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Questions like “What is the p-version of the finite 

element method, what are its advantages, why is it im-

portant?” are often asked.   

To answer these questions, first it must be under-

stood that the finite element method (FEM) is a method 

by which an approximate solution is obtained to the 

exact solution of some problem. For example, in linear 

elasticity, the solution domain, the material properties, 

the loading conditions and constraint conditions define a 

problem that has a unique exact solution uEX. A finite 

element solution uFE is an approximation to uEX. The 

quality of approximation depends on the finite element 

mesh and the polynomial degree of the elements.  

In the first implementations of the finite element 

method the polynomial degree of the elements (denoted 

by p) was fixed at a low value, typically p=1 or p=2, and 

the error of approximation was controlled by mesh re-

finement such that the size of the largest element in the 

mesh, denoted by h, was reduced.   This is the h-version 

of the finite element method. 

In later years research indicated that keeping the fi-

nite element mesh fixed and increasing the polynomial 

degree of elements, denoted by p, has important advan-

tages.  This is the p-version. Note that any implementa-

tion of the p-version can be operated in the “h-mode”, 

meaning that p can be fixed and h reduced, but the re-

verse is not true. In this sense, implementations of the h-

version are less general than those of the p-version.   

 

Quality assurance 
One of the important advantages of the p-version is 

that it makes assurance of the quality of the computed 

information more efficient and more convenient than 

the h-version.  There are various measures of quality of 

the approximate solution.  One is the energy norm 

measure.   

By definition, the energy norm is the square root of 

the strain energy.  Denoting the strain energy by U, the 

energy norm measure of the error is (U(uEX - uFE))
1/2

 

which is virtually the same as the root-mean-square 

measure of error in stresses [1].   

In engineering computations we are interested in 

data, such as the maximum normal stress, the maximum 

von Mises stress, the maximum displacement, the first 

few natural frequencies, etc.  These are numbers com-

puted from the finite element solution: Φi(uFE), i=1,2,… 

It is important to know whether Φi(uFE) is sufficiently 

close to Φi(uEX). More precisely, one would like to have 

         

     | Φi(uEX) - Φi(uFE)  | < τ|Φi(uEX)|,   i=1,2,… 

 

where τ is a tolerance.  

      Since generally we do not know uEX, this appears to 

be an unsolvable problem. We have to remember, how-

ever, that uEX is independent of the mesh and the poly-

nomial degree.  Therefore Φi(uFE) cannot be close to 

Φi(uEX) if Φi(uFE) changes significantly when the mesh 

is refined or the polynomial degree is increased. To 

show that Φi(uFE) is virtually independent of h or p, it is 

necessary to obtain a sequence of finite element solu-

tions. With the p-version this is easy to do because the 

mesh does not have to be changed.  In StresssCheck
®

 

the user needs to specify a range of p-values and the 

program automatically computes the corresponding so-

lutions [2].  Any computed data can be displayed as a 

function of the number of degrees of freedom (N).  

      Quality assurance in FEM is a process, three steps of 

which are illustrated in Fig. 1: First, the error in energy 

norm is estimated from a sequence of solutions.  This is 

a global measure of error and related the root-mean-

square error in stresses. Second, it is shown that the data 

of interest, in this case the maximum principal stress, is 

virtually independent of the number of degrees of free-

dom N.  This ensures that the local error is small.  

Third, the stress (or strain) is plotted without smoothen-

ing.  Significant jumps in the contour lines at element 

interfaces are indicators of error caused by inadequacies 

in meshing.  For further reading on QA we refer to [3].  

 

Rate of convergence 
       An important advantage of the p-version is that the 

rate of reduction of the error of approximation with re-

spect to N is faster than that of the h-version.  This is 

illustrated by a model problem of two-dimensional elas-

ticity, so constructed that the exact solution is known 

[1].  Therefore the errors of approximation can be de-

termined exactly.  

       The solution domain and the finite element meshes 

are shown in the insets in Fig. 2.  The exact solution has 

a singularity at the re-entrant corner.  The theoretical 

relationship between the error in energy norm and the 

number of degrees of freedom is given by the formula: 

 

                    (U(uEX- uFE))
1/2 
≈ kN

-β
 

Figure 1.  Illustration of rates of convergence. 

Figure 1: Illustration of QA procedures 
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where k and β are positive constants, independent of h 

and p. Plotting the error in energy norm vs. N on log-log 

scale, β is the slope of the line. It is called the rate of 

convergence.  For this problem, using uniform or nearly 

uniform meshes and p fixed at p=2, the rate of conver-

gence is β=0.272, as seen in Fig. 2.  If, on the other 

hand, we fix the mesh at h=a/2 and let p=2,3,…,8  then 

β=0.544, twice that of the h-version.   

 

          An important development in the 1980’s was that 

with proper selection of the finite element mesh, very 

fast rates of convergence can be realized. Interestingly, 

definition of a “proper mesh” for the p-version is very 

simple: Whenever singular points are present, the mesh 

should be graded in geometric progression toward the 

singular point with the common factor of approximately 

0.15.  Such a mesh is illustrated in Fig. 2.  Using this 

mesh and letting p=1,2,…,8, the error curve looks like 

an inverted S.  This is because for low p values the 

mesh is overrefined at the singular point and the pri-

mary source of error is the set of elements away from 

the singular point where uEX is smooth and hence the 

rate of convergence of the p-version is very strong. In 

fact, the theoretical rate of convergence of the p-version 

for smooth solutions is exponential [1]. For higher p-

values the source of error is the set of elements that 

have a vertex on the singular point, hence the rate of 

convergence slows to β=0.544, as before.  If we would 

keep adding layers of geometrically graded elements 

convergence would remain exponential.  This is the hp-

version of the finite element method.  However, to 

achieve levels of accuracy usually expected in engineer-

ing practice, one or two layers of geometrically graded 

elements are usually sufficient. 

      Some analysts have objected that this comparison is 

not fair because singularities do not exist in “real prob-

lems”. This objection is flawed, however:  The finite 

element method operates on the input data, not on the 

“real problem”. Sharp corners and edges may be conse-

quences of simplifications introduced in the description 

of the geometry, nevertheless they do influence the ac-

curacy of the solution.  It is the analyst’s responsibility 

to ensure that the input data are consistent with the 

goals of computation and the errors of approximation 

are within acceptable bounds.  

 

Robustness 
      Another important advantage of the p-version is that 

it is much more robust than the h-version.  In other 

words, the performance of the p-version is much less 

sensitive to input data than that of the h-version.  For 

example, if Poisson’s ratio is close to 0.5 then the h-

version exhibits a highly undesirable property, known as 

Poisson’s ratio locking. Similar problems occur when 

the thickness of a plate or shell is small.  The corre-

sponding reduction in the rate of convergence is called 

“shear locking”. The remedy has been to use “reduced 

integration” techniques, arguing that since the elements 

are “overly stiff”, one should “under-integrate” the ele-

ments, that is, use fewer integration points in the com-

putation of the stiffness matrix than necessary. This ill 

advised measure leads to other undesirable conse-

quences known as “hourglassing” or “zero energy 

modes” that are treated by various ad hoc procedures, 

making quality assurance impossible.   

        The p-version also tolerates large aspect ratio ele-

ments.  This is especially important when analyzing 

laminated composites where ply-by-ply representation 

is necessary for resolving local stress and strain distribu-

tions. Elements with large aspect ratios are also neces-

sary in finite element analyses of plate and shell prob-

lems where boundary layers are present [4], [5]. 
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Figure 2: Rates of error reduction. 


