
Unmodified Device Driver Reuse and
Improved System Dependability via Virtual Machines

Joshua LeVasseur Volkmar Uhlig Jan Stoess Stefan Götz

University of Karlsruhe, Germany

Abstract
We propose a method to reuse unmodified device

drivers and to improve system dependability using vir-
tual machines. We run the unmodified device driver, with
its original operating system, in a virtual machine. This
approach enables extensive reuse of existing and unmod-
ified drivers, independent of the OS or device vendor,
significantly reducing the barrier to building new OS en-
deavors. By allowing distinct device drivers to reside in
separate virtual machines, this technique isolates faults
caused by defective or malicious drivers, thus improving
a system’s dependability.

We show that our technique requires minimal support
infrastructure and provides strong fault isolation. Our
prototype’s network performance is within 3–8% of a
native Linux system. Each additional virtual machine in-
creases the CPU utilization by about 0.12%. We have
successfully reused a wide variety of unmodified Linux
network, disk, and PCI device drivers.

1 Introduction

The majority of today’s operating system code base is
accounted for by device drivers.1 This has two major
implications. First, any OS project that aims for even a
reasonable breadth of device drivers faces either a major
development and testing effort or has to support and inte-
grate device drivers from a driver-rich OS (e.g., Linux or
Windows). Even though almost all research OS projects
reuse device drivers to a certain extent, full reuse for
a significant driver base has remained an elusive goal
and so far can be considered unachieved. The availabil-
ity of drivers solely in binary format from the Windows
driver base shows the limitations of integration and wrap-
ping approaches as advocated by the OS-Kit project [10].
Also, implicit, undocumented, or in the worst case incor-
rectly documented OS behavior makes driver reuse with
a fully emulated execution environment questionable.

The second implication of the large fraction of driver
code in mature OS’s is the extent of programming er-
rors [7]. This is particularly problematic since testing
requires accessibility to sometimes exotic or outdated

1Linux 2.4.1 drivers cover 70% of its IA32 code base [7].

hardware. The likelihood of programming errors in com-
monly used device drivers is probably much lower than
in application code; however, such errors are often fa-
tal. Device drivers, traditionally executing in privileged
mode, can potentially propagate faults to other parts of
the operating system, leading to sporadic system crashes.

In this paper we propose a pragmatic approach for
full reuse and strong isolation of legacy device drivers.
Instead of integrating device driver code we leave all
drivers in their original and fully compatible execution
environment—the original operating system. We run the
device driver wrapped in the original operating system in
a dedicated virtual machine (VM). Thus we can (almost)
guarantee that semantics are preserved and that incom-
patibilities are limited to timing behavior introduced by
virtual machine multiplexing.

The virtual machine environment also strongly iso-
lates device drivers from the rest of the system to achieve
fault containment. The isolation granularity depends on
the number of collocated drivers in a single VM. By in-
stantiating multiple collaborating VMs we can efficiently
isolate device drivers with minimal resource overhead.

Reuse of device drivers and driver isolation are two
important aspects of operating systems; however, they
are usually discussed independently. With virtual ma-
chines, we propose to use a single abstraction to solve
both problems in an extremely flexible, elegant, and effi-
cient way.

2 Related Work

Our work uses known principles of hardware-based iso-
lation to achieve driver reuse and improved system de-
pendability. It is unique in the manner and the extent to
which it accomplishes unmodified driver reuse, and how
it improves system dependability, in terms of drivers,
without system modification.

2.1 Reuse

Binary driver reuse has been achieved with cohosting,
as used in VMware Workstation [32]. Cohosting mul-
tiplexes the processor between two collaborating oper-
ating systems, e.g., the driver OS and the VM monitor.

Originally published in the Proceedings of the 6th Symposium on Operating System Design and Implementation, December 2004

When device activity is necessary, processor control is
transfered to the driver OS in a world switch (which re-
stores the interrupt handlers of the driver OS, etc.). The
driver OS releases ownership of the processor upon de-
vice activity completion. The cohosting method offers no
trust guarantees; both operating systems run fully priv-
ileged in supervisor mode and can interfere with each
other.

Device drivers are commonly reused by transplant-
ing source modules from a donor OS into the new OS
[2, 4, 11, 15, 28, 35]. In contrast to cohosting, the new
OS dominates the transplanted drivers. The transplant
merges two independently developed code bases, glued
together with support infrastructure. Ideally the two sub-
systems enjoy independence, such that the design of one
does not interfere with the design of the other. Past work
demonstrates that, despite great effort, conflicts are un-
avoidable and lead to compromises in the structure of the
new OS. Transplantation has several categories of reuse
issues, which we further describe.

Semantic Resource Conflicts

The transplanted driver obtains resources (memory,
locks, CPU, etc.) from its new OS, subject to normal
obligations and limitations, creating a new and risky re-
lationship between the two components. In the reused
driver’s raw state, its manner of resource use could vi-
olate the resource’s constraints. The misuse can cause
accidental denial of service (e.g., the reused driver’s non-
preemptible interrupt handler consumes enough CPU to
reduce the response latency for other subsystems), can
cause corruption of a manager’s state machine (e.g., in-
voking a non-reentrant memory allocator at interrupt
time [15]), or can dead-lock in a multiprocessor system.

These semantic conflicts are due to the nature of OS
design. A traditional OS divides bulk platform resources
such as memory, processor time, and interrupts between
an assortment of subsystems. The OS refines the bulk re-
sources into linked lists, timers, hash tables, top-halves
and bottom-halves, and other units acceptable for dis-
tributing and multiplexing between the subsystems. The
resource refinements impose rules on the use of the re-
sources, and depend on cooperation in maintaining the
integrity of the state machines. Modules of independent
origin substitute a glue layer for the cooperative design.
For example, when a Linux driver waits for I/O, it re-
moves the current thread from the run queue. To capture
the intended thread operation and to map it into an opera-
tion appropriate for the new OS, the glue layer allocates a
Linux thread control block when entering a reused Linux
component [2,28]. In systems that use asynchronous I/O,
the glue layer converts the thread operations into I/O con-
tinuation objects [15].

Sharing Conflicts

A transplanted driver shares the address space and privi-
lege domain with the new OS. Their independently de-
veloped structures contend for the same resources in
these two domains, and are subject to each other’s faults.

Due to picky device drivers and non-modular code,
a solution for fair address space sharing may be un-
achievable. The older Linux device drivers, dedicated to
the IA32 platform, assumed virtual memory was idem-
potently mapped to physical memory. Reuse of these
drivers requires modifications to the drivers or loss in
flexibility of the address space layout. The authors in
[28] decided not to support such device drivers, because
the costs conflicted with their goals. The authors of [15]
opted to support the drivers by remapping their OS.

Privileged operations generally have global side ef-
fects. When a device driver executes a privileged opera-
tion for the purposes of its local module, it likely affects
the entire system. A device driver that disables processor
interrupts disables them for all devices. Cooperatively
designed components plan for the problem; driver reuse
spoils cooperative design.

Engineering Effort

Device driver reuse reduces engineering effort in OS
construction by avoiding reimplementation of the de-
vice drivers. Preserving confidence in the correctness of
the original drivers is also important. When given de-
vice drivers that are already considered to be reliable and
correct (error counts tend to reduce over time [7]), it is
hoped that their reuse will carry along the same proper-
ties. Confidence in the new system follows from thor-
ough knowledge of the principles behind the system’s
construction, accompanied by testing.

Reusing device drivers through transplantation re-
duces the overall engineering effort for constructing a
new OS, but it still involves substantial work. In [10]
Ford et al. report 12% of the OS-Kit code as glue code.

Engineering effort is necessary to extract the reused
device drivers from their source operating systems, and
to compile and link with the new operating system. The
transplant requires glue layers to handle semantic differ-
ences and interface translation.

