Exploiting Temporal Locality in Drowsy Cache Policies
Salvador Petit, Julio Sahuquillo, Jose M. Such

Computer Engineering Departament
Polytechnic University of Valencia
Valencia, Spain
+34 96 387 7570

{spetit, jsahuqui}@disca.upv.es
josucap@fiv.upv.es

ABSTRACT

Technology projections indicate that static power will become a
major concern in future generations of high-performance
microprocessors. Caches represent a significant percentage of the
overall microprocessor die area. Therefore, recent research has
concentrated on the reduction of leakage current dissipated by
caches. The variety of techniques to control current leakage can
be classified as non-state preserving or state preserving. Non-state
preserving techniques power off selected cache lines while state
preserving place selected lines into a low-power state. Drowsy
caches are a recently proposed state-preserving technique. In
order to introduce low performance overhead, drowsy caches
must be very selective on which cache lines are moved to a
drowsy state.

Past research on cache organization has focused on how best to
exploit the temporal locality present in the data stream. In this
paper we propose a novel drowsy cache policy called Reuse Most
Recently used On (RMRO), which makes use of reuse
information to trade off performance versus energy consumption.
Our proposal improves the hit ratio for drowsy lines by about
67%, while reducing the power consumption by about 11.7%
(assuming 70nm technology) with respect to previously proposed
drowsy cache policies.

Categories and Subject Descriptors

B.3.2 [Memory Structures]: Design Styles — cache memories;
B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aids.

General Terms
Performance, Design, Experimentation.

Keywords
Set-Associative Caches, Low-Power, Drowsy Cache Policies,
Temporal Locality, Reuse Information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CF’05, May 4-6, 2005, Ischia, Italy.

Copyright 2005 ACM 1-59593-019-1/05/0005...$5.00.

371

David Kaeli

Electrical and Computer Engineering Departament
Northeastern University
Boston, Massachusetts
+1 617 373 5413

kaeli@ece.neu.edu

1. INTRODUCTION

Power has become a major design concern in current
microprocessors. The power dissipated has two main components:
1) dynamic power, and 2) static or leakage power. Dynamic
power is dissipated due to transistor switching activity, while
leakage power continuously dissipates, even when transistors are
idle. In current CMOS technologies, dynamic power is dominant
and leakage power is less of a concern. However, technology
projections for the foreseable future (e.g., 70nm technologies)
suggest that static power will dominate overall chip power [13].

Leakage power is dependent on the number of transistors and
transistor features implemented. The majority of leakage will
come from the largest processor components. Recent research
work has focused on reducing power dissipation in different
elements of the microprocessor (e.g., in caches [6][5][3][12][1],
and arithmetic units [4]).

Cache memories occupy a large percentage of the overall
microprocessor die area (e.g., 30% in the Alpha 21264 [7]). This
percentage of die area has increased in more recent high
performance microprocessors that include large L2 caches.
Furthermore, some microprocessors include up to three cache
levels on chip (e.g., the Itanium2 [11], which includes a 3 MB L3
cache).

Since caches consume so much chip real estate, we need to find
techniques where we can disable selected lines. Proposed
techniques can be broken down into state preserving [5][9], and
state non-preserving [12], depending on if the cache line loses or
maintains the information stored. To avoid losing the information,
a state preserving solution can place a line in a low-power state
preserving mode, commonly referred to as drowsy mode. Lines in
this mode maintain their information, but incur additional cycles
to access the information.

Schemes preserving the line state do not lose data; accesses can
hit either in an enabled or low-powered line. Since a hit in a low-
powered line can increase the average data access time, the goal
of many schemes tries to insure that a significant fraction of the
hits are in enabled lines. The goal is to reduce power while
maintaining performance.

Set-associative caches reduce the number of misses, though they
have a longer access time and increase power dissipation
compared to direct-mapped caches. This increase in power is
mainly due to the fact that current microprocessors include as
many tag comparators as the number of ways in the cache. There
is also extra logic introduced to select the data on a hit. Even
given these issues, current microprocessors still implement multi-

way set associative caches (e.g., the Itanium2 [11], which
provides a 4-way set-associative L1 data cache). Furthermore, the
L1 data cache of the Itanium2 has a one cycle hit time.

