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DRAFT72255
Aphanitic Impact Melt Breccia

461.2 grams

Figure 1:  Sawn surface of 72255,23 after first slab removed..  NASA S84-37180.  Large clast is “Civet
Cat Norite” 2 x 1.5 cm. (see also figure 17b)

Clast Population 72255
(from Stoeser et al. 1974)
Granulitic ANT breccias 31.3%
Granulitic polygonal anorthosite 6.3
Crushed anorthosite 5.2
Devitrified glass 13.8
Ultra mafic particles 1.5
Basaltic troctolite 2.2
Other basaltic particles 1.9
Granitic clasts 2.6
Civet Cat Norite 0.7
Plagioclase grains 19.3
Mafic grains 14.5
Opaque 0.7

Introduction
Lunar sample 72255 was collected from the side of a
layered boulder #1 at station 2 located on the bottom
slope of the South Massif and within the landslide
material at Apollo 17 Taurus-Littrow (Schmitt 1973,
Wolfe et al. 1981).  Samples 72215, 72235 and 72275
are from other layers in this boulder and soils 72220,
72240 and 72260 are from the fillet surrounding the
boulder (figure 1, section 72215).  The boulder had a
prominent layering with clasts weathering out as knobs.
72255 was one of these knobs and was from a distinctly
different layer than 72275 (which is otherwise vaguely
similar).

Sample 72255 is a clast-rich breccia with a layered
aphanitic matrix (figure 1).  The age of the matrix of
this rock is ~ 3.8 b.y.  It contains a large relic norite
clast (Civet Cat) with an age of ~4.08 b.y., and also
contains various small clasts of silica-rich, “granitic”

material.  It also contains numerous zircons ~ 4.2 b.y.
(Nemchin et al. 2008).

The cosmic ray exposure age of 72255 has been
determined to be about 44 Ma.
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Figure 2:  Photo of 72255 and pieces.  NASA S73-21975.  Scale is in cm.  Outcrop of “Civet Cat
Norite” is visible.  White lines are approximate trace of saw cuts for slabs.

Wolfe et al. (1981) and others interpret this boulder to
be part of the Serenitatis ejecta blanket, originally
located high up on the South Massif.  However, based
on subtle, but reproducible, differences in the ratios of
trace amounts of meteoritic siderophile elements,
Morgan et al. (1975) conclude that the samples of “this
boulder cannot represent ordinary Serenitatis ejecta”,
and may instead “represent Serenitatis material
excavated from the fringes of the crater during late
stages of the Serenitatis impact, but only slightly
shocked and hence uncontaminated by the Serenitatis
projectile”.

Petrography
Graham Ryder (1993) carefully summarized what is
known about this rock.  It was originally studied in
consortium mode by a large group of scientists led by
John Wood called “Consortium Indomitable” (Marvin
et al. 1975) – of which Graham was an original member.

Knoll and Stoffler (1979) described 72255 as having a
dark, fine-grained, equigranular crystalline matrix that
contains some areas of lighter, coarser-grained matrix.
Stoeser et al. (1974) reported that the sample was about
60% matrix and gave a lithologic mode for the clast
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Figure 3:  Edge view of 72255.  Note that one side
is freshly broken; the other is rounded with  zap pits
and patina.  Scale in cm.  NASA S73-23729.

Figure 4:  Photomicrographs of thin section
72255,108.  Top is with plane-polarized, middle is
crossed-polarized and bottom is reflected light.  NASA
S79-27771, 27772, 27770.  Field of view is 1.3 mm.

population.  Simonds et al. (1974), Spudis and Ryder
(1981), Ryder (1993) and others conclude that 72255
is an aphanitic impact-melt breccia.

Significant Clasts
Civet Cat Norite clast (~ 10 grams)
This 2 cm sized clast (figures 1 and 2) is a pristine
shocked, norite with about 40% plagioclase and 60%
orthopyroxene with minor augite lamellae (Stoeser et
al. 1975, Ryder and Norman 1979).  It has a cataclastic
texture with light and dark streaks.  Some of the
plagioclase in the light streaks is maskelynite, and the
pyroxene has “kink-bands”.  Ryder et al. (1975), Stoeser
et al. (1975) and Bersch et al. (1993) analyzed the

minerals and found that they were homogeneous
(figures 7 and 8).  The rare-earth-element pattern is
given in figure 9.  It was dated by Ar/Ar at 3.99 b.y.
(figure 11) and Rb/Sr at 4.08 b.y. (figure 14).  Based
on low siderophile element content (Morgan et al.
1975), Warren (1993) declared it “pristine” (lacking
meteoritic siderophiles).  James (1982) and James and
Flohr (1983) grouped the Civet Cat Norite with the
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Figure 5:  Chemical composition of pyroxene grains
in the matrix of 72255 (from Ryder et al. 1975 and
Stoeser et al. 1975).
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Figure 6:  Normalized rare-earth-element diagram
for matrix of 72255.  Soild line is data from Palme et
al. 1978; data in brackets is from Blanchard et al.
1975 - see table 1.

