dr. Kevin Ausman
- Dr. Jane Grande-Allen
- Dr. Lon Wilson
 - Dr. Jason Hafner

NSF-NSEC CBEN, ONR NSF-NIRT Chemistry/Engineering Welch Foundation Research Corporation Dreyfus Foundation

Acknowledgements

- Professor Mason Tomson
- Dr. Amy Kan
- Sunjun Yean
- Cafer Yavuz
- J. T. Mayo
- Arjun Prakash
- Dr. William Yu
- Yi Hua
- Josh Falkner

NSF-NSEC CBEN www.rice.edu/~cben Colvin@rice.edu

Magnetic Separations Optimized

