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Abstract

A tanglegram is a pair of trees on the same set of leaves with matching leaves
in the two trees joined by an edge. Tanglegrams are widely used in biology – to
compare evolutionary histories of host and parasite species and to analyze genes
of species in the same geographical area. We consider optimizations problems in
tanglegram drawings. We show a linear time algorithm to decide if a tanglegram
admits a planar embedding by a reduction to the planar graph drawing problem.
This problem was also studied by Fernau, Kauffman and Poths (FSTTCS 2005).
A similar reduction to a graph crossing problem also helps to solve an open prob-
lem they posed, showing a fixed-parameter tractable algorithm for minimizing the
number of crossings over all d-ary trees.

For the case where one tree is fixed, we show an O(n log n) algorithm to de-
termine the drawing of the second tree that minimizes the number of crossings.
This improves the bound from earlier methods. We introduce a new optimization
criterion using Spearman’s footrule distance and give an O(n2) algorithm.

We also show integer programming formulations to quickly obtain tanglegram
drawings that minimize the two optimization measures discussed. We prove lower
bounds on the maximum gap between the optimal solution and the heuristic of
Dwyer and Schreiber (Austral. Symp. on Info. Vis. 2004) to minimize crossings.

1 Introduction
Determining the evolutionary history, or the phylogeny, of a set of species is an im-
portant problem in biology. Often represented as trees, phylogenies are used for de-
termining ancestral species, designing vaccines, and drug discovery [32]. The popular
criteria to reconstruct an optimal tree – maximum parsimony and maximum likelihood
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Figure 1: A tanglegram from Charleston and Perkins [9]: phylogenetic trees for lizards
in the Caribbean tropics and strains of malaria found there ([9], p 86), joined by dashed
lines that represent the parasite-host relationship. The crossing number is 7, and the
footrule distance is 10. This is not optimal; an alternative layout which interchanges
the children of nodes c and d improves these to 4 and 6, respectively. The optimal
drawings have crossing number 1 and distance 2, respectively.

– are NP-hard [16, 29], so heuristic methods (i.e. [22, 31]) are used that can yield many
possible trees. Comparing these trees, as well as those generated on multiple genes, or
for co-evolving species, is a necessary task for data analysis [18].

A visual way to compare two trees is via a tanglegram which shows the spatial rela-
tionship among the leaves. Roughly, a tanglegram consists of two trees with additional
edges linking pairs of corresponding leaves (see Fig. 1 and Sect. 2). Tanglegrams are
widely used in biology, including, to compare evolutionary histories of host and para-
site species and to analyze genes of species in the same geographical area [28, 34].

Another potential application of the crossing distance in tanglegrams is to gauge
the extent of horizontal gene transfer. This application follows from the discussion of
the phylogenies of the transposable element ω and its hosts in [8, pg. 204–206]. They
draw the two trees as shown in Fig. 2 shows a drawing of the phylogeny for ω and the
phylogeny for its hosts with twelve crossings, and concludes that “The phylogeny of
ω and its hosts are significantly different, indicating frequent horizontal transmission.”
This motivates the desire to have a method to minimize the number of crossings. There
are twelve crossings in Fig. 2 (with fourteen leaves); there is an optimal layout with
only three crossings as shown in Fig 3 Would the authors still consider the phylogenies
to be “significantly different”?

Drawings with fewer crossings or with matching leaves close together are use-
ful in biological analysis. A drawing imposes an order among the leaves of the tree.
Therefore comparing the drawings of the trees is equivalent to comparing the permuta-
tions of the leaves. We focus on two natural measures of complexity that are used for
comparing permutations: the crossing number (or Kendall-τ ) and Spearman’s footrule
distance [10]. These measures are widely used, including, in ranking search results on
the web and in voting systems [14, 12]. In comparing tanglegrams, the former mea-
sures the number of times edges between the leaves cross, and the latter, the proximity
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Figure 2: Fig. 6.6B on p. 206 in [8]. This drawing has twelve crossings.

Figure 3: The optimal layout for the tanglegram show in Fig. 2 has three crossings.
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of the leaves in the two trees. By Spearman’s footrule, the distance between a pair of
drawings is the sum of the distances between the positions of the leafs in the permuta-
tions. These are defined more formally in the next section. We focus on the complexity
of these ranking problems and give efficient algorithms for drawing tanglegrams. The
results in this paper were first presented at the ISBRA conference [33].

Algorithmic results for tanglegram drawing problems Crossing minimization in
tanglegrams has parallels to crossing minimization in graphs. Computing the minimum
number of crossings in a graph is NP-complete [17]. However, it can be verified in lin-
ear time that a graph has a planar drawing (with zero crossings) [21, 30]. Computing the
minimum number of crossings is fixed-parameter tractable [24]. Analogously, crossing
minimization in tanglegrams is NP-complete, while the special case of planarity can be
decided in linear time [15]. Fernau et al. [15] also showed an FPT algorithm when the
trees are binary.