Mg-norites on the basis of both chemistry and
mineralogy.

Granite clasts
As is typical of the matrix of 72215, the matrix of 72255
also has abundant small (~25 micron to 2 mm) patches
of “granitic” material with different textures.  Typically
it is intergrown silica with Ba-rich K-spar and some
plagioclase.  Often it contains ternary feldspar.

Poikilitic Impact Melt clast
Ryder (1992) reported a fragment of poikilitic impact
melt within 72255 that was distinct in texture from the
matrix.  This clast (,287) is reported to be about 7 mm
in size, have mm sized oikocrysts of pigeonite (En82-70)
and “rather more high-Ca clinopyroxene” than the
common Apollo 17 poikilitic boulders.  Both
plagioclase chadocrysts and pyroxene oikocrysts are
said to be chemically zoned.  It was uncovered during
the cutting of the second slab and has been dated by
Dalrymple and Ryder (1996).  However, complete
description is not available.

Chemistry
The chemical composition of the matrix of 72255 was
determined by Keith et al. (1974), Fruchter et al. (1975),
Palme et al. (1978), Blanchard et al. (1975) and others
(tables 1 and 2).  It is high in Al2O3 (~20%) and the
trace element pattern is that of KREEP (figure 6).

The composition of the clasts that have been extracted
is given in Table 3 and figure 9.

Morgan et al. (1975) and Higuchi and Morgan (1975)
found that the trace meteoritic siderophile elements (Ir,
Re and Au) have different ratios for samples form this

boulder, as compared with other boulders at Apollo 17
and elsewhere.  They concluded that boulder 1, station
2 was Serenitatis ejecta, albeit strange.

Radiogenic age dating
Leich et al. (1975) determined an age of 4.01 ± 0.03
b.y. for the matrix (,52) and an age of  3.99 ± 0.03 b.y.
for the Civet Cat norite clast (,42) (figures 12 and 11).
On the other hand, Compston et al. (1975) also dated
the Civet Cat norite clast by internal Rb/Sr isochron
technique (figure 14) and obtained an age of ~ 4.08
b.y. (corrected to modern decay constant for Rb).
However, they noted a hint of “disturbance”.  Schaeffer
et al. (1982) found a wide variety of ages by Ar-Ar
laser probe analysis of small spots (mostly plagioclase).
Dalrymple and Ryder (1996) determined a number of
Ar/Ar plateaus on different lithologies (figures 13 and
15), but generally found the same result as Leich et al.
(1975).  They interpret their age for the youngest
material as the age of the Serenitatis Impact (3.84 b.y.).

Nunes et al. (1974) collected U-Pb data, but it is
difficult to interpret.  Hutcheon et al. (1974) determined
an age of a whitlockite grain (81 ppm U) of ~3.9 b.y.
by the fission track method!

Cosmogenic isotopes and exposure ages
The cosmic-ray induced activity for 72255 was
determined by Keith et al. (1974) as 22Na = 61 dpm/
kg., 26Al = 78 dpm/kg., 46Sc = 6 dpm/kg., 54Mn = 41
dpm/kg., and 56Co = 35 dpm/kg.

Leich et al. (1975) determined an exposure age of 44.1
± 3.3 m.y. from 81Kr data and 41 m.y. from 38Ar data.
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Figure 8:  Mineral compositon diagram of pristine
lunar plutonic rock fragments including Civet Cat
Norite clast from 72255 (Ryder et al 1975).
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Figure 7:  Chemical composition of pyroxene grains
in the clast called “Civet Cat Norite” (from Ryder et
al. 1975 and Stoeser et al. 1975).
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Figure 9:  Normalized rare-earth-element diagram
for clasts in 72255.  Soild line is data for matrix
from Palme et al. 1978; data in brackets is from
Blanchard et al. 1975 and Dalrymple and Ryder
1996 - see table 3.