For implementation of a glue layer that gives us con-
fidence in its reliability, intimate knowledge is required
about the functionality, interfaces, and semantics of the
reused device drivers. The authors in [2, 15, 28] all
demonstrate intimate knowledge of their source operat-
ing systems.

The problems of semantic and resource conflicts mul-
tiply as device drivers from several source operating sys-
tems are transplanted into the new OS. Intimate knowl-
edge of the internals of each source operating system

2

is indispensable. Driver update tracking can necessitate
adaptation effort as well.

2.2 Dependability

The use of virtual machines to enhance reliability has
been long known [16]. A variety of other techniques for
enhancing system dependability also exist, such as safe
languages and software isolation, and are complemen-
tary to our approach. The orthogonal design provided by
our solution permits coexistence with incompatible sub-
systems and development methodologies.

User-level device driver frameworks [9, 11, 17, 20, 26,
31] are a known technique to improve dependability.
They are typically deployed in a microkernel environ-
ment. Our approach also executes the device drivers at
user level; however, we use the platform interface rather
than a specialized and potentially more efficient API.

The recent Nooks project [33] shares our goal of
retrofitting dependability enhancements in commodity
systems. Their solution isolates drivers within protection
domains, yet still executes them within the kernel with
complete privileges. Without privilege isolation, com-
plete fault isolation is not achieved, nor is detection of
malicious drivers possible.

Nooks collocates with the target kernel, adding 22,000
lines of code to the Linux kernel’s large footprint, all
privileged. The Nooks approach is similar to second gen-
eration microkernels (such as L4, EROS, or K42) in pro-
viding address space services and synchronous commu-
nication across protection domains, but it doesn’t take the
next step to deprivilege the isolation domains (and thus
exit to user-level, which is a minuscule overhead com-
pared to the cost of address space switching on IA32).

To compensate for Linux’s intricate subsystem entan-
glement, Nooks includes interposition services to main-
tain the integrity of resources shared between drivers. In
our approach, we connect drivers at a high abstraction
level—the request—and thus avoid the possibility of cor-
rupting one driver by the actions of another driver.

Like us, another contemporary project [12, 13] uses
paravirtualization for user-level device drivers, but fo-
cuses on achieving a unified device API and driver iso-
lation. Our approach specifically leaves driver interfaces
undefined and thus open for specializations and layer-
cutting optimizations. Their work argues for a set of uni-
versal common-denominator interfaces per device class.

3 Approach

The traditional approach to device driver construction
favors intimate relationships between the drivers and
their kernel environments, interfering with easy reuse of

drivers. On the other hand, applications in the same en-
vironments interface with their kernels via well defined
APIs, permitting redeployment on similar kernels. Ap-
plications enjoy the benefits of orthogonal design.

To achieve reuse of device drivers from a wide selec-
tion of operating systems, we classify drivers as applica-
tions subject to orthogonal design, based on the follow-
ing principles:

Resource delegation: The driver receives only bulk re-
sources, such as memory at page granularity. The
responsibility to further refine the bulk resources
lies on the device driver. The device driver converts
its memory into linked lists and hash tables, it man-
ages its stack layout to support reentrant interrupts,
and divides its CPU time between its threads.

Separation of name spaces: The device driver exe-
cutes within its own address space. This require-
ment avoids naming conflicts between driver in-
stances, and helps prevent faulty accesses to other
memory.

Separation of privilege: Like applications, the device
driver executes in unprivileged mode. It is unable to
interfere with other OS components via privileged
instructions.

Secure isolation: The device driver lacks access to the
memory of non-trusting components. Likewise, the
device driver is unable to affect the flow of execu-
tion in non-trusting components. These same prop-
erties also protect the device driver from the other
system components. When non-trusting compo-
nents share memory with the drivers, they are ex-
pected to protect their internal integrity; sensitive
information is not stored on shared pages, or when
it is, shadow copies are maintained in protected ar-
eas of the clients [14].

Common API: The driver allocates resources and con-
trols devices with an API common to all device
drivers. The API is well documented, well under-
stood, powerfully expressive, and relatively static.

Most legacy device drivers in their native state violate
these orthogonal design principles. They use internal in-
terfaces of their native operating systems, expect refined
resources, execute privileged instructions, and share a
global address space. Their native operating systems par-
tially satisfy our requirements. Operating systems pro-
vide resource delegation and refinement, and use a com-
mon API–the system’s instruction set and platform ar-
chitecture. By running the OS with the device driver in a
virtual machine, we satisfy all of the principles and thus
achieve orthogonal design.

3

3.1 Architecture

To reuse and isolate a device driver, we execute it and
its native OS within a virtual machine. The driver di-
rectly controls its device via a pass-through enhancement
to the virtual machine, which permits the device driver
OS (DD/OS) to access the device’s registers, ports, and
receive hardware interrupts. The VM, however, inhibits
the DD/OS from seeing and accessing devices which be-
long to other VMs.

The driver is reused by a client, which is any process
in the system external to the VM, at a privileged or user
level. The client interfaces with the driver via a transla-
tion module added to the device driver’s OS. This mod-
ule behaves as a server in a client-server model. It maps
client requests into sequences of DD/OS primitives for
accessing the device, and converts completed requests
into appropriate responses to the client.

The translation module controls the DD/OS at one
of several layers of abstraction: potentially the user-
level API of the DD/OS (e.g., file access to emulate a
raw disk), raw device access from user level (e.g., raw
sockets), abstracted kernel module interfaces such as the
buffer cache, or the kernel primitives of the device drivers
in the DD/OS. It is important to choose the correct ab-
straction layer to achieve the full advantages of our de-
vice driver reuse approach; it enables a single transla-
tion module to reuse a wide variety of devices, hopefully
without a serious performance penalty. For example, a
translation module that interfaces with the block layer
can reuse hard disks, floppy disks, optical media, etc., as
opposed to reusing only a single device driver.

To isolate device drivers from each other, we execute
the drivers in separate and co-existing virtual machines.
This also enables simultaneous reuse of drivers from in-
compatible operating systems. When an isolated driver
relies on another (e.g., a device needs bus services), then
the two DD/OS’s are assembled into a client-server rela-
tionship. See Figure 1 for a diagram of the architecture.

The requirement for a complete virtual machine im-
plementation is avoidable by substituting a paravirtual-
ized DD/OS for the unmodified DD/OS. In the paravirtu-
alized model [3,16], the device driver’s OS is modified to
interface directly with the underlying system. However,
most importantly, the device drivers in general remain
unmodified; they only need to be recompiled.

3.2 Virtual Machine Environment

In our virtualization architecture we differentiate be-
tween five entities:

• The hypervisor is the privileged kernel, which se-
curely multiplexes the processor between the virtual

DD/OSDD/OS
mapper

DD/OSDD/OS
mapper

DD/OSDD/OS
mapper

PCI

PCI

PCI

clientclient

network
subsystem

block
subsystem

kernel extensions
reused drivers

Figure 1: Device driver reuse and isolation. The kernel exten-
sions represent the components loaded into the DD/OS’s to co-
ordinate device driver reuse. The block and network DD/OS’s
recursively use the PCI DD/OS.

machines. It runs in privileged mode and enforces
protection for memory and IO ports.

• The virtual machine monitor (VMM) allocates and
manages resources and implements the virtualiza-
tion layer, such as translating access faults into de-
vice emulations. The VMM can be either collocated
with the hypervisor in privileged mode or unprivi-
leged and interacting with the hypervisor through a
specialized interface.

• Device driver OS’s host unmodified legacy device
drivers and have pass-through access to the device.
They control the device via either port IO or mem-
ory mapped IO and can initiate DMA. However, the
VMM restricts access to only those devices that are
managed by each particular DD/OS.

