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1. INTRODUCTION. We often model systems that change over time as functions
from the real numbers R (or a subinterval of R) into some set S of states, and it is
often our goal to predict the behavior of these systems. Generally, this requires rules
governing their behavior, such as a set of differential equations or the assumption that
the system (as a function) is analytic. With no such assumptions, the system could
be an arbitrary function, and the values of arbitrary functions are notoriously hard
to predict. After all, if someone proposed a strategy for predicting the values of an
arbitrary function based on its past values, a reasonable response might be, “That is
impossible. Given any strategy for predicting the values of an arbitrary function, one
could just define a function that diagonalizes against it: whatever the strategy predicts,
define the function to be something else.” This argument, however, makes an appeal
to induction: to diagonalize against the proposed strategy at a point t , we must have
already defined our function for all s < t in order to determine what the strategy would
predict at t . So, the argument would only be valid if R were well-ordered, but R is
emphatically not well-ordered.

In fact, the lack of well-orderedness in the reals can be exploited to produce a very
counterintuitive result: there is a strategy for predicting the values of an arbitrary func-
tion, based on its previous values, that is almost always correct. Specifically, given
the values of a function on an interval (−∞, t), the strategy produces a guess for the
values of the function on [t, ∞), and at all but countably many t , there is an ε > 0
such that the prediction is valid on [t, t + ε). Noting that any countable set of reals
has measure 0, we can restate this informally: at almost every instant t , the strategy
predicts some “ε-glimpse” of the future.

We should emphasize that these results do not give a practical means of predicting
the future, just as the time dilation one would experience standing near the event hori-
zon of a black hole does not give a practical time machine. Nevertheless, we choose
this presentation because we find it the most interesting, as well as pedagogically use-
ful. For instance, “predicting the present” is a very natural way to think of the problem
of guessing the value of f (t) based on f |(−∞, t).

2. THE μ-STRATEGY. Fix sets T and S, with |S| ≥ 2, and a binary relation � on
T . (The situation of the introduction will be the special case where (T , �) = (R, <).)

Definition 2.1. Let T S denote the set of all functions from T to S. We call the elements
of T S scenarios. For each t ∈ T , we define the equivalence relation ≈t on T S by
f ≈t g iff f and g agree on �t = { s ∈ T | s � t }, the set of �-predecessors of t . We
let [ f ]t denote the equivalence class of f under ≈t .

Before proceeding, we make two related interpretations of the above definition: one
in terms of hats, and the other in terms of time. In the hat interpretation, T represents
some set of agents, each of whom wears a hat whose color is an element of S. A
scenario specifies the colors of the hats. For agents s and t , s � t means that agent
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t can see the color of agent s’s hat, and f ≈t g means that scenarios f and g are
indistinguishable to agent t , in the sense that f and g assign the same colors to the
hats that t can see. Given a scenario f for the coloring of the hats, [ f ]t is the set of
scenarios consistent with what t can see. Under this interpretation, we will examine
how well the agents can guess the colors of hats they cannot see (in particular, the
colors of their own hats).

In the time interpretation, T represents instants of time, ordered by �. A scenario
describes the evolution of a system over time, and f ≈t g means that scenarios f and
g are the same up to (but not necessarily at) instant t . We will also treat T as a set of
agents, in this case by identifying each instant t with an agent who can see the past at
that instant. Under this interpretation, we will examine how well the agents can predict
the present or even the future while knowing only the past.

We will often fix an element v ∈ T S which we consider to be the true scenario.
Within this scenario, each agent t will attempt to guess v while only being able to see
the values of v on �t . This amounts to guessing v from [v]t , since [v]t will be the set
of scenarios that agent t considers possible. One strategy for guessing is as follows.

Definition 2.2. Let O = { [v]t | v ∈ T S and t ∈ T }. A strategy is a function
g : O → T S such that g([v]t ) ∈ [v]t for any v ∈ T S and t ∈ T . Fix a well-ordering �
of T S (and note that this requires the Axiom of Choice). The μ-strategy is the strategy
μ : O → T S defined by letting μ([ f ]t ) be the �-least element of [ f ]t . We abbreviate
μ([v]t ) by 〈v〉t .