Figure 10:  Density of cosmic ray tracks beneath
surface of 72255 (Goswami and Hutcheon 1975).

This is less than the exposure age of samples form the
top of the boulder (e.g. 72275), probably because of
shielding effects.  Arvidson et al. (1976) speculate that
this might be the age of Tycho!

Other Studies
Rare gas data for 72255 can be found in Leich et al.
(1975).  There does not seem to be a significant solar
wind component, so there is little or no ancient regolith
admixed into this boulder.

Adams and Charette (1975) determined the spectra of
72255.  Banerjee et al. (1974) and Banerjee and Swits

(1975) studied the magnetization including
paleointensity and direction.  Macdougall et al. (1974),
Hutcheon et al. (1974), Goswami and Hutcheon (1975)
and Goswami et al. (1976) have studied cosmic-ray
induced nuclear particle track densities, complicated
by shock alteration and erosion and spallation (figure
10).

Processing
The original subdivision of the first slab was well
documented by Consortium Indomitable (Vol. 1,
Appendix A).  There is additional material from the
Civet Cat Norite clast available in the second slab
(,226), but the CCN clast did not continue through the
second slab (Mosie 1985).  There are 31 thin sections
of 72255.
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Figure 13:  Ar/Ar release plateaus for granulite
clasts in 72255 (Dalrymple and Ryder 1996).

Figure 11:  Ar/Ar plateau diagram for Civet Cat
Norite clast in 72255.  The intermediate temperatue
plateau corresponds to an age of 3.99 +/- 0.03 Ga.
Leich et al. 1975.

Figure 12:  Ar/Ar plateau diagram for matrix of
72255.  Age 4.01 =/- 0.03 Ga. Leich et al. 1975.

Figure 14:  Rb/Sr isochron age of Civet Cat norite
clast from 72255.  The age recalculated with “new”
decay constant for Rb is 4.08 +/- 0.05 Ga.(Compston
et al. 1975).
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Figure 15:  Ar/Ar release pateaus for different lithologies in 72255 (from Dalrymple and Ryder 1996).

Summary of Age Data for 72255
Ar/Ar Rb/Sr tracks

Leich et al. 1975 3.99 ± 0.03 b.y. Civet Cat clast
4.01 ± 0.03 matrix

Compston et al. 1975 4.08 ± 0.05 Civet Cat clast
4.4 ? ANT clasts

Schaeffer et al. 1982 laser probe
Dalrymple and 3.862 ± 0.008 ave. 2 aphanitic “blobs”
Ryder 1996 3.883 – 3.894 2 aphanitic “blobs”

3.835 ± 0.016 poikilitic melt clast
Hutcheon et al. 1974 3.9 whitlockite
Nemchin et al. 2007 4.2 U/Pb zircons
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Table 1.  Chemical composition of 72255 (matrix).

reference Stoeser74 Morgan74 Higuchi75 Palme78 Blanchard75
weight matrix ,52 ,83 ,44 ,73 ,79 ,52 ,52 ,64 ,69 ,69
SiO2 % 45.1 (a) 46.72 (d) 44.8 45 49 45 45.1 44.7 46 (f)
TiO2 0.6 (a) 0.76 (d) 0.9 0.9 1.4 0.75 0.8 0.8 0.7 (f)
Al2O3 20 (a) 20.8 (d) 19.4 20.7 14.5 20.4 21.9 20.5 19.8 (f)
FeO 7.7 (a) 8.1 (d) 9.05 8.31 14 8.55 7.42 9.5 9.8 (e)
MnO 0.1 (a) 0.12 (d) 0.13 0.13 0.16 0.13 0.12 0.11 0.11 (f)
MgO 9.1 (a) 9.9 (d) 10.5 11.3 9.7 11.3 10.7 10.5 10.4 (f)
CaO 12.7 (a) 12.6 (d) 11.5 12 10.7 12 12.4 12.3 12.3 (f)
Na2O 0.5 (a) 0.48 (d) 0.49 0.58 0.32 0.56 0.5 0.4 0.38 (e)
K2O 0.2 (a) 0.2 (d) 0.39 0.21 0.27 0.23 0.27 0.28 0.25 (e)
P2O5 0.2 (a) 0.25 (d)
S % 0.0375 (d)
sum