• Clients use device services exported by the
DD/OS’s, in a traditional client-server scenario. Re-
cursive usage of driver OS’s is possible; i.e. a client
can act as a DD/OS for another client. The client
could be the hypervisor itself.

• Translation modules are added to DD/OS’s to pro-
vide device services to the clients. They provide the
interface for the client-to-DD/OS communication,
and map client requests into DD/OS primitives.

The hypervisor features a low-overhead communica-
tion mechanism for inter-virtual-machine communica-
tion. For message notification, each VM can raise a com-
munication interrupt in another VM and thereby signal a
pending request. Similarly, on request completion the
DD/OS can raise a completion interrupt in the client OS.

The hypervisor provides a mechanism to share mem-
ory between multiple virtual machines. The VMM can

4

register memory areas of one VM in another VM’s phys-
ical memory space, similarly to memory-mapped device
drivers.

3.3 Client Requests

To provide access to its devices, the driver OS exports a
virtual device interface that can be accessed by the client.
The interface for client-to-DD/OS device communica-
tion is not defined by the hypervisor or the VMM but
rather left to the specific translation module implementa-
tion. This allows for optimizations such as virtual inter-
rupt coalescing, scatter-gather copying, shared buffers,
and producer-consumer rings as used in Xen [3].

The translation module makes one or more memory
pages accessible to the client OS and uses interrupts for
signalling, subject to the particular interface and request
requirements. This is very similar to interaction with real
hardware devices. When the client signals the DD/OS,
the VMM injects a virtual interrupt to cause invocation
of the translation module. When the translation module
signals the client in response, it invokes a method of the
VMM, which can be implemented as a trap due to a spe-
cific privileged instruction, due to an access to an IO port,
or due to a memory access.

3.4 Enhancing Dependability

Commodity operating systems continue to employ sys-
tem construction techniques that favor performance over
dependability [29]. If their authors intend to improve
system dependability, they face the challenge of enhanc-
ing the large existing device driver base, potentially with-
out source code access to all drivers.

Our architecture improves system availability and re-
liability, while avoiding modifications to the device
drivers, via driver isolation within virtual machines. The
VM provides a hardware protection domain, deprivileges
the driver, and inhibits its access to the remainder of the
system (while also protecting the driver from the rest of
the system). The use of the virtual machine supports to-
day’s systems and is practical in that it avoids a large
engineering effort.

The device driver isolation helps to improve reliabil-
ity by preventing fault propagation between independent
components. It improves driver availability by support-
ing fine grained driver restart (virtual machine reboot).
Improved driver availability leads to increased system
reliability when clients of the drivers promote fault con-
tainment. Proactive restart of drivers, to reset latent er-
rors or to upgrade drivers, reduces dependence on recur-
sive fault containment, thus helping to improve overall
system reliability.

The DD/OS solution supports a continuum of configu-
rations for device driver isolation, from individual driver
isolation within dedicated VMs to grouping of all drivers
within a single VM. Grouping drivers within the same
DD/OS reduces the availability of the DD/OS to that of
the least stable driver (if not further). Even with driver
grouping, the system enjoys the benefits of fault isola-
tion and driver restart.

Driver restart is a response to one of two event types:
asynchronous (e.g., in response to fault detection [33], or
in response to a malicious driver), or synchronous (e.g.,
live upgrades [23] or proactive restart [5]). The reboot
response to driver failure returns the driver to a known
good state: its initial state. The synchronous variant has
the advantage of being able to quiesce the DD/OS prior
to rebooting, and to negotiate with clients to complete
sensitive tasks. Our solution permits restart of any driver
via a VM reboot. However, drivers that rely on a hard-
ware reset to reinitialize their devices may not be able to
recover their devices.

The interface between the DD/OS and its clients pro-
vides a natural layer of indirection to handle the disconti-
nuity in service due to restarts. The indirection captures
accesses to a restarting driver. The access is either de-
layed until the connection is transparently restarted [23]
(requiring the DD/OS or the VMM to preserve canonical
cached client state across the restart), or reflected back to
the client as a fault.

4 Virtualization Issues

The isolation of the DD/OS via a virtual machine in-
troduces several issues: the DD/OS consumes resources
beyond those that a device driver requires, it performs
DMA operations, and it can violate the special timing
needs of physical hardware. Likewise, legacy operating
systems are not designed to collaborate with other oper-
ating systems to control the devices within the system.
This section presents solutions to these issues.

4.1 DMA Address Translation

DMA operates on physical addresses of the machine.
In a VM, memory addresses are subject to another ad-
dress translation: from guest physical to host physical
addresses. Since devices are not subject to TLB ad-
dress translation, DMA addresses calculated inside the
VM and fed to a hardware device reference incorrect host
memory addresses.

Virtual machine monitors usually run device drivers
at kernel privilege level [3, 21, 35]. The VMM exports
virtual hardware devices to the VM, which may or may
not resemble the real hardware in the system. On device
access the monitor intercepts and translates requests and

5

DMA addresses to the machine’s real hardware. Since
all hardware accesses including DMA requests are inter-
cepted, the VM is confined to its compartment.

When giving a VM unrestricted access to DMA-
capable devices, the VM-to-host memory translation has
to either be incorporated into all device requests or the
DMA address translation has to be preserved. The par-
ticular approach depends on available hardware features
and the virtualization method (full virtualization vs. par-
avirtualization).

In a paravirtualized environment the DD/OS can incor-
porate the VMM page mappings into the DMA address
translation. For the Linux kernel this requires modifica-
tion to only a few functions. The hypervisor also has to
support an interface for querying and pinning the VM’s
memory translations.

When DMA address translation functions can’t be
overridden, the DD/OS’s have to be mapped idempo-
tently to physical memory. Apparently, this would re-
strict the system to a single DD/OS instance. But by
borrowing ideas from single-address-space OS’s we can
overcome this restriction under certain circumstances. In
many cases device drivers only issue DMA operations
on dynamically allocated memory, such as the heap or
page pool. Hence, only those pages require the restric-
tion of being mapped idempotently. Using a memory
balloon driver [36], pages can be reclaimed for use in
other DD/OS’s, effectively sharing DMA-capable pages
between all DD/OS’s (see Figure 2).

DMA from static data pages, such as microcode for
SCSI controllers, further requires idempotent mapping of
data pages. However, dynamic driver instantiation usu-
ally places drivers into memory allocated from the page
pool anyway. Alternatively, one DD/OS can run com-
pletely unrelocated; multiple instances of the same OS
can potentially share the read-only parts.

It is important to note that all solutions assume well-
behaving DD/OS’s. Without special hardware support,
DD/OS’s can still bypass memory protection by perform-
ing DMA to physical memory outside their compart-
ments.

4.2 DMA and Trust

Code with unrestricted access to DMA-capable hard-
ware devices can circumvent standard memory protec-
tion mechanisms. A malicious driver can potentially el-
evate its privileges by using DMA to replace hypervisor
code or data. In any system without explicit hardware
support to restrict DMA accesses, we have to consider
device drivers as part of the trusted computing base.

Isolating device drivers in separate virtual machines
can still be beneficial. Nooks [33] only offers very weak
protection by leaving device drivers fully privileged, but

VM 0

VM 1

Physical
machine

Mem
balloon

Mem
balloon

mapped idempotent to VMs,
DMA-able

OS heap and page pool

Figure 2: DMA memory allocation for two VMs. The balloon
driver enables reallocation of the memory.

still reports a successful recovery rate of 99% for synthet-
ically injected driver bugs. The fundamental assumption
is that device drivers may fault, but are not malicious.

We differentiate between three trust scenarios. In the
first scenario only the client of the DD/OS is untrusted.
In the second case both the client as well as the DD/OS
are untrusted by the hypervisor. In the third scenario the
client and DD/OS also distrust each other. Note that the
latter two cases can only be enforced with DMA restric-
tions as described in the next section.