Fernau et al. [15] showed the test for planarity by a reduction to the upward flow
problem [2]. Independently, Lozano et al. [26] showed a simple dynamic programming
based solution that gives a planar drawing inO(n2) time. Fernau et al. [15] also showed
the NP-completeness by a reduction to MAX-CUT problem and a fixed-parameter al-
gorithm for binary trees. In recent work, Buchin et al. [7] showed a fixed parameter
tractable algorithm for complete tanglegrams (where every leaf has the same depth).
The running time was further improved by Böcker et al. [5].

In this work we use the parallel between drawing graphs and tanglegrams described
above. We show a new characterization to utilize results from graph drawing literature.
For planarity testing our reduction adds an edge between the roots of the trees and
runs the planar graph drawing algorithm. This method also leads to a fixed-parameter
algorithm to minimize the number of crossings. Our algorithm improves the running
time of Fernau et al. [15] and answer their conjecture for d-ary trees for d > 2 in the
negative. Unlike the previous methods our algorithms for fixed-parameter tractability
do not require restrictions and hold for arbitrary trees.

The problem of minimizing the number of crossings where one tree is fixed and
the layout of the other tree is allowed to vary is called the one-tree crossing min-
imization (OTCM) problem and has been studied previously. Dwyer and Schreiber
shows an O(n log n) algorithm for balanced trees. For binary trees of arbitrary topol-
ogy, Fernau et al. [15] showed an O(n log2 n) solution, while Bansal et al. [1] show
an O(n log2 n/ log log n) solution. We provide an algorithm that improves the time
bound to O(n log n).

Previous work on tanglegrams is limited to crossing minimization. We introduce
Spearman’s footrule distance function to use as an optimization criterion here. We
show an O(n2) solution for the one-tree fixed case. The complexity of minimizing the
distance when both trees can be modified is open.

For the praxis of tanglegram drawing, we show integer programming formulations
to obtain tanglegram drawings that minimize the two optimization measures discussed.
This work was independent of Nöllenburg et al. [27] who show an integer programming
formulation like ours.

Dwyer and Schreiber [13] proposed a heuristic for crossing minimization in tan-
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glegrams using the polynomial algorithm for OTCM. We show a lower bound on the
worst case behavior of this heuristic.

In other related work, Buchin et al. [7] showed that under certain complexity theo-
retic assumptions there are no constant factor approximation algorithms for minimizing
crossings. They show that crossing minimization is NP-hard even for complete tangle-
grams. They also show an O(n3) time 2-approximation algorithm for complete tangle-
grams. Bansal et al. [1] define a generalized tanglegram where the number of leaves
in the two trees may be different and a leaf in one tree may match multiple leaves
in the other tree. Dwyer and Schreiber [13], Zainon and Calder [34] and Holten and
van Wijk [20] implement various heuristics for visualizing tanglegrams. Nöllenburg et
al. [27] show experimental evaluation of some heuristics, an exact branch-and-bound
algorithm and an ILP formulation.

The rest of the paper is organized as follows. After giving formal definitions in
section 2, we first discuss one-tree optimization problems 3. We then discuss our
reduction method for two-tree crossing minimization problems in section 4. Integer
programming solutions for both crossing and distance minimization problems are dis-
cussed in section 5. Finally, in section 6 we show bounds on the worst case behavior
of the Dwyer and Schreiber heuristic.

2 Preliminaries
We define tanglegrams and their drawings following [28, 15]: Let L(T ) denote the
leaves of a tree T . A linear order < on L(T ) is called suitable if T can be embedded
into the plane such that L(T ) is mapped onto a straight line in the order given by <. A
tanglegram (T1, T2;M) is given by a pair of rooted binary trees (T1, T2) with perfect
matching M ⊆ L(T1) × L(T2). In this paper we consider trees with n leaves labeled
[n] = {1, . . . , n}, with M matching leaves with identical labels.

A drawing of (T1, T2;M) is given by two suitable linear orders <1 and <2 on
L(T1) and L(T2), respectively. We call a drawing proper if it is realized by planar
embeddings of T1 and T2 such that:

1. L(T1) and L(T2) lie on two parallel lines L1 and L2

2. All nodes of Ti lie within the half-plane bounded by L3−i not containing Li

3. Every node is farther from the line than its children.

Let cr(T1, T2,M,<1, <2) denote the number of crossings in the drawing of
(T1, T2;M) given by linear orders <1 and <2. Note that by the definition only
matching edges may cross and that the number of crossings is independent of the
chosen realization. It is easy to see that a pair of edges cross at most once.

We consider two optimization criteria for drawing a tanglegram. The first is
minimizing the number of crossings in the drawing, that is, for a given tanglegram
(T1, T2;M), we want

min
<1,<2

cr(T1, T2,M,<1, <2) .
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Since the crossings can be changed by flipping the children at an internal node, the
problem is to determine the order of the children at each internal node that minimizes
the number of crossings.