Given a true scenario v ∈ T S, an agent t plays the μ-strategy by guessing that the
true scenario is 〈v〉t . If we interpret f ≺ g as meaning that f is “simpler” than g in
some sense, then the μ-strategy can be thought of as a formalization of Occam’s razor:
each agent chooses the “simplest” scenario that is consistent with what the agent can
observe. (Of course, if f ≺ g means that f is more complicated than g, then this is
the opposite of Occam’s razor.)

How good is the μ-strategy? We consider this question in the following sections,
first in terms of predicting the present from the past, and then in terms of predicting
the present and some of the future from the past.

3. PREDICTING THE PRESENT. Fix a true scenario v ∈ T S, and let

W0 = { t ∈ T | 〈v〉t(t) �= v(t) }.
In terms of hats, this is the set of agents who guess their own hat color incorrectly when
using the μ-strategy; in terms of time, this is the set of instants at which the μ-strategy
incorrectly predicts the present from the past.

Theorem 3.1. If � is transitive, then W0 is well-founded in �; that is, W0 has no
infinite descending �-chain.

Proof. Suppose there is a sequence of agents t0, t1, . . . with ti ∈ W0 and · · · � t2 �
t1 � t0. For any i , since ti+1 � ti and 〈v〉ti ≈ti v, we have

〈v〉ti (ti+1) = v(ti+1) �= 〈v〉ti+1
(ti+1),

so 〈v〉ti �= 〈v〉ti+1
. Furthermore, since � is transitive, we have �ti+1 ⊆ �ti , so [v]ti ⊆

[v]ti+1 and 〈v〉ti+1
� 〈v〉ti .
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We now have 〈v〉t0 � 〈v〉t1 � 〈v〉t2 � · · · , contradicting the fact that � well-orders
T S.

Corollary 3.2. If (T , �) is a strict linear order, then W0 is a well-ordered subset of T .

Corollary 3.3. If (T , �) is a strict linear order with no infinite increasing chains, then
W0 is finite.

Proof. An infinite linear order must have an infinite increasing chain or an infinite
decreasing chain; W0 can have neither.

Corollary 3.4. If T = R and � is <, then W0 is countable, has measure 0, and is
nowhere dense.

Proof. Since W0 is a well-ordered subset of R, there will always be a rational number
between any element t ∈ W0 and the next element of W0 (unless t is the last element
of W0, which can happen at most once). So W0 is countable, and consequently has
measure 0.

Any well-ordered subset of R is nowhere dense, because its closure is again a well-
ordered set, and the interior of a well-ordered set must be empty, since nonempty open
sets have no least element.

What Corollary 3.4 tells us is that, if we model the universe as a function from
the real numbers into some set of states, then the μ-strategy will correctly predict the
present from the past on a set of full measure. (In the following section, we show that,
on a set of full measure, it correctly predicts some of the future as well.) Note that
these results concerning T = R are also valid when T is any interval of reals.

One needs to be cautious about interpreting this as meaning that the μ-strategy
is correct with probability 1. For a fixed true scenario, if one randomly selects an
instant t in the interval [0,1] (or in R, under a suitable probability distribution), then
Corollary 3.4 does tell us that the μ-strategy will be correct at t with probability 1.
However, if one fixes the instant t , and randomly selects a true scenario, then the
probability that the μ-strategy is correct at t under that scenario might be 0 or might
not even exist, depending on how one defines the notion of a random scenario.

The following sharpness result shows that when � is transitive, Theorem 3.1 is the
best one can do.

Theorem 3.5. Suppose � is transitive, g : O → T S is a strategy, and W ⊆ T is well-
founded in �. Then there is a scenario v in which strategy g is wrong at every point in
W ; that is, W ⊆ { t ∈ T | g([v]t )(t) �= v(t) }.
Proof. First, define v arbitrarily on the complement of W . For the points in W , we
may define v by induction, since W is well-founded. For t ∈ W , if we have already
defined v on the �-predecessors of t , then [v]t is determined, and we define v(t) so
that v(t) �= g([v]t )(t).