During a DMA operation, page translations targeted
by DMA have to stay constant. If the DD/OS’s mem-
ory is not statically allocated it has to explicitly pin the
memory. When the DD/OS initiates DMA in or out of the
client’s memory to eliminate copying overhead, it must
pin that memory as well. In the case that the DD/OS
is untrusted, the hypervisor has to enable DMA permis-
sions to the memory and to ensure that the DD/OS can-
not run denial-of-service attacks by pinning excessive
amounts of physical memory.

When the DD/OS and client distrust each other, fur-
ther provisions are required. If the DD/OS gets charged
for pinning memory, a malicious client could run a DoS
attack against the driver. A similar attack by the DD/OS
against the client is possible when the DD/OS performs
the pinning on behalf of the client. The solution is a co-
operative approach with both untrusted parties involved.
The client performs the pin operation on its own memory,
which eliminates a potential DoS attack by the DD/OS.
Then, the DD/OS validates with the hypervisor that the
pages are sufficiently pinned. By using time-bound pin-
ning [27] guaranteed by the hypervisor, the DD/OS can
safely perform the DMA operation.

Page translations also have to stay pinned during a VM
restart, since a faulting DD/OS may leave a device ac-
tively using DMA. All potentially targeted memory thus
cannot be reclaimed until the VMM is sure that outstand-
ing DMA operations have either completed or aborted.

6

Likewise, client OS’s must not use memory handed out
to the faulted DD/OS until its restart has completed.

4.3 IO-MMU and IO Contexts

The IO-MMU, initially designed to overcome the 32-bit
address limitation for DMA in 64-bit systems, enables
remapping bus addresses to host addresses at page granu-
larity. IO-MMUs are, amongst others, available in AMD
Opteron [1], Alpha 21172 [8], and HP Itanium systems
[22]. They can be used to enforce access permissions for
DMA operations and to translate DMA addresses. Thus,
DD/OS’s can be fully hardware-isolated from the VMM
and other VMs, removing device drivers from the trusted
computing base [24].

Tailored towards monolithic OS designs, IO-MMUs
usually don’t support multiple address contexts, such as
per device, per slot, or per bus translations. The con-
flicting sets of virtual to physical mappings of isolated
device drivers prevent simultaneous use of these IO-
MMUs. We emulate multiple IO address contexts by
time-multiplexing the IO-MMU between PCI devices.
Resembling task scheduling, we periodically schedule
IO-MMU contexts and enable bus access for only those
devices that are associated with the active context.

The PCI specification [30] does not define a maximum
access latency to the PCI bus, but only requires fair arbi-
tration preventing deadlocks. Devices therefore have to
be designed for potentially long bus access latencies—up
to multiple milliseconds—which makes a coarse-grained
scheduling approach feasible. The scheduling period has
to be within the bounds of each device’s timing toler-
ances; the particular handling of timeouts is specific to
the device class. For example network cards simply start
dropping packets when the card’s internal buffers over-
flow, whereas the IDE DMA controller signals an error
condition.2

A downside of time multiplexing is that the average
available bus bandwidth for a device decreases and deliv-
ery latency increases. Benchmarks with a gigabit Ether-
net NIC show a throughput decrease that is proportional
to the allocated bus share. We further reduce the impact

2IO-MMU time multiplexing is not fully transparent for all device
classes. For example, the IDE DMA controller in our experimental
AMD Opteron system requires dedicated handling. The IDE con-
troller’s behavior changes based on its DMA state: DMA startup or
in-progress DMA. For DMA startup it can accept a multi-millisecond
latency until its first bus access is permitted to proceed. But if its bus
master access is rescinded for a multi-millisecond duration during an
active DMA operation, it aborts instead of retrying the operation. The
problem is that the millisecond scheduling period exceeds the device’s
latency. We therefore additionally check for in-progress DMA directly
at the IDE controller and delay the preemption until DMA completion.
However, to perform this test we need specific device knowledge—
even though it is for a whole device class—compromising the trans-
parency of our approach.

of time multiplexing by dynamically adapting bus allo-
cations based on device utilization, preferring active and
asynchronously operating devices.

The IO-MMU time multiplexing is a performance
compromise to support device driver isolation on inad-
equate hardware, and is a proof-of-concept for our reuse
and isolation goals. Future hardware solutions could
eliminate the need for time multiplexing.

4.4 Resource Consumption

Each DD/OS consumes resources that extend beyond the
inherent needs of the driver itself. The DD/OS needs a
minimum amount of memory for code and data. Fur-
thermore, each DD/OS has a certain dynamic processing
overhead for periodic timers and housekeeping, such as
page aging and cleaning. Periodic tasks in DD/OS’s lead
to cache and TLB footprints, imposing overhead on the
clients even when not using any device drivers.

Page sharing as described in [36] significantly reduces
the memory and cache footprint induced by individual
DD/OS’s. The sharing level can be very high when the
same DD/OS kernel image is used multiple times and
customized with loadable device drivers. In particular,
the steady-state cache footprint of concurrent DD/OS’s is
reduced since the same housekeeping code is executed.
It is important to note that memory sharing not only re-
duces overall memory consumption but also the cache
footprint for physically tagged caches.

The VMM can further reduce the memory consump-
tion of a VM by swapping unused pages to disk. How-
ever, this approach is infeasible for the DD/OS running
the swap device itself (and its dependency chain). Hence,
standard page swapping is permitted to all but the swap
DD/OS. When treating the DD/OS as a black box, we
cannot swap unused parts of the swap DD/OS via work-
ing set analysis. All parts of the OS must always be
in main memory to guarantee full functionality even for
rare corner cases.

Besides memory sharing and swapping, we use three
methods to further reduce the memory footprint. Firstly,
memory ballooning actively allocates memory in the
DD/OS, leading to self-paging [18, 36]. The freed mem-
ory is handed back to the VMM. Secondly, we treat zero
pages specially since they can be trivially restored. Fi-
nally, we compress [6] the remaining pages that do not
belong to the active working set and that are not safe to
swap, and uncompress them on access.

Page swapping and compression are limited to ma-
chines with DMA hardware that can fault on accesses
to unmapped pages. Otherwise, a DMA operation could
access invalid data (it must be assumed that all pages of a
DD/OS are pinned and available for DMA when treating
the DD/OS as a black box).

7

Periodic tasks like timers can create a non-negligible
steady-state runtime overhead. In some cases the re-
quirements on the runtime environment for a DD/OS
whose sole purpose is to encapsulate a device driver can
be weakened in favor of less resource consumption. For
example, a certain clock drift is acceptable for an idle
VM as long as it does not lead to malfunction of the
driver itself, allowing us to schedule OS’s less frequently
or to simply drop their timer ticks.

4.5 Timing

Time multiplexing of multiple VMs can violate timing
assumptions made in the operating system code. OS’s
assume linear time and non-interrupted execution. In-
troducing a virtual time base and slowing down the VM
only works if there is no dependence on real time. Hard-
ware devices, however, are not subject to this virtual time
base. Violating the timing assumptions of device drivers,
such as short delays using busy waiting or bound re-
sponse times, can potentially lead to malfunctioning of
the device.3

We use a scheduling heuristic to avoid preemption
within time critical sections, very similar to our approach
to lock-holder preemption avoidance described in [34].
When consecutive operations are time-bound, operating
systems usually disable preemption, for example by dis-
abling hardware interrupts. When the VMM scheduler
would preempt a virtual processor but interrupts are dis-
abled, we postpone the preemption until interrupts are
re-enabled, thereby preserving the timing assumptions of
the OS. This requires the VMM to trap the re-enable op-
eration. Hard preemption after a maximum period avoids
potential DoS attacks by malicious VMs.