The second criterion is based on the distance between the leaves in the orderings.
Given a drawing (T1, T2,M,<1, <2), let πi be the permutation on the leaves induced
by <i, i = 1, 2, πi : L(Ti) → [n]. Then, Spearman’s footrule distance [4, 10] is
given by

dfoot(π1, π2) =
∑
i∈[n]

|π1(i)− π2(i)| .

Again, the optimization problem is to obtain the drawing that minimizes the distance.
Let d be a distance measure on tanglegram drawings. We define d(T1, T2,M,<1, ·)

to be the minimal value of d(T1, T2,M,<1, <2) for all suitable linear orders
<2 on L(T2). Similarly d(T1, T2,M, ·, ·) is defined to be the minimal value of
d(T1, T2,M,<1, <2) for all suitable linear orders, <1 and <2 on L(T1) and L(T2),
respectively. We define the following two natural problems for crossings in tangle-
grams:

One-Tree Crossing Minimization (OTCM)
INSTANCE: A tanglegram (T1, T2;M) with suitable linear order, <1 on L(T1).
RESULT: A <2 with cr(T1, T2,M,<1, <2) minimal.

Two-Tree Crossing Minimization (TTCM)
INSTANCE: A tanglegram (T1, T2;M).
RESULT: <1, <2 such that cr(T1, T2,M,<1, <2) is minimal.

One- and two-tree footrule distance minimization problems are defined analo-
gously.

3 One-Tree Optimization Problems
For one-tree minimization problems, we assume, w.l.o.g, that all the tree labels are in
[n], that M is the identity matching, and that <1 is simply <[n].

3.1 One-Tree Crossing Minimization
We give an algorithm for the one-tree crossing minimization with running time
O(n log n). As in [13, 15], we exploit the optimal substructure property of the prob-
lem and recursively work on the subtrees. Our results are due to the use of efficient
data structures to maintain lists of the subtrees’ leaves. To calculate the optimal layout
at any internal node, v, we analyze the child subtrees to calculate which of the two
available layouts is better. This is sufficient since:

Lemma 1. Let <2 be an optimal suitable linear order on L(T2). Then for every sub-
tree, S, of T2, <2 is an optimal suitable linear order for L(S).

Proof. Assume not. Then there is some <B for S with fewer crossings. Define a new
ordering, <N on L(T2), using <B :

x <N y ⇐⇒
{
x <B y if x, y ∈ L(S)
x <2 y otherwise
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By construction, cr(T1, T2,M,<1, <N ) < cr(T1, T2,M,<1, <2), contradicting the
optimality of <2.

Our algorithm uses 2-3 finger trees [6, 23] to maintain the list of leaves in each
subtree. 2-3 finger trees are ordered search tree with fast split and append operations.
At every internal node, the lists of leaves in the subtrees are compared to count the
number of inversions and merged. The run-time analysis follows the analysis merging
sorted lists in Brown and Tarjan [6].

Theorem 2. OTCM can be solved in O(n log n) time.

Proof. Any suitable order on L(T2) can be constructed by choosing, for each non-leaf
node in T2, one of the two possible orders of its children. At each node, we chose an
ordering recursively, starting from nodes closest to the line L2.

For each internal node, we not only decide the optimal order for its children, we
also construct a 2-3 finger tree.

The base case for our induction is simply the leaves. These require no layout deci-
sion, and can be made into a singleton finger tree of size 1 in constant time [23].

At every internal node v we construct a finger tree holding the leaf labels of its
descendents, ordered by <1. Since v is farther from L2 than either of its children, in-
duction allows us to assume each child already has a finger tree associated with it. The
method for constructing a finger tree and layout choice at v is shown in Algorithm 1.

Algorithm 1 Container merging for the OTCM problem. The inputs p, q, and the
output result are finger trees sorted according to <1.

1: count← 0
2: result← 〈〉
3: while |q| > 0 do
4: (qh, q)← head/tail(q) // pops the first element of q
5: (r, p)← split(p, qh) // splits p, removes elements less than qh into r
6: result← result++ r // appends elements smaller than qh.
7: result← result++〈qh〉
8: count← count+ |p| // the number of crossings for qh
9: end while

10: result← result++ p
11: return (count, result)

The algorithm takes as input two finger trees p and q corresponding to the two child
nodes (node(p) and node(q)). The trees are merged according to the usual merge pro-
cedure on finger trees, while maintaining a count of the number of crossings incurred.
Switching the order of the arguments in the algorithm reveals the number of crossings
if the layout of the two child nodes is switched, from which we can determine the
optimal layout for these nodes.

Complexity Kaplan and Tarjan [23] describe split and append (++) operations on 2-
3 finger trees. The operation (tL, tR) ← split(t, v) takes O(log(1 + min(|tL|, |tR|)))
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time, and t1 ++ t2 takes O(log(1 + min(|t1|, |t2|))) time. Therefore, the head/tail split
on line 4 and append on line 7 take only O(1) time. The values |p| and |q| can be
computed in O(1) time as shown by Hinze and Patterson [19], where they maintain the
trees with size information.