To arrive at the strategy presented in this paper, we first studied
the temporal locality present in a number of applications. To
evaluate our strategy, we measured the leakage savings and
performance impact of two different versions of our scheme. In
our approach, we choose to keep a fixed number of ways of each
set in a low-power state-preserving state. Experimental results
show that when the L1 data cache maintains one enabled line per
set (e.g., the LRU entry in each set), power is reduced
dramatically, while only impacting performance slightly. The
underlying principle of these simple policies is that they exploit
temporal locality to reduce leakage power.

Cache accesses can be bursty during program phases, such that
only a few sets are accessed for a long period of time [6]. To
benefit from this situation, we propose a new state-preserving
cache policy (RMRO) to reduce the leakage current in the data
cache. The key idea behind this new policy is to exploit reuse
information [15], which is used to adaptively disable ways and
whole sets, while keeping in mind the intrinsic temporal locality
of the workloads.

Using this policy, we will enable zero, one, or two lines per set,
while the rest of the lines are disabled. Using this approach, the
fraction of low-powered lines exponentially increases with the
cache associativity, as do the potential benefits of the scheme.
Although our proposal can be applied to any level of the cache
hierarchy, in this paper we focus on the performance of a 4-way
set-associative first-level data cache. We compare our RMRO
policy to a recently proposed policy (SOW) [5], comparing both
performance and energy. On average, RMRO saves on leakage
energy by 11.7% compared to the SOW policy, while does not
adversely impact performance.

The remainder of this paper is organized as follows. Section 2
describes recent research on power reduction. Section 3 presents
the range of temporal localities present in the SPEC workloads
studied. Section 4 evaluates two simple drowsy policies, as well
as our new adaptive drowsy policy. Finally, section 5 presents
some concluding remarks.

2. RELATED WORK

We begin by studying the research associated with power
reduction on conventional caches. We will also discuss a number
of approaches for reducing leakage current.

2.1 Resizing the Cache Geometry

A key issue related to managing power dissipation in caches is
that cache utilization varies widely across the different
applications and even within a single application. When a given
application is running, there can exist long periods during which
some parts of the data cache are under-utilized or not touched at
all. A number of studies have concentrated on how best to
organize a cache for power, focusing on: i) the number of sets, ii)
the set associativity, and iii) the line size.

To reduce usage on a set basis, Powell et al. [12] proposed a
mechanism to identify an application’s I-cache requirements
dynamically in order to reduce current leakage. The mechanism
resizes (increases or decreases) the number of cache sets in order
to save energy. Basically the mechanism increases/decreases the

372

number of sets in a given period of time, when the number of
misses is lower/higher than a given miss-threshold value. The
proposed mechanism uses a variable set mask to properly access
the corresponding set.

Another approach to reducing power is to change the associativity
dynamically. Notice one can disable an entire set by disabling all
of its lines. Therefore, reducing the number of sets can be seen as
selectively reducing the number of ways in a given set. Albonesi
[1] proposed a mechanism to decrease or increase the number of
ways depending on both the dynamic power dissipated and the
performance degradation suffered during a given period. Flautner
et al. [5] proposed two policies to reduce leakage power. The first
or simple policy places all line into a lower-power drowsy mode
at fixed time intervals (referred to as the update window). The
second or noaccess policy differs in that only the non-accessed
lines present in the previous window are placed into drowsy mode
during the next window. Kaxiras et al. [6] proposed to power off
the under-utilized lines by using counters. Each line has an
associated counter that is incremented at fixed time intervals.
Each time a given line is accessed, the counter is reset. If the
counter saturates, the line is powered off.

Finally, to reduce cache line size, Chen et al. [3] proposed using
sublines to better match the low spatial locality present in the data
stream. In these caches, the minimum fetch unit is a sub-line
(versus a full line). A predictor is used to estimate the number of
sub-lines that must be fetched on a miss.

Our work falls into this second group of optimizations since we
disable/enable the number of ways in a set to reduce current
leakage, and can even disable whole sets in this process.

2.2 Leakage Control for Caches: Vdd and

Drowsy Caches

A common technique applied to reduce leakage in caches is to
reduce the power supplied. Two main methods have been
proposed in recent literature are gated-Vpp and drowsy caches.