4.6 Shared Hardware and Recursion

Device drivers assume exclusive access to the hardware
device. In many cases exclusiveness can be guaranteed
by partitioning the system and only giving device access
to a single DD/OS. Inherently shared resources, such as
the PCI bus and PCI configuration space, are incompat-
ible with partitioning and require shared and synchro-
nized access for multiple DD/OS’s. Following our reuse
approach, we give one DD/OS full access to the shared
device; all other DD/OS’s use driver stubs to access the
shared device. The server part in the controlling DD/OS
can then apply a fine-grained partitioning policy. For
example, our PCI DD/OS partitions devices based on a

3Busy waiting, which relies on correct calibration at boot time, is
particularly problematic when the calibration period exceeds a VM
scheduling time slice and thus reports a slower processor. A device
driver using busy waiting will then undershoot a device’s minimal tim-
ing requirements.

configuration file, but makes PCI bridges read-only ac-
cessible to all client DD/OS’s. To simplify VM device
discovery, additional virtual devices can be registered.

In a fully virtualized environment, some device drivers
cannot be replaced dynamically. Linux, for example,
does not allow substituting the PCI bus driver. In those
cases, full hardware emulation is required by the VMM.
The number of such devices is quite limited. In the case
of Linux the limitations include PCI, the interrupt con-
troller, keyboard, mouse, and real-time clock.

5 Evaluation

We implemented a driver reuse system according to the
architecture described in the prior sections, and assessed
the architecture’s performance, resource, and engineer-
ing costs. We evaluated reused drivers for the network,
disk and PCI subsystems. We limit our evaluation to a
paravirtualization environment.

To support a comparative performance analysis, we
constructed a baseline system and a device driver reuse
system that closely resemble each other. They use iden-
tical device driver code. They run the same benchmarks,
utilizing the same protocol stacks and the same OS in-
frastructure. They differ in their architectures: the base-
line uses its native device driver environment, while our
system uses the driver reuse environment and is paravir-
tualized. The baseline OS is a standard Linux operating
system. The device driver reuse system is constructed
from a set of paravirtualized Linux OS’s configured as
DD/OS components and client components. The client
OS communicates with the reused device drivers via spe-
cial kernel modules installed into the client OS.

5.1 Virtualization Environment

The paravirtualization environment is based on the L4
microkernel [25]. L4 serves as a small privileged-mode
hypervisor. It offers minimal abstractions and mecha-
nisms to support isolation and communication for the
virtual machines. Fewer than 13,000 lines of code run
privileged.

The DD/OS and the client OS are provided by two dif-
ferent generations of the Linux kernel: versions 2.4.22
and 2.6.8.1. The 2.4 kernel was ported to the L4 envi-
ronment in the tradition of the original L4Linux adapta-
tion [19]. In contrast, we used a very lightweight adapta-
tion of the 2.6 kernel to L4, with roughly 3000 additional
lines of code (and only 450 lines intrusive). The par-
avirtualized Linux kernels use L4 mechanisms to receive
interrupts, to schedule, to manage application memory,
and to handle application system calls and exceptions.

The VMM, a user-level L4 task, coordinates resources

8

such as memory, device mappings, and I/O port map-
pings for the DD/OS instances and the client OS.

All components communicate via L4 mechanisms.
These mechanisms include the ability to establish shared
pages, perform high-speed IPC, and to efficiently copy
memory between address spaces. The mechanisms are
coordinated by object interfaces defined in a high-level
IDL, which are converted to optimized inlined assembler
with an IDL compiler.

5.2 Translation Modules

For efficient data transfer, the client and DD/OS com-
municate enough information to support DMA directly
from the client’s pages via a shared producer-consumer
command ring. In a typical sequence, the client adds de-
vice commands to the ring and activates the DD/OS via a
virtual interrupt, and then the DD/OS services the com-
mand. Before performing the device DMA operation, the
DD/OS validates the legality of the client’s addresses and
the client’s pinning privileges.

The DD/OS does not generate virtual addresses for the
client’s pages; Linux device drivers are designed to sup-
port DMA operations on pages that are not addressable
within the Linux kernel’s virtual address space (by de-
fault, Linux can only address about 940MB of memory
in its kernel space). The Linux drivers refer to pages in-
directly via a page map. To leverage Linux’s page map,
we configure Linux with knowledge of all physical pages
on the machine, but reserved from use (any attempts to
access memory outside the DD/OS’s VM causes page
permission faults), and then convert client request ad-
dresses into page map offsets. In case a driver or subsys-
tem places restrictions on acceptable addresses, it may
be necessary to first copy the data.

Disk Interface The disk interface communicates with
Linux’s block layer, and is added to the DD/OS as a ker-
nel module. It converts client disk operations into Linux
block requests, and injects the block requests into the
Linux kernel. Linux invokes the translation layer upon
completion of the requests via a callback associated with
each request. The block layer additionally supports the
ability for the DD/OS to process requests out-of-order.
The client and DD/OS share a set of request ID’s to iden-
tify the reordered commands.

Network Interface The network interface has the ad-
ditional feature of asynchronous inbound packet deliv-
ery. We developed our system to support multiple clients,
and thus the DD/OS accepts the inbound packets into its
own memory for demultiplexing. While outbound pack-
ets are transmitted from the client via DMA, inbound
packets are securely copied from the DD/OS to the client

by the L4 microkernel, thus protecting the client memory
from the DD/OS (and requires agreement from the client
to receive the packets). The L4 kernel creates tempo-
rary CPU-local memory mappings, within the L4 kernel
space, to achieve an optimized copy.

The translation layer is added to the DD/OS as a de-
vice driver module. It represents itself to the DD/OS as
a Linux network device, attached to a virtual intercon-
nect. But it doesn’t behave as a standard network device;
instead it appends outbound packets directly to the real
adapter’s kernel packet queue (in the manner of network
filters), where they are automatically rate controlled via
the real device’s driver feedback to the Linux kernel.

To participate directly on the physical network, the
translation layer accepts inbound packets using the Linux
ISO layer-two bridging module hook. The translation
layer queues the packets to the appropriate client OS, and
eventually copies to the client.4

PCI Interface When the PCI driver is isolated, it helps
the other DD/OS instances discover their appropriate de-
vices on the bus, and restricts device access to only the
appropriate DD/OS instances.

The PCI interface is not performance critical. We for-
ward all client PCI configuration-space read and write re-
quests to the PCI DD/OS. It will perform write requests
only for authorized clients. For read requests, it pro-
vides accurate information to the device’s DD/OS, and
contrived information to other clients.

We execute the PCI DD/OS at a lower priority than all
other system components. With no timing requirements,
it can tolerate severe clock drift.

5.3 Resource Consumption

For memory, we measured the active and steady-state
page working set sizes of DD/OS instances, and consid-
ered the effect of page sharing and memory compression
for all pages allocated to the DD/OS instances. For CPU,
we focused on the idle cycle consumption (later sections
explore the CPU costs of active workloads).

To avoid unnecessary resource consumption in the
DD/OS, we configured the Linux kernel, via its build
configuration, to include only the device drivers and
functionality essential to handle the devices intended to
be used in the benchmarks. The runtime environment of
each DD/OS is a tiny ROM image which initializes into
a single-user mode with almost no application presence.

4An alternative to packet copying, page remapping, has a pro-
hibitively expensive TLB flush penalty on SMPs when maintaining
TLB coherence. A future alternative is to use a spare hyperthread to
copy the packets. If the network DD/OS has only a single client, then
the client can provide the pages backing the inbound packets, avoiding
the copy.

9

0

500

1000

1500

2000

2500

0 5 10 15
Time (s)

KB
TTCP receive

TTCP send

kernel untar

steady state

Figure 3: 90ms aggregate samples of Linux 2.6.8.1 DD/OS
memory working sets when idle and for various disk and net-
work benchmarks.

The data was collected while using Linux 2.6.8.1. The
numbers are generally similar for Linux 2.4.22.