The call to split in line 5 takes time proportional to the logarithm of the smaller of
{|r|, |p\r|}. Taking di as the size of r in the loop iteration when qh is the ith element
in q, the total time taken in line 5 is no more than

∑|q|
i=0 α log di where

∑|q|
i=0 di ≤ p.

This applies to lines 6 and 10 as well; these lines append to result all of p, in |q| + 1
pieces. W.l.o.g., we will assume |p| > |q|.

The total complexity is bounded by the shared complexity of lines 5, 6 and 10.
Since the sum of the logarithms is maximized when all the dis are equal [23], the
complexity is thus O

(∑
i≤|q| log di

)
= O

(
|q| log

(
|p|
|q|

))
. The total time to cal-

culate the optimal layout at a node with n descendant leaves is given by the recur-
rence: T (n) = T (l) + T (r) + O

(
l log

(
r
l

))
, where l, r are the number of leaves in

the left and right subtrees, and l ≤ r and l + r = n. Using induction, assume that
T (m) ∈ O(m logm) for all m < n.

T (n) = O(l log l) +O(r log r) +O
(
l log

(r
l

))
= O((l + r) log r) = O(n log n) .

3.2 One-Tree Distance Minimization
The crossings minimization problem has the optimal substructure property, i.e., a con-
figuration that minimizes the number of crossings of a subtree is also a configuration
that minimizes the crossings in any optimal solution. Therefore, once the value of an
optimal configuration of a subtree is computed, we can reuse the configuration irre-
spective of where the subtree appears in the final layout of the solution. However, in
the footrule distance minimization problem, the optimal configuration of a subtree de-
pends on the position of the subtree. An optimal configuration for one position need
not be an optimal solution for all positions. See Fig. 4 for an example.

Nonetheless, we can find an O(n2) algorithm using dynamic programming. For a
leaf labeled i at position j, the footrule distance is |i − j|. Consider an internal node
v with children u and w with c1 leaves and c2 leaves in the two subtrees, respectively.
The optimal solution for the subtree rooted at v with the leaves starting at position i,
D(v, i), is obtained by either drawing u on the left with leaves from i through i+c1−1
and w on the right with leaves from i+ c1 through i+ c1 + c2 − 1, or in the opposite
order. We choose the ordering that minimizes the value.

D(v, i) = min{D(u, i) +D(w, i+ c1), D(w, i) +D(u, i+ c2)} .

The optimal solution for the tree is D(root, 1). The correctness of the algorithm
is straightforward. The algorithm can be run in O(n2) time, since there are n − 1
internal nodes and for each node we do a constant amount of computation in at most n
positions.
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Figure 4: One-tree footrule distance minimization with respect to the identity permu-
tation 1, . . . , 7. Consider the configuration of the subtree rooted at x. In the left figure,
the configuration of this subtree is optimal and contributes 4 to the overall distance.
If the same layout were to be used at position 1, shown in the right figure, it would
contribute 8 to the footrule distance value. However, the optimal configuration at that
position has footrule distance 4 as shown in the right figure.

4 A Reduction Method for Two-tree Crossing Problems
When only one tree is allowed to vary, the crossing minimization problem (OTCM)
can be solved in polynomial time. But the TTCM problem, where both the trees are
mutable, is NP-hard [15]. However, the problem is fixed-parameter tractable and the
special case of checking if a tanglegram has a drawing with zero crossings (planarity
testing) can be solved in linear time [15]. In this section we show a new characterization
that helps us to use the graph drawing algorithms to obtain planar drawings and a fixed-
parameter algorithm.

4.1 Two-tree Tanglegram Planarity
A graph is planar if it can be drawn on a plane such that no two edges cross, i.e., apart
from its endpoints an edge contains no point in common with any other edge. In a
planar drawing every vertex is placed as a point on the plane and edges are drawn as
curves between the vertices. The interior of an edge is the set of points on the curve
not including its end points.

To avoid planar drawings of the tanglegrams that are not proper we will use a
natural extension of tanglegrams.

Definition 1. An augmented tanglegram is a tanglegram with the roots of the two trees
joined by an edge. This edge is called the augmented edge and labelled A.

To prove the next lemma we need some definitions and results on plane duals of a
graph. The brief discussion below follows Diestel [11, Sec. 4.6]. For more details on
plane graphs, please refer to chapter 4 in Diestel [11].

LetG = (V,E) be a planar multigraph and let F (G) be its faces. A graph (V ∗, E∗)
with faces F (V ∗, E∗) is called a plane dual of G, if there are bijections

F → V ∗ E → E∗ V → F ∗

f 7→ v∗(f) e 7→ e∗ v 7→ f∗(v)
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and satisfies the following conditions:

(i) v∗(f) ∈ f for all f ∈ F ;

(ii) |e∗ ∩ G| = |̊e ∩ e̊∗| = |e ∩ G∗| = 1 for all e ∈ E, where e̊, e̊∗ are the interiors
of the edges e, e∗. That is, the edges e, e∗ intersect at exactly one point in the
interior of the edges;

(iii) v ∈ f∗(v) for all v ∈ V .