The gated-Vpp [12] technique proposed by Powell et al. uses a
transistor to gate the supply of the cache SRAM cells. This
technique dramatically reduces the current leakage since selected
lines are powered off. Of course, when lines are powered off, the
stored information is lost. The main drawback of this technique is
that L1 cache misses involve additional accesses to the L2 cache,
which incur additional energy dissipation.

Drowsy caches [5] are an alternative technique proposed by
Flautner et al. This technique saves energy by reducing the power
supply for the selected cache lines, though the supply is not gated.
Proceeding in this way, the technique avoids losing information.
These lines are placed in drowsy mode, and need to be awakened
prior to accessing the data. The advantage of this technique is that
it achieves the same L1 hit ratio as conventional caches; therefore,
no additional accesses to the L2 cache are needed. Nevertheless,
as the supply voltage is reduced, current leakage is still greater
than the leakage introduced using the gated-Vpp technique.

The cache designs proposed in this paper deal with drowsy
caches, though they can be used for any state-preserving leakage-
saving technology. Moreover, they also can be applied with
technologies that do not preserve the state, although the
modifications to do so are out of the scope of this work.

3. TEMPORAL LOCALITY VARIATIONS

In this section we investigate the temporal locality of lines on a
per set basis. The main objective here is to identify those lines
possessing low temporal locality. To this end, we measure the
percentage of cache line accesses that hit in the most recently
used (MRU) line, in the previous most recently used line, and so
on.

Experiments were run considering multi-way sets. In particular,
we selected a L1 data cache similar to the design used for the
Itanium?2 (i.e., 16KB, 64B line, 4 way set-associative (64 sets)).
Table 1 shows the results. As observed, only one line per set (the
most recently used) captures almost 92.15% of all cache hits. If
two lines per set are taken into account (half of the cache lines),
this percentage increases to 98.45%. Therefore, the remaining half
of the cache lines is responsible for 1.55% of all hits. Based on
these results, we explored two straightforward, simple and cost-
effective policies for drowsy caches: called the MRO and the
TMRO policies.

Table 1 — Percentage of hits along the lines of each set.

Benchmark MRU line | 2" MRU line | Rest

168.wupwise 96.52 3.05 0.43
171.swim 95.80 4.10 0.10
172.mgrid 88.99 8.85 2.16
173.applu 94.05 5.34 0.61
177.mesa 95.25 4.63 0.12
178.galgel 84.10 12.75 3.15
179.art 95.96 3.93 0.11
183.equake 91.86 6.69 1.45
187.facerec 92.93 6.47 0.60
189.lucas 88.53 8.08 3.39
200.sixtrack 86.46 8.87 4.67
301.apsi 95.39 3.34 1.27
Average 92.15 6.34 1.51

The MRO (Most Recently used On) policy, maintains one line as
active in each cache set. The obvious choice would be to maintain
the most recently used entry, while the remaining lines are placed
into drowsy mode. On a hit into a drowsy line, the line becomes
the MRU and is woken up to access the data. The previous MRU
line is put in drowsy mode, guaranteeing that only one line is
awake. Note that switching the MRU line involves dynamic
power dissipation; nevertheless, 92.15% of the cache hits do not
involve dynamic switching since they hit in the MRU line.

The TMRO (Two Most Recently used On) policy, keeps two lines
awake per set (the most recently and the previous most recently
used lines). This policy is more conservative than the previous
technique, since it doubles the number of lines that are kept
awake. Nevertheless, we study this policy because a significant
percentage of the cache hits are due to accesses to the second
most recently used line. As a consequence, results obtained from

373

TMRO will show less energy savings than MRO, but will incur
fewer accesses to drowsy lines.

4. DROWSY POLICIES EVALUATION
4.1 Methodology

Since a drowsy cache must offer a good tradeoff between
performance and power dissipation, we evaluate drowsy cache
policies and obtain both execution time (IPC) and the power
savings. Experiments were run with the HotLeakage simulator
framework [16], which models the energy consumption (dynamic
and static) on top of the SimpleScalar toolset [2]. On this
platform, we run the SPEC 2000 benchmark suite [14] using the
MinneSPEC input set [8].