4. PREDICTING THE FUTURE. With a more careful analysis, we can show that
the μ-strategy often succeeds at predicting some of the future. Let v and W0 be as in
Section 3, and let

W1 = { t ∈ T | 〈v〉t �= 〈v〉t ′ whenever t � t ′ },
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the set of instants where the μ-strategy’s guess differs from all later guesses. Note that
when � is transitive, the μ-strategy never reverts to an older guess after a change is
made; in other words, if t � t ′ � t ′′ and 〈v〉t �= 〈v〉t ′ , then 〈v〉t �= 〈v〉t ′′ , since 〈v〉t ≺
〈v〉t ′ � 〈v〉t ′′ .

Proposition 4.1. W0 ⊆ W1.

Proof. Suppose t ∈ W0, and thus 〈v〉t(t) �= v(t). For any t ′ ∈ T with t � t ′, we have
〈v〉t ′(t) = v(t) �= 〈v〉t (t), so 〈v〉t �= 〈v〉t ′ . Therefore t ∈ W1.

Theorem 4.2. If � is transitive, then W1 is well-founded in �.

Proof. The proof of Theorem 3.1 applies, except that 〈v〉ti �= 〈v〉ti+1
is now immediate

from the definition of W1.

Note that, because of the similarity of Theorem 4.2 to Theorem 3.1, Corollaries 3.2–
3.4 also apply to W1.

We again turn our attention to the case (T , �) = (R, <).

Theorem 4.3. For t ∈ R, say that the μ-strategy guesses well at t if there exists an
ε > 0 such that 〈v〉t and v agree on [t, t + ε). Then the set of t ∈ R where the μ-
strategy guesses well has full measure.

The intuition behind the following proof is that, in any interval disjoint from W1,
the μ-strategy does not change its guess—that is, the map t �→ 〈v〉t is constant—but
it would if it were ever incorrect about the value of v within the interval; so the one
guess made by the μ-strategy within the interval must agree with v until the end of the
interval.

Proof. Take any t ∈ R \ W1. By the definition of W1, there must be some t ′ > t such
that 〈v〉t = 〈v〉t ′ . For any u < t ′, we have

〈v〉t(u) = 〈v〉t ′(u) = v(u),

so 〈v〉t and v agree on (−∞, t ′); in particular, 〈v〉t and v agree on [t, t + ε) where
ε = t ′ − t . So the μ-strategy guesses well on R \ W1, which has full measure by Corol-
lary 3.4 (with W1 in place of W0).

5. A REFINEMENT. Again, let T = R and fix a true scenario v ∈ RS, but suppose
that the agents are only able to see the recent past. Specifically, we redefine ≈t (for
this section only) by

f ≈t g ⇐⇒ (∃ s < t) f and g agree on (s, t).

For any s < t , if we take any given scenario and modify it on the interval (−∞, s),
t will not be able to distinguish the new scenario from the original. So, informally, t
sees only an infinitesimal portion of the past.

Although ≈t is not induced by any relation �, we can still make sense of [v]t , the
μ-strategy, and 〈v〉t , since these were defined in terms of ≈t . And again, we say the
μ-strategy guesses well at t if there is an interval [t, t + ε), ε > 0, such that 〈v〉t and
v agree on [t, t + ε).
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Let

W = { t ∈ R | the μ-strategy does not guess well at t }.

Theorem 5.1. The set W is countable, has measure 0, and is nowhere dense.

So, even if the agents can see only the recent past, the μ-strategy still almost always
correctly predicts some of the future. Daniel Velleman contributed a major simplifica-
tion to the following proof.

Proof. We first show W is countable. For each rational number q, let

Wq = { t ∈ W | q < t and 〈v〉t and v agree on (q, t) }.
For each t ∈ W , 〈v〉t and v must agree on (s, t) for some s < t ; letting q ∈ (s, t) be
rational, we have t ∈ Wq . So W is the union of the sets Wq .