We denote such a graph (V ∗, E∗) as G∗.
We can construct a plane dual G∗ as follows. We pick a point v∗(f) in each face

f of G. The vertices are connected by edges e∗ satisfying (ii) above. It can then be
shown that there is a bijection V → F ∗ satisfying (iii).

It is easy to show that if G∗ is a plane dual of G, then G is plane dual of G∗.
Note that by the bijection on edges, for every edge e in G, there is a corresponding

edge e∗ in G that intersects e on the plane. For a set of edges C in G the corresponding
set of edges in G∗, {e∗|e ∈ C}, is represented as C∗.

We need the following result for our proof.

Proposition 3. ([11, Prop. 4.6.1]) For any connected plane multigraph G, an edge set
C ⊆ E(G) is the edge set of a cycle of G iff C∗ := {e∗|e ∈ C} is a minimal cut in G∗.

Since G and G∗ are duals of each other, a minimal cut in in G corresponds to a
cycle in G∗.

Lemma 4. A tanglegram has a proper planar drawing iff the augmented tanglegram
has a planar drawing.

Proof. The “only if” direction of the lemma is straightforward. For the other direction,
suppose that the augmented tanglegram G has a planar drawing. The set of matching
edges between the leaves, M , together with the augmented edge A separate G into two
trees. Therefore, C = M ∪A is a cut. It is also a minimal cut because no proper subset
of C is a cut inG. By proposition 3, there is a cycle in the plane dualG∗ corresponding
to a minimal cut in G. Consider the cycle C∗ in G∗ corresponding to this minimal cut.
C∗ has n+ 1 vertices and edges. There is an edge A∗ in the dual graph that intersects
the augmented edge A. Let A∗ be an edge between vertices u∗, v∗ in the dual graph.

The intuition of the proof is the following. If there is a proper planar drawing of
the augmented tanglegram, then one of the faces corresponding to the vertices u∗ or v∗

corresponds to the unbounded face, and the edges of the cycle intersect the matching
edges in M in a linear order. We will deduce this linear order by the sequence in which
the edges of the cycle C∗ intersects the edges of M .

Let the vertices of cycle C∗ be u∗, u∗1, . . . , u
∗
n−1, v

∗, u∗, in order. Consider the se-
quence of matching edges that are intersected by the edges (u∗, u∗1), (u∗1, u

∗
2), . . . , (u∗n−1, v

∗).
This sequence defines a linear order on the leaves.

Now, T ′ = (V (T1)∪L(T2), E(T1)∪{M}) is a tree, where L(T2) are the leaves of
T2. In the planar drawing, the curve formed by the edges of C∗ = M∗∪{A∗} intersect
the edges M in some order, <′. Therefore there is a proper drawing of the tree T ′ such
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that the leaves are ordered by <′. Similarly there is a drawing of the second tree with
the same linear order. These two drawings of the tree can be pasted together to form a
proper planar drawing of the tanglegram.

Theorem 5. Whether a tanglegram admits a planar drawing can be decided in linear
time.

Proof. Apply a planar graph drawing algorithm on the augmented tanglegram. Since
the planar graph drawing algorithm runs in linear time [21, 30], from the previous
lemma we can decide the planarity of the input tanglegram in linear time.

We can build the dual of the planar drawing in linear time. Since the proof of
lemma 4 is constructive, we have a linear time algorithm to obtain the planar drawing
of the tanglegram, if one exists.

Please refer to the appendix for an alternate construction using edge contraction,
instead of constructing the dual as above.

4.2 Fixed-Parameter Tractability of TTCM
The two-tree problem (TTCM), when restricted to binary trees, is fixed parameter
tractable with parameter k, the number of crossings, as shown by Fernau et al. [15].
Their proof relies on the trees being binary and achieves the result through a compli-
cated analysis of quadruples of leaves. They conjecture difficulty for d-ary trees for
d > 2. We reduce the crossing minimization of tanglegrams to the crossing minimiza-
tion problem in graphs. We use the elegant work of Kawarabayashi and Reed [24]
to provide an FPT algorithm for TTCM, thus answering the conjecture of Fernau et
al. [15] in the negative.

Like in the planar graph drawing problem, we create an augmented tanglegram but
in this case we also want to disallow crossings with internal edges. To achieve this,
we add n duplicate edges around each internal edge and the augmented edge. If two
internal edges cross, there will be n2 crossings, which is more than the number of
crossings in the sought proper drawing. Similarly, anything but the proper drawing of
the edges connecting the leaves will increase the number of crossings. This ensures
proper drawing.

Let T = (T1, T2;M) be a tanglegram. We build a graph G = (V,E) based on
the augmented tanglegram of T . As described earlier we want to augment the tangle-
gram with duplicate edges that would forbid drawings with crossings involving internal
edges. This is pictorially represented in Fig. 5. Since we do not want multiple edges
between a pair of vertices we add a new vertex in the middle of each duplicate edge to
make the edges unique.