For performance comparison purposes, we model an aggressive
out-of-order speculative processor with a two-level cache
hierarchy. Table 3 summarizes the baseline system configuration.

For energy comparison purposes, technology parameter values are
chosen assuming recent research papers [5][10] and for the
valuable help provided by the Hotleakage group at University of
Virginia. Table 2 summarizes these values for a 70nm technology.

Table 2 - Energy parameter values.

Energy Configuration

Technology TECH_070
Leakage control technique Drowsy
Time for low to high switch 3 cycles
Time for high to low switch 3 cycles
Low to high switch cost 0.0003
High to low switch cost 0.0001
Extra latency in low leak mode 1 cycle

4.2 Comparing MRO and TMRO with SOW
We compare both MRO and TMRO to the simple policy proposed
in [5], which we refer to as the Switch Off Window (SOW)
policy. Although this work proposes two policies, we only
implement one of them because the authors in [3] conclude that
the policies achieve similar performance by choosing the
appropriate window length. They also conclude that a 4096-entry
window length reaches a reasonable compromise between
performance and power savings; therefore, we take this value for
our experiments.

The tradeoff of saving energy by putting cache lines into drowsy
mode is that we will increase the number of cache accesses that
hit in drowsy lines. In this section we quantify the current leakage
savings for the MRO, TMRO, and SOW policies over a
conventional cache, as well as, the percentage of L1 data cache
hits in drowsy lines.

As mentioned above, drowsy cache policies offer the same overall
L1 cache hit ratio, since they do not introduce additional misses.
Nevertheless, they will differ in the percentage of accesses that hit
in a drowsy line. Notice that this percentage is directly related to
speedup, since the lower this percentage is, the lower the
execution time of an application.

Table 3 - Microprocessor core and memory hierarchy configuration.

Issue policy Out of order
Instruction fetch queue size 8 instructions
Microprocessor | Branch predictor type Combined with a
Core 4K bimodal predictor table
size and a
12KB history size
Branch predictor penalty 2 cycles
Decode, issue, commit bandwidth 4 instructions/cycle
Register Update Unit (RUU) size 80
Load/Store Queue (LSQ) size 40
of Integer ALU's, multiplier/dividers 4/1
of FP ALU's, FP multiplier/dividers 2/1
Memory ports available (to CPU) 2
L1 data cache 16KB, 4 way, 64 byte-line
Memory L1 data cache hit latency 2 cycles
Hierarchy L2 data cache 1 MB, 2 way, 64 byte-line
L2 data cache hit latency 11 cycles
Memory access latency 97,2,2,2

4.2.1 Current Leakage Savings

Figure 1 plots the leakage current consumption (the opposite of
leakage savings). Results show that MRO can outperform the
baseline by 72%, while TMRO lags the baseline by about 48%,
and the SOW policy savings fall in between. As observed, the
SOW leakage savings vary widely across different applications,
while MRO and TMRO savings remain nearly constant across the
applications due to the number of active lines (one and two,
respectively). They seem to also remain consistent in execution
time. This fact does not consider that some workloads show an
irregular behavior that result in high variability in energy
consumption (e.g., 179.art).

4.2.2 Decay hit ratio

The decay hit ratio is the percentage of all accesses that hit in
drowsy lines. The decay hit ratio directly impacts performance,
because each hit in a drowsy line invokes a wakeup cycle before
the hit can be serviced. Figure 2 plots the decay hit ratio of the
three policies.

Results show that the most conservative policy (TMRO) achieves
the lowest decay hit ratio, followed by SOW, while MRO
presents the highest decay hit ratio.

Further inspecting the results, we can see that the main advantage
of the MRO policy is its ability to lower power consumption. The
main advantage of the SOW policy is its low decay hit ratio.
Although MRO and TMRO are based on the intrinsic behavior of
multiple-way set-associative caches, their main drawback is their
lack of flexibility. For instance, to improve the decay hit ratio of
the MRO policy we need to wake up more lines per set (e.g., two

374

lines per set, as in the TMRO policy). In this case, the decay hit
ratio decreases by an additional 6% (see Table 1), but the leakage
consumption is nearly two times as large. On the other hand, if
one doubles the number of cache sets in order to improve the
decay hit ratio, this also doubles the number of lines that are
awakened, increasing the current leakage and undermining the
main advantages of the MRO policy.