Working Set Figure 3 is a plot of memory page work-
ing sets of disk and network DD/OS’s, where each sam-
ple covers 90ms of events. The “steady state” graph
shows the inherent fixed cost of an idle DD/OS, usually
around 144KB, with a housekeeping spike about every
two seconds. The remaining graphs provide an idea of
working set sizes during activity. The “ttcp receive” and
“ttcp send” tests show the working set sizes during in-
tense network activity. The “untar” test shows the work-
ing set response to the process of unarchiving a Linux
kernel source tree to disk. The worst-case working set
size reaches 2200KB, corresponding to high network ac-
tivity. Our configuration is susceptible to a large work-
ing set for network activity because the DD/OS buffers
incoming packets within its own memory. However, due
to Linux’s reuse of packet buffers the DD/OS working
set size remains bounded.

Memory Compression To test the possibility of shar-
ing and compressing the pages that back the DD/OS in-
stances, we performed an offline analysis of a snapshot
of a particular DD/OS configuration. The tested configu-
ration included three DD/OS instances, one each for PCI,
IDE, and the Intel e1000 gigabit. The PCI VM was con-
figured with 12MB and the others with 20MB memory
each. We ran the PostMark benchmark stressing a VM
with Linux 2.6 serving files via NFS from the local IDE
disk over the network. The active memory working set
for all DD/OS’s was 2.5MB.

For systems without an IO-MMU, the memory con-
sumption can only be reduced by cooperative memory
ballooning [36]. With the balloon driver in the DD/OS’s
we can reclaim 33% of the memory.

0 10 20 30 40 50 60

compr. + shared (4)
(IO-MMU read/write)

compressed (3)
(IO-MMU no access)

mem ballooning (2)

base consumption (1)

Memory consumption (in MB)

compressable

comp. duplicates

active

active duplicates

zero

balloon

Figure 4: (1) Combined memory consumption of disk, net-
work, and PCI DD/OS’s with 20MB, 20MB, and 12MB VMs,
(2) after memory ballooning, (3) with memory compression,
and (4) memory compression and sharing.

Using an IO-MMU that can recover from page faults,
we can revoke page access rights and compress memory
that is not part of the active working set. Support of read-
only page access rights by the IO-MMUs furthermore
enables sharing of identical pages of the active working
set via copy-on-write. We searched for duplicate pages
among the three DD/OS instances. Any duplicate page is
shareable whether it is in an active working set or not. A
page in any DD/OS instance is additionally upgraded to
an active page if it has a duplicate in any working set, to
avoid having a compressed as well as an uncompressed
copy. Finally, the IO-MMU enables us to reclaim all zero
pages uncooperatively. For the given setup, up to 89%
of the allocated memory can be reclaimed, reducing the
overall memory footprint of three concurrent DD/OS’s to
6MB (see Figure 4).

Without an IO-MMU, gray-box knowledge enables
DD/OS paging. For example, the memory of Linux’s
page map is never used for a DMA operation, and is thus
pageable. Furthermore, the network and block DD/OS
each had a contiguous 6.9 MB identical region in their
page maps, suitable for sharing.

CPU Utilization The steady state of a DD/OS has an
inherent CPU utilization cost, not just influenced by in-
ternal activities, but also by the number of DD/OS’s in
the system. We measured the DD/OS CPU utilization
response to additional DD/OS instances; the first eight
DD/OS’s each consume 0.12% of the CPU, and then the
ninth consumes 0.15%, and the tenth consumes 0.23%
(see Figure 5).

The DD/OS’s were idle with no device activity. Only
the first DD/OS was attached to a device—the PCI bus.
The others contained a single device driver (the e1000).

The machine was a Pentium 4 2.8 GHz with a 1MB
L2 cache, which can almost fit the steady-state memory
working sets of seven DD/OS instances (at 144KB each,
see Figure 3). The L2 cache miss rate began to rapidly
rise with the eighth DD/OS, leading to an inflection in
the CPU utilization curve.

10

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 2 4 6 8 10

P
er

ce
nt

 C
P

U
 u

til
iz

at
io

n

Number of DD/OS instances

Figure 5: Incremental CPU utilization for additional steady-
state DD/OS instances, representing the fixed cost of executing
a DD/OS.

5.4 Performance

A set of benchmarks allowed us to explore the perfor-
mance costs of the DD/OS approach to device driver
reuse, stressing one driver at a time, and then using net-
work and disk drivers together. The networking bench-
marks were selected to help provide a point of compari-
son with recent literature.

We executed our benchmarks with two device driver
reuse scenarios: (1) with all drivers consolidated in a
single DD/OS, and (2) with the devices isolated in dedi-
cated DD/OS instances. For a baseline, the benchmarks
are also executed within the original, native device driver
environment.

The benchmark OS ran Debian Sarge with the Linux
2.6 kernels, constrained to 768MB. When using the
Linux 2.4 kernels, performance numbers were very sim-
ilar. The hardware used in the test system was a Pentium
4 2.8 GHz processor, with an Intel 82540 gigabit network
PCI card, and a desktop SATA disk (Maxtor 6Y120M0).

TTCP Figure 6 presents the throughput of the TTCP
benchmark relative to the native throughput, using two
packet sizes. Throughput at the 1500-byte packet size
remains within 3% of native, and drops to 8% of na-
tive for 500-byte packets. Linux performs the packet
sizing within the kernel, rather than within TTCP, via
use of Linux’s maximum transmission unit (MTU) pa-
rameter, avoiding a per-packet address space transition.
The CPU utilization relative to native Linux was 1.6x for
send, 2.06x for receive with 1500-byte MTU, and 2.22x
for receive with 500-byte MTU. As expected, network
receive generated a larger CPU load than network send
due to extra packet copies. TTCP was configured for a
128KB socket buffer size.

��� �

��� �

��� �

��� �

��� �

��� � 	�
� �����
� 	
���
� �

�������
����� �����

!#"%$

&�(')� *,+�+ �
�
++ �
�

�������
�����-�.�����

!/"%$

�
*)� '
�
')� �
�
'.� �

0 ��1.��2 3.�
�����4�����

!#"%$

+ ')� 	 + '.� 	 + '.�

0 ��1��52 3)�
�����6�)�����

!#"7$89 :
; <
=9
> <? :
@A B
?C D
@?
;EB
?C D
@F
C E <
G

Figure 6: Normalized TTCP throughput results for native
Linux (N), consolidated (C), and isolated (I) DD/OS’s. Ab-
solute throughput given in MB/s.

Netperf The Netperf benchmark confirmed the TTCP
MTU 1500 results; throughput with driver reuse re-
mained within 3% of native, with 1.6x CPU utilization
for sending, and up to 2.03x CPU utilization for receiv-
ing. The native throughput was 98.5 MB/s. A substan-
tial increase in TLB and L2 cache misses led to higher
CPU utilization. These misses are inherent to our test-
platform; the Pentium 4 flushes TLBs and L1 caches on
every context switch between the client and DD/OS. The
Netperf benchmark transfered one gigabyte, with a 32KB
send and receive size, and a 256KB socket buffer size.

Disk Figure 7 presents the results of our streaming disk
benchmark for the isolated DD/OS’s (consolidated re-
sults are identical). The benchmark highlights the over-
head of our solution, as opposed to masking it with
random-access disk latency. The benchmark bypasses
the client’s buffer cache (using a Linux raw device) and
file system (by directly accessing the disk partition). We
thus avoid timing the behavior of the file system. Native
throughput averaged 50.75 MB/s with a standard devia-
tion of 0.46 MB/s. For driver reuse, the throughput was
nearly identical and the difference less than half the stan-
dard deviation, with CPU utilization ranging from 1.2x
to 1.9x native.