Let r1 and r2 denote the roots of T1 and T2, and IE = E(T1)∪E(T2)∪{(r1, r2)}.
We will create a new graph G as follows. Let the vertices of G be

V (G) = V (T1) ∪ V (T2) ∪
⋃

ei∈IE

{vi,1, . . . , vi,n}
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Figure 5: a) a tanglegram instance; b) an alternative drawing of the augmented tangle-
gram that has a lower crossing number; c) to avoid bad drawings like b), the internal
edge is “thickened” by n edges; and d) the graph G encoding the n-augmented tangle-
gram from a).

and the edges of G be

E(G) = IE ∪
⋃

ei=(xi,yi)∈IE,
j=1,...,n

{(xivi,j), (vi,jyi)} .

We call G, the n-augmented tanglegram of T .

Lemma 6. In any drawing of the n-augmented tanglegram with the minimal number
of crossings, only the matching edges cross.

Proof. Since a pair of edges can cross at most once, if an edge e crosses (xi, vi,j) or
(vi,j , yi) for some (xi, yi) ∈ IE and j ∈ [n], then it must cross n such edges in an
optimal drawing. If any two edges in IE cross they will produce n2 crossings which
is more than any proper drawing will produce. Therefore every crossing must involve
a matching edge.

Suppose that a matching edge e crosses (xi, vi,j) or (vi,j , yi) for some (xi, yi) ∈
IE and j ∈ [n], then it must cross n such edges, as we argued before. Let z1, . . . , zl

be the leaves descending from (xi, yi) in the respective tree. Then, e can be redrawn
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to cross the matching edges from the leaves z1, . . . , zl. This redrawing reduces the
number of crossings to l < n.

Therefore, in any optimal solution only matching edges cross.

Lemma 7. If there is a drawing with k crossings in which only matching edges cross
then there is a proper drawing with at most k crossings.

Proof. The proof is similar to the proof of lemma 4. The “only if” direction is straight
forward. To prove the other direction suppose that the augmented tanglegram has k
crossings. Since this is not planar we create a new graph by adding vertices where the
edges cross. Further, for every leaf l in tree Ti for i ∈ {1, 2}, add a vertex vl on the
matching edge out of l closer to the leaf than the crossing vertices added previously.
Let Mi = {(l, vl) : l is a leaf in Ti} for i ∈ {1, 2}. We call the new graph Ḡ. Ḡ is
planar by construction. If the drawing of the augmented tanglegram had k crossings
then |V (Ḡ)| = |V (G)|+ 2n+ k.

The edges of M1 together with the n augmented edges form a minimal cut in Ḡ,
therefore the corresponding dual edges form a cycle of size 2n in Ḡ∗. Now the dual
edges cross the edges in M1 in some order starting with the one closest to the aug-
mented edges. As we argued in lemma 4 this sequence of leaves form a linear order in
a proper drawing. Similarly we get a proper drawing of T2 using the edges of M2 and
the augmented edges.

Pasting these layouts together we get a proper drawing of the tanglegrams with k
crossings.

Please refer to the appendix for an alternate construction using edge contraction,
instead of constructing the dual as above.

Theorem 8. TTCM is fixed parameter tractable over the class of all finite trees with
parameter k, the number of crossings. The algorithm takes time quadratic in n.

Proof. Given a tanglegram T of size n we create an n-augmented tanglegram
G. The size of G is O(n2). We will use the linear-time algorithm by Reed and
Kawarabayashi [24] on G to obtain a drawing with the optimal number of crossings.
By lemma 6 only matching edges cross. And by lemma 7 we can redraw this graph to
obtain a proper drawing for the tanglegram T . These steps take time linear in the size
of G, i.e., quadratic in n.

The factor involving k in the running time depends on which of the subroutines
is used in the algorithm of [24], and the choice of the subroutine depends on various
factors, viz., the tree-width, face-width, embeddability in a surface of small genus.

5 Integer Programming solutions
Integer Linear Programming (ILP) is one of the standard approaches to obtain fast
solutions for hard problems as they provide provably optimal solutions. Though the
running time is not polynomially bounded, they are fast in many practical settings, and
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are often better than provably efficient methods. We describe ILP formulations for the
two-tree optimization problems considered in this paper.

To formulate an integer program for a given instance, we introduce variables for
the nodes of the trees. The relative position of the leaves is determined by the order of
the children at the internal nodes. These constraints are represented by linear equations
on the variables. The objective, to minimize the number of crossings or the footrule
distance, is also represented by a linear expression on the variables. We use the linear
programming solver, CPLEX, to solve the linear program. The values for the variables
determine an optimal drawing for the tanglegram. The details follow.

5.1 Crossing minimization
The formulation for crossing minimization is based on the following intuition: if the
leaf i is to the left of leaf j in both of the trees, then the edges connecting the i’s and
the j’s do not cross. The edges cross if there is an inversion in the order.

To realize this, for the first tree, we introduce binary variables xi,j for all leaf pairs
(i, j) such that i < j. xi,j is set to 1 iff i appears before j in the linear order. For every
internal node k we introduce a variable yk.