One can conclude that, although given their lack of flexibility,
both policies based on temporal locality are simple and cost-
effective policies. The MRO policy incurs less current leakage
and the TMRO policy obtains the lowest decay hit ratio. The fact
of having a quarter (MRO) or the half (TMRO) of the data entries
awake, limits our ability to select a single best energy-
performance winner. To deal with this tradeoff, we explore
variants of the MRO policies, so that lines can be woken up on
demand or placed in drowsy mode when they are under-utilized.

4.3 The Reused MRO (RMRO) Policy

The concept of the reuse information has been already discussed
in the literature [15] to improve cache hit performance. In those
applications, reuse history was used to characterize reuse behavior
associated with a cache line. The main idea behind this concept is
that different L1 tours (i.e., the time from when a block is placed
into the L1 data cache until it leaves the cache) of the same block
will behave homogeneous (i.e., a block’s behavior will repeat in
time). In this work, we make use of cache line reuse information
to improve both performance and energy, across different
execution windows.

90%
80% N
c 70%
]
‘g. 60%
7 50% | — — — | — - — — | |E SOW 4096
c
8 4o | | | | | || [®MRO
& O TMRO
§ 30% - Y -
[}
o
= 20% - = = - H
10% — W — W H
0% - T T T =
s\ee & 03\6 Q"}o &S & g’?{\ & q}e’o F & @Qé (D&
A A ARSI
& X N X N N K3) N
Figure 1 - Leakage energy consumption relative to a conventional cache.
18%
16%
14%
2 12%
e 0% O SOW 4096
- 0
T m MRO
> 8%
3 0 TMRO
& 6%
4%
2%
0% -
& . & > 3 > & 2 O 3 S ¢
& & N N o Q0 2 NS) 3 $ S
$\>Q\‘\ ,\@Yk ,\m‘@ ,\fb'-Z’QQ ,\'\é\e’ Q,QQ}Q © & q\‘)& é\#& 0""2& ?:\?}fb
3 ; A & ; S
\bq’ N N X X QA ’3,‘5 D N (19%

Figure 2 — Decay hit ratio.

The policy we propose, the RMRO (Reused Most Recently used
On) policy, saves information about cache line behavior while the
line is in a given execution window. This policy wakes up lines
on demand. When the execution window expires, the line
behavior information is used to choose the line state (i.e., drowsy
or awake) for the next execution window. Taking this into
account, when the execution windows expires, the policy selects
one of the following actions for the next window:

if no line was accessed during the window, maintain the
whole line in drowsy mode.

if only one line was accessed during the previous window,
keep awake only the most recently used line.

if more than one line was accessed during the previous
window, keep awake the two most recently used lines in the
set. We bound this number to two based on the results already
discussed for the TMRO policy.

375

4.3.1 Reuse Information

To check how reuse information behaves across windows, we
quantify the probability of accessing n lines in the next
window;., n O [1,4] after accessing m lines in the current
window;. Table 4 shows the results for a 1024 cycle window
length. As observed, the main diagonal shows the largest
percentage for each row, with the only exception of n=4. For
instance, the probability of accessing no lines during the next
window after accessing no lines during the current window, is
about 67%. Therefore, this shows that a line’s behavior can
remain homogeneous across different time windows.

Table 5 shows the weight of each given probability over the total
amount, for instance, the probability of referencing no lines in a
given window is 24.6%. Notice that the probability of accessing
the full set (4 ways) in two consecutive windows, which was the
exception mentioned in the previous table, represents a negligible
1.2% increase over the total amount.

Table 4 - Probability to access m lines along the next window
after accessing » lines in the current window;.

Accessed Accessed lines in window i+1

lines in

window i 0 1 2 3 4 %
0 67.2 24.5 6.8 1.3 0.2 100
1 18.2 56.6 19.8 4.7 0.8 100
2 6.2 26.5 48.1 15.3 3.9 100
3 24 13.6 32.9 39.0 12.1 100
4 1.1 7.4 25.0 35.5 31.1 100

Table S - Overall probability to access m lines along the next
window after accessing » lines in the current window;.