Sc ppm 18.8 (e) 15.5 18.2 19.8 18.3 17.3 19.5 (e)
V
Cr
Co 24.5 (e) 2530 28.9 28 25.6 26.6 21 (e)
Ni 227 222 (c ) 150 (e) 7700 260 150 180 (e)
Cu 3 (e)
Zn 2.8 2.2 (c ) 2.43 (e)
Ga 3.66 (e)
Ge ppb 174 (c ) <100 (c )
As 0.086 (c )
Se 77 67 (c )
Rb 5.8 6.85 (c ) 4.98 (e)
Sr 151 (e)
Y 100 (e)
Zr 400 (e)
Nb 28
Mo
Ru
Rh
Pd ppb <10 (c )
Ag ppb 0.57 3.03 (c )
Cd ppb 8.1 6.8 (c ) <50 (c )
In ppb
Sn ppb
Sb ppb 0.77 1.74 (c )
Te ppb 4.7 3.3 (c )
Cs ppm 0.24 0.287 (c ) 0.18 (e)
Ba 328 (e)
La 31.7 (e) 25 31 31 35 26 43 (e)
Ce 83.3 (e) 62 79 80 94 69 95 (e)
Pr 11.1 (e)
Nd 51 (e)
Sm 12.86 (e) 11.7 15.7 15.5 16.5 13.2 20 (e)
Eu 1.39 (e) 1.26 1.45 1.49 1.44 1.32 1.76 (e)
Gd 15.6 (e)
Tb 2.83 (e) 1.9 2.8 3.8 3 2.2 4.7 (e)
Dy 17.7 (e)
Ho 4 (e)
Er 11.1 (e)
Tm 1.68 (e)
Yb 10.5 (e) 8.55 10.5 11.6 12.3 9.04 14.8 (e)
Lu 1.42 (e) 1.1 1.34 1.69 1.66 1.15 2.25 (e)
Hf 10.5 (e) 9.1 11.2 9.8 10.4 9.9 13.1 (e)
Ta 1.27 (e) 1.5 1.6 1 (e)
W ppb 630 (c )
Re ppb 0.498 0.503 (c ) 0.3 (c )
Os ppb
Ir ppb 5.28 7.01 (c )
Pt ppb
Au ppb 2 2.95 (c ) 2.6 (c )
Th ppm 4.31 (e) 6.6 5.4 5.8 4.3 (e)
U ppm 1.79 (c ) 1.41 (e)
technique:  (a) broad-beam, e-porbe, (b) fused-bead, e.probe, (c ) RNAA, (d) XRF, (e) INAA, (f) AA
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Table 2.  Chemical composition of 72255 (matrix).

reference Fruchter75 Keith74 Morgan75 Jovanovic75 Compston75 and others
weight 402 g ,83
SiO2 %
TiO2
Al2O3
FeO
MnO
MgO
CaO
Na2O
K2O 0.22 0.22 (a)
P2O5 0.25 (b)
S %
sum

Sc ppm
V
Cr
Co
Ni 222 (b)
Cu
Zn 2.2 (b)
Ga
Ge ppb
As
Se 67 (b)
Rb 6.68 (b) 15 14.6 9.8 5.7 5.8 (c )
Sr 145 142 141 137 141 (c )
Y Leich75
Zr 376 (c )
Nb
Mo
Ru >20 (b)
Rh
Pd ppb
Ag ppb 3.03 (b)
Cd ppb 6.8 (b)
In ppb
Sn ppb
Sb ppb 1.74 (b)
Te ppb 3.3 (b)
Cs ppm 0.287 (b) Liech75
Ba 324 (c )
La
Ce
Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta
W ppb
Re ppb 0.503 (b)
Os ppb 17 (b)
Ir ppb 7 (b)
Pt ppb
Au ppb 2.95 (b) Nunes et al. 1974 Leich75
Th ppm 4.8 4.4 (a) 4.22 5.72 6.36 (c )
U ppm 1.28 1.2 (a) 1.82 (b) 1 (b) 1.145 1.536 1.663 1.42 (c )
technique:  (a) radiation counting, (b) RNAA, (c ) IDMS
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Table 3.  Chemical composition of 72255 (clasts).
Morgan74