Suppose t, t ′ ∈ Wq with t < t ′. Because t ∈ W , there must be some u ∈ [t, t ′)
such that 〈v〉t(u) �= v(u); we then have 〈v〉t(u) �= v(u) = 〈v〉t ′(u), so 〈v〉t �= 〈v〉t ′ .
Also, because 〈v〉t ′ and v agree on (q, t ′), and q < t < t ′, we have 〈v〉t ′ ≈t v, so
〈v〉t � 〈v〉t ′ . It follows, as in the proof of Theorem 3.1, that Wq is well-ordered and
hence countable.

Being the union of countably many countable sets, W is countable and has mea-
sure 0.

To show W is nowhere dense, suppose, by way of contradiction, that W is dense
on an interval (a, b) with a < b. Then there exists t0 ∈ W ∩ (a, b), and s0 < t0 such
that 〈v〉t0 and v agree on (s0, t0); we assume without loss of generality that a ≤ s0.
Continuing in this manner, we define sequences si and ti in R such that ti ∈ W , 〈v〉ti
and v agree on (si , ti ), and si ≤ si+1 < ti+1 < ti . By the same argument as above, we
have 〈v〉ti+1

�= 〈v〉ti and 〈v〉ti+1
� 〈v〉ti , giving us an infinite descending chain 〈v〉t0 �

〈v〉t1 � · · · , contradicting the fact that � is a well-ordering.

6. THE ROLE OF AC. Although we used the Axiom of Choice (AC) when defining
the μ-strategy, one might wonder if a different approach could yield similar results
without using AC. In nontrivial cases, the answer is no.

Theorem 3.1 is interesting only when T has an infinite descending chain and
|S| ≥ 2. In such cases, if there is any strategy for which the analogue of Theorem 3.1
holds, then there exists a set of reals that does not have the property of Baire (and is
not Lebesgue measurable). We omit the argument here, but it can be carried out in
ZF. Assuming the consistency of ZF, it is consistent with ZF that every set of reals
has the property of Baire [1], so it is consistent with ZF that, in nontrivial cases, there
is no strategy for which the analogue of Theorem 3.1 holds. So, some use of AC is
necessary to prove the existence of such strategies, in the sense that ZFC is adequate
while ZF is not.

7. HAT PUZZLES. There is a well-known puzzle in which finitely many people are
placed in a line, a black or white hat is placed on each one’s head, and each person can
see only the hats of the people toward the back of the line; starting at the front of the
line, they must attempt to guess the colors of their own hats, after hearing the previous
guesses. (The solution allows all but possibly the first to guess correctly, by using
parity.) Yuval Gabay and Michael O’Connor produced several infinitary variations of
this puzzle, one of which is the following.
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Puzzle. A prison warden lines up infinitely many prisoners, numbered 0, 1, 2, . . . ,

in a large prison yard, and places a black or white hat on each prisoner’s head. Each
prisoner can see only the hats of the higher-numbered prisoners. Each prisoner must
venture a guess about his own hat color, without hearing the guesses of any other pris-
oners (though they may collaborate on a strategy before the hats are placed). Those
that guess correctly are released. How well can the prisoners do at guessing? (Specifi-
cally, is there a strategy that guarantees at least one prisoner will be correct? Is there a
strategy that guarantees at most finitely many are wrong?)

They solved the puzzle by a different method than we use below, and left open a
further variation: What if the prisoners are numbered by ordinals in ω1? That puzzle
led to the work here.

Our solution is that, if the ordering of the prisoners is any ordinal, then the prisoners
can guarantee that all but finitely many guess correctly, by applying the μ-strategy.
Specifically, for the variation where the prisoners are numbered by elements of an
ordinal α, we let T = α, and say x � y ⇐⇒ y < x ; Corollary 3.3 then implies that
all but finitely many prisoners will guess correctly when the μ-strategy is used.
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