Let c1 and c2 be the two children of k. In a layout yk is set to 1 if c1, c2 are placed
to the left and right, respectively, otherwise yk = 0. For all leaves i in the subtree
below c1 and j in the subtree below c2, if i < j then xi,j = 1 ⇐⇒ yk = 1, i.e.,
xi,j = yk. If j < i then yk = 1 − xi,j . Analogously, for the second tree we define
these constraints over variables x′i,j and y′k.

If i is to the left (or right) of j in the drawing of both trees in the tanglegram, then
there is no crossing. i and j cross only when the order is reversed. That is, i, j cross
iff xi,j 6= x′i,j . We let zi,j = xi,j ⊕ x′i,j . We can rewrite the XOR as the following
linear inequalities. zi,j − xi,j + x′i,j ≥ 0; zi,j + xi,j − x′i,j ≥ 0; zi,j − xi,j − x′i,j ≤
0; zi,j + xi,j + x′i,j ≤ 2.

The objective function for minimizing the number of crossings is therefore
min

∑
i<j zi,j .

5.2 Distance minimization
We describe two different formulations for the distance minimization problem. The
first formulation is based on the dynamic programming idea used in the one-tree dis-
tance minimization problem. The second uses the simple fact that the the order of
its children in an internal node determines the relation between the leaves in the two
subtrees.

Dynamic programming (DP) formulation In the dynamic programming algorithm
for one-tree distance minimization (section 3.2), every subtree is rooted at every possi-
ble position so that its leaves are located starting at position i for all i ∈ [n]. Here we
will generate equations to allow placing each subtree of either tree at every position.
The constraints will eliminate mutually incompatible configurations. The sum of the
distances of the matching edges can be calculated for each legal layout of the trees.
The objective is to determine the optimal solution among all possible layouts.
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For a vertex k we set a binary variable yk,p = 1 when the subtree beneath it is
placed starting at position p. For instance, yroot,1 = 1 always. If k is an internal node,
let i and j be its children with l and r leaves in the subtrees below them. Either i is
placed as the left child or the right child. If i is placed as the left child then its leaves
take positions p through p+ l − 1 and the leaves below j take positions p+ l through
p+ l + r − 1.

yk,p = 1 implies that the node i is placed at position p or p+ r. This implication is
written by the inequality yi,p + yi,p+r ≥ yk,p. Similarly, yj,p + yj,p+l ≥ yk,p. Both i
and j cannot be the left (or right) child of k simultaneously, so yj,p + yi,p ≤ 1.

Every leaf must occur exactly once. For every leaf l, therefore,
∑

r∈[n] yl,r = 1.
Every position must have exactly one leaf, so ∀r ∈ [n],

∑
l∈leaves yl,r = 1. We use

variables y′ and similar inequalities for the second tree.
To calculate the distance contributed by each leaf we introduce the variable zl,r,r′ .

Binary variables zl,r,r′ = 1 only when the leaf l is present at positions r, r′ in the
two trees respectively. zl,r,r′ contributes |r − r′| to the distance value. Therefore, the
objective function is min

∑
leaf l

∑
r∈[n]

∑
r′∈[n] |r−r′|zl,r,r′ . The absolute values can

be converted to simple linear terms by standard techniques [3].

Related Distance (RD) formulation In this formulation we will use the relative dis-
tance between the pair of leaves on the same tree. This distance is determined by the
the order of the children at the least common ancestor.

Consider an internal node i with m leaves in its subtree and let its two children be
c1, c2. Let j, k be leaves in subtrees c1, c2 respectively. Let xj denote the position of
leaf j in the linear order, [n]. Introduce a binary variable yi for each internal node i to
model the choice of c1 or c2 being the left child. yi = 1 when c1 is the left child (and
j is to the left of k). The opposite is implied by yi = 0. Now the order of the children
c1, c2 determine the distance between the leaves in its subtrees.

yi = 1 ⇐⇒ −(m− 1) ≤ xj − xk ≤ −1 (1)
yi = 0 ⇐⇒ 1 ≤ xj − xk ≤ m− 1 (2)

These implications are written as the following inequalities: xj−xk+1 ≤ m(1−y)
and xj − xk +my ≥ 1.

Next we need to ensure that all leaves 1 ≤ xj ≤ n and all xj’s are unique. The
uniqueness constraints can be written in a number of ways. We model them as a match-
ing problem. It has been observed in the ILP literature that the vertices of the matching
polytope are all lattice points and therefore the ILP software need not apply further
reduction techniques [25]. As usual, we define similar inequalities on variables x′i
and y′i for similar constraints on the second tree. Finally, the optimization criterion is
min

∑
i |xi − x′i|. As before, we will convert the absolute values to linear forms using

standard techniques [3].