Accessed Accessed lines in window i+1

lines in

window i 0 1 2 3 4 %
0 16.5 6.0 1.7 0.3 0.1 24.6
1 6.2 19.2 6.7 1.6 0.3 33.9
2 1.6 6.8 12.3 3.9 1.0 25.6
3 0.3 1.6 3.9 4.6 1.4 11.9
4 0.0 0.3 1.0 1.4 1.2 4.0

4.3.2 Hardware Implementation

A simple hardware control mechanism is designed to handle the
reuse information. A total of six bits per sets are used: one per
line to indicate that a given line has been accessed during the
window (i.e., the [;), another one to indicate that only one line has
been accessed (i.e., the ol;), and the last one to indicate that more
than one line has been accessed (i.e., the ml).

The mechanism works as follows: when a window begins, all
control bits are reset. Then, when the accessed line is awakened,
the corresponding /; bit and o/; bits are set. For another access, if
the /; bit is already set, the m/; bit must be also set to one. When
the window expires, the m/; bit is inspected, and if set, then the
two most recently used lines must be maintained awake for the
next window. Otherwise, the value of the o/; bit is used to decide

if either the recently used line or no lines should be kept awake
for the next window.

4.3.3 Current Leakage Saving and Decay Hit Ratio

In this section we compare the proposed policy (RMRO) versus
the SOW policy, since it showed the best tradeoff between
performance and energy consumption.

Notice that the decay hit ratio offered by the proposed policy will
vary with the window length. For comparison purposes we look at
the window lengths that offered a decay hit ratio close to the one
achieved by SOW. Figure 3 shows the results for window sizes of
512 and 1024. As observed, SOW falls in between 512 and 1024,
being closer to 1024; therefore, this size will be the used for
measuring the leakage consumption.

Since the RMRO has a better decay hit ratio than SOW, one could
expect that the leakage savings of RMRO would be less than the
results obtained for SOW. However, as Figure 4 shows, the SOW
leakage consumption (39.32%) is, on average, about 11.7% higher
than the consumption of the RMRO policy (35.21%).

Finally, execution time of drowsy caches has been also simulated,
and our results are consistent with those presented in [5], since the
performance impact is never more than 1%.

5. CONCLUSIONS

Drowsy caches place selected lines into low-power drowsy mode
according to a given drowsy policy. A successful policy should
reduce the leakage current while maintaining cache performance.
In order to sustain performance, drowsy caches must infrequently
access drowsy lines.

In this paper we investigated the temporal locality of cache lines
in a multi-way set-associative cache. We then proposed new
drowsy policies and compared them against a recently proposed
drowsy cache policy (SOW). Our experiments showed that two
simple policies which maintain a single (MRO) or two (TMRO)
awake lines per set offer power savings of about 72% and 48%, as
compared to a conventional cache. The sustained hit ratio on
awake lines was 92.15% and 98.49%, respectively. The main
drawback of these policies is their lack of flexibility, since they
cannot adapt to cache usage. For instance, the power saving with
respect to a conventional cache will remain constant for any cache
size. This suggests we should explore a policy that dynamically
adapts to the workload behavior.

8%

7%

6%

5%

O SOW 4096

4%

® RMRO 512
0O RMRO 1024

3%

Decay Hit Ratio

2%

. ﬂﬂt@ﬂ[ﬁ
0% -+ T

a
] & O N >) & 2} O o N 2 @
& S § o & N &) & 9
\\Q$\ ,\.S q}& rb’.bQQ /\S@ Q’z}g A ,bo‘z’\ q\.& .\+‘\& Q\'ﬁ AQ}'bQ’
NN RN QX o PO RS A &
3 NN >

Figure 3 - Decay Hit Ratio.

376

90%

80%
70%

60%

50%

40%
30%
20%
10% -
0% -

Leakage Consumption

= SOW 4096
m RMRO 1024

& @
® »
424

v

Figure 4 - Leakage Consumption.