reference Dalrymple96 Wolf79 Blanchard75 Leich75 Blanchard75
weight aphanite poik. granulite granulite Civit Cat Civit Cat Civit Cat while,45 black rim,45
SiO2 % 46.1 45.1 44.3 (b) norite 52 (d) 43 46 (d)
TiO2 0.8 1.4 0.2 (b) 0.3 (d) 0.7 1.2 (d)
Al2O3 20 22.3 29 (b) 15.5 (d) 35.8 19.7 (d)
FeO 8.4 6.8 4.5 4.5 (a) 7.4 (a) 0.13 9.05 (a)
MnO 0.12 0.1 0.05 (b) 0.12 (d) 0.003 0.136 (d)
MgO 10.3 9.4 7.7 (b) 15.9 (d) 1.43 11.3 (d)
CaO 11.8 12.4 15.2 (b) 9.1 (d) 13 (a) 18.9 11.5 (d)
Na2O 0.47 0.42 0.36 0.39 (a) 0.33 (a) 0.63 0.54 (a)
K2O 0.23 0.22 0.02 0.03 (a) 0.08 (d) 0.17 (a) 0.12 0.28 (d)
P2O5
S %
sum

Sc ppm 19 14.2 5.8 6.4 (a) 13.2 (a) 0.45 20.1 (a)
V
Cr 1837 1378 714 777 (a) 1095 (a)
Co 29 16 22 22 (a) 29 (a) 0.33 24.9 (a)
Ni 181 92 274 243 (a) 4 (c ) 140 (a)
Cu
Zn 4.5 (c )
Ga
Ge ppb 61 (c )
As
Se 280 (c )
Rb 8 12 (a) 1.27 (c )
Sr 151 151 144 172 (a) 139
Y
Zr 469 215 59 100 (a) 132
Nb
Mo
Ru
Rh
Pd ppb
Ag ppb 0.76 (c )
Cd ppb 5.8 (c )
In ppb
Sn ppb
Sb ppb
Te ppb 14 (c )
Cs ppm 0.31 0.35 0.04 (a) 0.058 (c )
Ba 362 221 61 68 (a) 172
La 33.3 17.3 3.3 4 (a) 16 (a) 1.15 40.1 (a)
Ce 89.9 46.4 9.2 10.5 (a) 46 (a) 2.68 102 (a)
Pr
Nd 51.8 22.6 4.2 5.9 (a)
Sm 15.1 8 1.5 1.7 (a) 7.6 (a) 0.4 18.8 (a)
Eu 1.44 1.27 0.85 0.88 (a) 1.75 (a) 1.39 1.53 (a)
Gd
Tb 3.1 1.7 0.3 0.3 (a) 1.9 (a) 0.1 4.3 (a)
Dy
Ho
Er
Tm
Yb 10.7 6.5 1.6 1.7 (a) 6.6 (a) 0.2 14.2 (a)
Lu 1.5 0.9 0.2 0.2 (a) 1.01 (a) 0.03 1.88 (a)
Hf 11.5 6.6 1.7 1.4 (a) 5.5 (a) 14.2 (a)
Ta 1.22 0.92 0.22 0.23 (a) 1.4 (a)
W ppb
Re ppb 0.007 (c )
Os ppb
Ir ppb 4.9 3.2 11.2 12.1 (a) 0.004 (c )
Pt ppb
Au ppb 5.9 4.3 5.9 4.4 (a) 0.008 (c )
Th ppm 6 3.5 1.3 1.5 (a) 6.6 (a)
U ppm 1.89 0.92 1.27 0.33 (a) 0.24 (c ) 0.45 (a)
technique:  (a) INAA, (b) fused-bead elec. Probe, (c ) RNAA, (d) AA
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Figure 16:  Exterior surface of 72255 showing pitina with micrometeorite craters. Note position of
numbered pieces.  Cube is 1 cm.  NASA S73-16005.
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Figures 17 a and b:  Two views of both sides of  first slab (,10) cut thru 72255.  NASA S73-32647 left; S73-32648
above.  Scale is in cm.  Circle above approximately outlines “Civet Cat” norite clast.
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Figure 18:  Cutting plan for “Civet Cat” norite clast
in slab of 72255 - compare with  previous figure (from
Marvin 1974, Appendix A).
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Figure 19:  Processing photo for 72255 showing first slab and approximate
position of second slab.  NASA S73-32620.
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Figure 20:  Photo of second slab cut thru 72255.   Sample is 6 cm across.  East face.  NASA S90-48699.
Note that Civet Cat Norite clast does not extend through slab.

Table 4: 72255 U ppm Th ppm K ppm Rb ppm Sr ppm
Nunes et al. 1974 1.145 4.222

1.536 5.724
1.663 6.362

Compston et al. 1975 2.56 101.4
3.02 100.9
14.95 145.6
1.11 140.6
5.69 137
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Figure 21:  Photo and map of butt end of 72255  (Mosie 1985).  S84-41704.  Scale is metric.
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