Application-Level We studied application-level per-
formance with the PostMark benchmark, run over NFS.
This benchmark emulates the file transaction behavior of
an Internet electronic mail server, and in our scenario, the
file storage is provided by an NFS server machine. The
benchmark itself executes on a client machine. The NFS
server used our driver reuse framework, and was config-
ured as in the microbenchmarks. The client had a 1.4
GHz Pentium 4, 256MB memory, a 64MB Debian RAM
disk, an Intel 82540 gigabit Ethernet PCI card, and exe-
cuted a native Linux 2.6.8.1 kernel. The performance of

11

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0.5 1 2 4 8 16 32 64

M
et

ric
 r

el
at

iv
e

to
 n

at
iv

e

System call block size (KB) for readv() and writev()

Write CPU utilization
Read CPU utilization

Write throughput
Read throughput

Figure 7: Throughput and CPU use relative to native Linux
for disk streaming read and write.

0%

10%

20%

30%

40%

50%

 0 50 100 150 200 250 300 350

C
P

U
 u

til
iz

at
io

n

Time (s)

Isolated
Consolidated

Native

Figure 8: CPU utilization for the NFS server machine while
handling the PostMark benchmark.

the NFS server was nearly identical for all driver sce-
narios, for native Linux and for driver reuse, with an
average runtime of 343.4 seconds. The standard devi-
ation, 2.4%, was over twice the loss in performance for
driver reuse. Both the isolated and consolidated driver
reuse configurations had higher CPU utilization than na-
tive Linux; see Figure 8 for CPU utilization traces of the
NFS server machine covering the duration of the bench-
mark. The benchmark starts with a large CPU spike due
to file creation. Postmark was configured for file sizes
ranging from 500-bytes to 1MB, a working set of 1000
files, and 10000 file transactions.

5.5 IO-MMU

We used a 1.6 GHz AMD Opteron system with an AMD
8111 chipset to evaluate IO-MMU time multiplexing.
The chipset’s graphics aperture relocation table mech-
anism relocates up to 2GB of the 4GB DMA space at
a 4KB granularity [1]. The chipset only supports read-
write and no-access permissions.

Each virtual machine running a DD/OS has a dedi-
cated IO-MMU page table which is synchronized with

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 2 4 6 8 10 12 14 16

N
et

w
or

k
ba

nd
w

id
th

 (
M

bs
)

IDE IO-MMU scheduling time slice (ms)

8ms NIC time slice
4ms NIC time slice
2ms NIC time slice
1ms NIC time slice

Figure 9: Network bandwidth in response to various IO-MMU
context scheduling rates.

the guest-physical-to-host-physical mappings of the VM.
When clients grant the DD/OS access to parts of their
memory, appropriate entries are added to the IO-MMU
page table as well.

The VMM connects the managed PCI devices of each
DD/OS with their respective IO-MMU contexts. Peri-
odically, but independent of the processor scheduler, we
switch between the IO contexts. On context switch, the
hypervisor enables and disables bus master access in the
PCI configuration space for the respective devices. Our
shortest scheduling granularity of 1ms is limited by the
frequency of the periodic timer.

We evaluated the performance and overhead of
scheduling IO-MMU contexts, as well as the bounds of
the scheduling period for hardware devices. The test sys-
tem contained two DD/OS’s, one driving an Intel e1000
gigabit Ethernet adapter and the other handling the IDE
disk controller.

First, and most importantly, we can completely iso-
late the physical memory covered by the IO-MMU and
transparently relocate both VMs. Neither VM is able to
perform DMA to memory outside its compartment. We
ran the TTCP benchmark and varied the bus allocation
for the NIC and disk controller. The network throughput
scaled almost linearly with the bus allocation. The NIC
started dropping packets when it lost access to the bus
for more than 8ms. Figure 9 shows the achieved network
bandwidth for various scheduling configurations.

The IDE controller is less bandwidth-sensitive since
the throughput is bounded by disk latency. However, our
scheduling granularity of 1ms exceeds the timeout for
in-progress transactions. When disabling bus master we
therefore postpone IDE deactivation when operations are
still in-flight. The overhead for IO-MMU context switch-
ing was a 1% increase in CPU utilization.

12

server client common total
network 1152 770 244 2166

block 2.4 805 659 108 1572
block 2.6 751 546 0 1297

PCI 596 209 52 857
common 0 0 620 620

total 3304 2184 1024

Figure 10: Itemization of source lines of code used to imple-
ment our evaluation environment. Common lines are counted
once.

5.6 Engineering Effort

We estimate engineering effort in man hours and in
lines of code. The translation modules and client de-
vice drivers for the block and network, along with the
user-level VMM, were written by a single student over
roughly a two month period, originally for L4Linux 2.4.
This student already had experience with Linux network
driver development for a paravirtualized Linux on L4. A
second student implemented the PCI support within one
week.

The 2.4 network translation module was easily up-
graded to serve as the translation module for Linux 2.6,
with minor changes. However the 2.4 block translation
module was mostly incompatible with 2.6’s internal API
(Linux 2.6 introduced a new block subsystem). We thus
wrote new block translation and client device drivers for
2.6. We successfully reused the 2.6 block and network
drivers with the 2.4 client, and vice versa.

See Figure 10 for an itemization of the lines of code.
The figure distinguishes between lines specific to the
translation modules added to the server, lines specific to
the virtual device drivers added to the client, and addi-
tional lines that are common (and are counted once).

The achieved code reuse ratio is 99.9% for NIC drivers
in Linux; the translation modules add 0.1% to their code
base. When we additionally include all code required for
the virtualization—the L4 microkernel, the VMM, and
the paravirtualization modifications—we still achieve a
reuse ratio of 91% just for Linux’s NIC driver base.

The engineering effort enabled us to successfully reuse
Linux device drivers with all of our tested lab hardware.
The following drivers were tested: Intel gigabit, Intel
100 Mbit, Tulip (with a variety of Tulip compatible hard-
ware), Broadcom gigabit, pcnet32, ATA and SATA IDE,
and a variety of uniprocessor and SMP chipsets for Intel
Pentium 3/4 and AMD Opteron processors.

6 Discussion and Future Work

We presented a new approach to reusing unmodified
device drivers and enhancing system dependability us-
ing virtual machines, but evaluated only a paravirtual-

ized implementation. Paravirtualization is an enhanced
machine API that relocates some functionality from the
guest OS to the VMM and hypervisor [16]. For example,
it permits our DD/OS instances to directly translate their
virtual addresses into bus addresses for DMA. It also pro-
vides performance benefits [3, 16] compared to use of
the real machine API. We have discussed the issues re-
lated to device driver pass-through with full virtualiza-
tion, and consider our paravirtualization implementation
to be an approximation. In terms of correctness, the pri-
mary difference relates to proper address translation for
DMA operations, which becomes irrelevant with hard-
ware device isolation (such as the IO-MMU). In terms
of performance, the paravirtualization numbers underes-
timate the costs of a fully-virtualized solution.

Our system currently supports a sufficiently large sub-
set of device classes to be self-hosting in a server envi-
ronment. We have not addressed the desktop environ-
ment, which requires support for the graphics console,
USB, Firewire, etc.

Generic driver stubs only provide access to the least
common denominator, thereby hiding more advanced
hardware features. Our client-server model enables de-
vice access at any level in the software hierarchy of the
DD/OS, even allowing programming against richer OS
APIs like TWAIN, or enabling vendor-specific features
such as DVD burning. Using the appropriate software
engineering methods, e.g., an IDL compiler, one can
quickly generate cross-address-space interfaces that sup-
port APIs with rich feature sets.

7 Conclusion

Widely used operating systems support a variety of de-
vices; for example, in Linux 2.4 on IA32, 70% of 1.6 mil-
lion lines of kernel code implement device support [7].
New operating system endeavors have the choice of ei-
ther leveraging the existing device drivers, or expending
effort to replicate the driver base. We present a technique
that enables unmodified reuse of the existing driver base,
and most importantly, does so in a manner that promotes
independence of the new OS endeavor from the reused
drivers.