In this paper we have proposed an adaptive RMRO policy that
makes use of reuse information to improve the performance
versus energy tradeoff. Reuse information has been used
previously improve cache performance, but, to the best of our
knowledge, this is the first time that it has been used to improve
energy. Our results show that this information can be effectively
exploited to improve energy, while maintaining cache
performance. Moreover, the proposed policy improves the SOW
policy both in performance and in energy savings. For future
work, we plan to explore leakage savings in the complete cache
hierarchy.

6. ACKNOWLEDGMENTS

This work has been supported by the Generalitat Valenciana
under grant GV04B/487. Authors wish to thank the Department of
Electrical and Computer Engineering at Northeastern University,
Boston, USA, for their support of Salvador Petit’s stay at the
department.

7. REFERENCES

[1] Albonesi, D. H. Selective Cache Ways: On-Demand Cache
Resource Allocation. Journal of Instruction-Level
Parallelism, Vol. 2, 2000.

Burger, D. C. and Austin, T. M. The SimpleScalar Tool Set,
Version 2.0. Computer Architecture News, 25 (3), 1997.

Chen, C., Yang, S-H., Falsafi, B., and Moshovos, A.
Accurate and Complexity-Effective Spatial Pattern
Prediction. Proc. of the 10" Intl. Symp. on High Performance
Computer Architecture, Feb. 2004.

Dropsho, S., Kursun, V., Albonesi, D. H., Dwarkadas, S.,
and Friedman, E. G. Managing Static Leakage Energy in
Microprocessor Functional Units. Proc. of the 35™ Intl.
Symp. on Microarchitecture, Nov. 2002.

Flautner, K., Kim, N. S., Martin, S., Blaauw, D., and Mudge,
T. Drowsy Caches: Simple Techniques for Reducing
Leakage Power. Proc. of the 29" Intl. Symp. on Computer
Architecture, May 2002.

Kaxiras, S., HU, Z., and Martonosi, M. Cache Decay:
Exploiting Generational Behavior to Reduce Cache Leakage

(2]

377

Power. Proc. of the 28" Inl. Symp. on Computer
Architecture, Jun. 2001.

Kessler, R. E. The Alpha 21264 Microprocessor. /[EEE
Micro, Vol. 19, No. 2, Mar. 1999.

KleinOsowski, A. J. and Lilja, D. J. MinneSPEC: A New
SPEC Benchmark Workload for Simulation-Based Computer
Architecture Research. Computer Architecture Letters, Vol.
1, Jun. 2002.

Li, L., Kadayif, L., Tsai, Y-F., Vijaykrishnan, N., Kandemir,
M., Irwin, M. J., and Sivasubramania, A. Leakage Energy
Management in Cache Hierarchies. Proc. of the 11™ Intl.
Conf. on Parallel Architectures and Compilation
Techniques, Sep. 2002.

[10] Li, Y., Parikh, D., Zhang, Y., Sankaranarayanan, K., Stan,
M. R., and Skadron, K. State-Preserving vs. Non-State-
Preserving Leakage Control in Caches. Proc. of the 2004
Design, Automation and Test in Europe Conf., Feb. 2004.

[11] McNairy, C. and Soltis, D. Itanium 2 Processor
Microarchitecture. IEEE Micro, Vol. 23, No. 2, Mar.-Apr.
2003.

[12] Powell, M., Yang, S.-H., Falsafi, B., Roy, K., and
Vijaykumar, T. N. Gated-Vdd: A circuit technique to reduce
leakage in deep-submicron cache memories. Proc. of the
2000 Intl. Symp. on Low Power Electronics and Design, Jul.
2000.

[13] SIA, International Technology Roadmap for
Semiconductors, 2001.

[14] Standard Performance Evaluation Corporation.
http://www.spec.org/cpu2000/

[15] Tam, E. S., Rivers, J. A., Srinivasan, V., Tyson, G. S., and
Davidson, E. S. Active Management of Data Caches by
Exploiting Reuse Information. /EEE Transactions on
Computers, Vol. 48, No. 11, Nov. 1999.

[16] Zhang, Y., Parikh, D., Sankaranarayanan, K., Skadron, K.,
Stan, M. HotLeakage: A Temperature-Aware Model of
Subthreshold and Gate Leakage for Architects. Tech. Report
CS-2003-05, Dept. of Electrical and Computer Engineering,
Univ. of Virginia, Mar. 2003.