The driver independence provides an opportunity to
improve system dependability. The solution fortifies the
reused drivers (to the extent supported by hardware) to
promote enhanced reliability and availability (with inde-
pendent driver restart).

Our method for reusing unmodified drivers and
improving system dependability via virtual machines
achieves good performance. For networking, where
packetized throughput is latency-sensitive, the through-
put remains within 3–8% of the native system. The driver
isolation requires extra CPU utilization, which can be re-

13

duced with hardware acceleration (such as direct DMA
for inbound packets).

The DD/OS solution is designed for minimal engi-
neering effort, even supporting reuse of binary drivers.
The interface implementation between the new OS and
reused drivers constitutes a trivial amount of code, which
leverages the vast world of legacy drivers. Driver source
code, by design, remains unmodified.

References
[1] Advanced Micro Devices, Inc. BIOS and Kernel Developer’s

Guide for AMD Athlon 64 and AMD Opteron Processors, Apr.
2004.

[2] J. Appavoo, M. Auslander, D. DaSilva, D. Edelsohn, O. Krieger,
M. Ostrowski, et al. Utilizing Linux kernel components in K42.
Technical report, IBM Watson Research, Aug. 2002.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
et al. Xen and the art of virtualization. In Proc. of the 19th
ACM Symposium on Operating Systems Principles, Bolton Land-
ing, NY, Oct. 2003.

[4] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running com-
modity operating systems on scalable multiprocessors. In Proc.
of the 16th ACM Symposium on Operating Systems Principles,
Saint-Malo, France, Oct. 1997.

[5] G. Candea and A. Fox. Recursive restartability: Turning the re-
boot sledgehammer into a scalpel. In Eighth IEEE Workshop on
Hot Topics in Operating Systems, Schloss Elmau, Germany, May
2001.

[6] R. Cervera, T. Cortes, and Y. Becerra. Improving application
performance through swap compression. In Usenix Annual Tech-
nical Conference, Monterey, CA, June 1999.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empir-
ical study of operating system errors. In Proc. of the 18th ACM
Symposium on Operating Systems Principles, Banff, Canada,
Oct. 2001.

[8] Digital Equipment Corporation. Digital Semiconductor 21172
Core Logic Chipset, Technical Reference Manual, Apr. 1996.

[9] K. Elphinstone and S. Götz. Initial evaluation of a user-level de-
vice driver framework. In 9th Asia-Pacific Computer Systems
Architecture Conference, Beijing, China, Sept. 2004.

[10] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers.
The Flux OSKit: A substrate for kernel and language research. In
Proc. of the 16th ACM Symposium on Operating Systems Princi-
ples, Saint-Malo, France, Oct. 1997.

[11] A. Forin, D. Golub, and B. Bershad. An I/O system for Mach 3.0.
In Proc. of the Second USENIX Mach Symposium, Monterey, CA,
Nov. 1991.

[12] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Reconstructing I/O. Technical Report UCAM-
CL-TR-596, University of Cambridge, Computer Laboratory,
Aug. 2004.

[13] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the Xen virtual ma-
chine monitor. In 1st Workshop on Operating System and Archi-
tectural Support for the On-Demand IT Infrastructure, Boston,
MA, Oct. 2004.

[14] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone, V. Uh-
lig, et al. The SawMill multiserver approach. In 9th SIGOPS
European Workshop, Kolding, Denmark, Sept. 2000.

[15] S. Goel and D. Duchamp. Linux device driver emulation in Mach.
In USENIX Annual Technical Conference, San Diego, CA, Jan.
1996.

[16] R. P. Goldberg. Survey of virtual machine research. IEEE Com-
puter Magazine, 7(6), 1974.

[17] D. B. Golub, G. G. Sotomayor, Jr., and F. L. Rawson III. An
architecture for device drivers executing as user-level tasks. In
Proc. of the USENIX Mach III Symposium, Sante Fe, NM, Apr.
1993.

[18] S. M. Hand. Self-paging in the Nemesis operating system. In
Proc. of the 3rd Symposium on Operating Systems Design and
Implementation, New Orleans, LA, Feb. 1999.

[19] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter.
The performance of microkernel-based systems. In Proc. of the
16th ACM Symposium on Operating System Principles, Saint-
Malo, France, Oct. 1997.

[20] H. Härtig, J. Löser, F. Mehnert, L. Reuther, M. Pohlack, and
A. Warg. An I/O architecture for microkernel-based operating
systems. Technical Report TUD-FI03-08-Juli-2003, TU Dres-
den, Dresden, Germany, July 2003.

[21] J. Honeycutt. Microsoft Virtual PC 2004 Technical Overview.
Microsoft, Nov. 2003.

[22] HP Technical Computing Devision. HP zx1 mio ERS, Rev. 1.0.
Hewlett Packard, Mar. 2003.

[23] K. Hui, J. Appavoo, R. Wisniewski, M. Auslander, D. Edelsohn,
B. Gamsa, et al. Position summary: Supporting hot-swappable
components for system software. In Eighth IEEE Workshop on
Hot Topics in Operating Systems, Schloss Elmau, Germany, May
2001.

[24] B. Leslie and G. Heiser. Towards untrusted device drivers. Tech-
nical Report UNSW-CSE-TR-0303, School of Computer Science
and Engineering, UNSW, Mar. 2003.

[25] J. Liedtke. On µ-kernel construction. In Proc. of the 15th ACM
Symposium on Operating System Principles, Copper Mountain
Resort, CO, Dec. 1995.

[26] J. Liedtke, U. Bartling, U. Beyer, D. Heinrichs, R. Ruland, and
G. Szalay. Two years of experience with a µ-kernel based OS.
ACM SIGOPS Operating Systems Review, 25(2), Apr. 1991.

[27] J. Liedtke, V. Uhlig, K. Elphinstone, T. Jaeger, and Y. Park. How
to schedule unlimited memory pinning of untrusted processes, or,
provisional ideas about service-neutrality. In 7th Workshop on
Hot Topics in Operating Systems, Rio Rico, AR, Mar. 1999.

[28] K. V. Maren. The Fluke device driver framework. Master’s thesis,
University of Utah, Dec. 1999.

[29] D. A. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,
J. Cutler, et al. Recovery-Oriented Computing (ROC): Moti-
vation, definition, techniques, and case studies. Technical Re-
port UCB//CSD-02-1175, U.C. Berkely Computer Science, Mar.
2002.

[30] PCI Special Interest Group. PCI Local Bus Specification, Rev.
2.1, June 1995.

[31] D. S. Ritchie and G. W. Neufeld. User level IPC and device man-
agement in the Raven kernel. In USENIX Microkernels and Other
Kernel Architectures Symposium, San Diego, CA, Sept. 1993.

[32] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing I/O
devices on VMware Workstation’s hosted virtual machine moni-
tor. In Proc. of the 2001 USENIX Annual Technical Conference,
Boston, MA, June 2001.

[33] M. Swift, B. Bershad, and H. Levy. Improving the reliability of
commodity operating systems. In Proc. of the 19th ACM Sympo-
sium on Operating Systems Principles, Bolton Landing, NY, Oct.
2003.

[34] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. To-
wards scalable multiprocessor virtual machines. In Proc. of the
3rd Virtual Machine Research and Technology Symposium, San
Jose, CA, May 2004.

[35] VMware. VMware ESX Server I/O Adapter Compatibility Guide,
Jan. 2003.

[36] C. Waldspurger. Memory resource management in VMware ESX
Server. In Proc. of the 5th Symposium on Operating Systems
Design and Implementation, Boston, MA, Dec. 2002.

14