5.3 Timing
The performance of these formulations were tested on a random set of tanglegrams. A
random tanglegram is given by a pair of random trees. To generate a random tree we
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Table 1: Running time of ILP solutions: average time, in secs, is averaged over 30 runs.
Crossing Problems Distance problems

Input size Crossing Input Size RD DP
Time variance Time variance Time variance

10 0.02 0.01 6 0.12 0.04 0.41 0.25
20 0.32 0.17 10 16.87 19.21 36.34 18.69
30 2.03 0.54 11 75.93 110.80 99.04 56.06
40 7.79 1.7 12 182.10 245.75 324.36 211.48
50 20.87 3.64 15 781.88 1171.95 8663.02 6208.82

take a random subset of [n]. This is the set of leaves on the left subtree of the root.
The rest of the elements are leaves of the right subtree. We recurse on these subsets to
generate the random tree. We take two such trees to form a random tanglegram.

We executed the ILP formulations of the problem using CPLEX-10 on a Pentium
IV 3 GHz dual-core desktop machine with 2GB of RAM. The data shown in Table 1 are
obtained by averaging the running time over thirty runs each for problems of various
data sizes. The ILP formulation for the crossing minimization problem is very fast.
Both the ILP formulations for the distance version are slower in comparison.

For the distance minimization problem, the relative distance version is about three
times faster than the dynamic programming version. We see in our examples that most
of the executions run in about less than half of the reported mean time. There are about
10% of the cases that take much longer, leading to increased variance. In most of these
cases CPLEX obtains the optimal solution quickly or finds a solution very close to
optimal solution very soon, but takes much longer to make minor improvements or to
ensure there is no better solution.

6 Dwyer and Schreiber’s seesaw heuristic
Though Buchin et al. [7] shows that, under certain complexity theoretic assump-
tions, there is no constant-factor approximation algorithm for TTCM, Dwyer and
Schreiber [13] present a heuristic that iteratively solves OTCM for each tree. The
idea is to fix <2, then solve OTCM on T1, then fix <1 and solve OTCM on T2. They
found that this converged to a good solution after ten or fewer iterations. We call this
approach “seesawing”.

For a tanglegram (T1, T2;M), we say a drawing (<1, <2) is seesaw-optimal if it
cannot be improved by seesawing, that is, if

cr(T1, T2,M,<1, <2) = cr(T1, T2,M, ·, <2) = cr(T1, T2,M,<1, ·) .

We prove the lower bound on the worst case performance of this heuristic by find-
ing one tanglegram that has a seesaw-optimal drawing that is inferior to its optimal
drawing. By iteratively replacing the leaves with copies of the drawing, we create a
chain of seesaw-optimal drawings with a quadratically increasing number of crossings,
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while the optimal crossing number stays small. From this we describe planar tangle-
grams of arbitrarily large size and seesaw-optimal drawings with Ω(n2) crossings. In
an extreme case, there are planar tanglegrams of size Ω(n) with drawings with Ω(n2)
crossings that cannot be improved by seesawing.

Theorem 9. For any N , there is an n > N , a tanglegram of size n, and a seesaw-
optimal drawing of that tanglegram with Ω(n2) more crossings than an optimal draw-
ing.

Lemma 10. Let A be a tanglegram with k leaves per tree, p crossings in an optimal
layout, and q crossings in a seesaw-optimal layout, and B be a tanglegram with m
leaves per tree, s crossings in an optimal layout, and r crossings in a seesaw-optimal
layout. Then there is a tanglegram over(A,B) with km leaves per tree, ks + pm2

or fewer crossings in an optimal layout, and kr + qm2 crossings in a seesaw-optimal
layout.

Proof. Let A be the tanglegram (A1, A2;MA), and let B be the tanglegram
(B1, B2;MB). Assume, w.l.o.g., that the leaves in A are in [k] and that MA is
the identity matching. Assume that the leaves in B are in [m] and that MB is the
identity matching.

We form a new tanglegram over(A,B) = (C1, C2;MC) from A and B by replac-
ing each leaf i in Aj with a tree B′j,i, for j ∈ {1, 2}. B′j,i is formed by replacing each
leaf l in Bj with a leaf labeled (i − 1)m + l. over(A,B) has km leaves in each tree.
We use the identity matching for MC .

Before considering seesaw-optimality, we show that an optimal layout of
over(A,B) has ks + pm2 or fewer crossings. We can see this by picking an
optimal layout for the embedded A and each embedded B in over(A,B). Each
B incurs s crossings. Since there are k of them, they contribute ks crossings. The
embedded A incurs p crossings, but each one of these is, instead of a crossing of
leaves, a crossing of B1 and B2. Each of these crossings creates m2 leaf crossings,
leaving a total of ks+pm2 crossings in this layout of over(A,B). Any optimal layout
must have at most this many crossings.

We will now pick a drawing for over(A,B) and show that it has kr+qm2 crossings
and is seesaw-optimal. The drawing that we pick is one where the copy ofA is seesaw-
optimal and each copy of B is seesaw-optimal.

The argument for the number of crossings is the same as that for the upper bound
on the optimal crossings. To show that this layout is seesaw-optimal, we need to
show that fixing one leaf order and solving OTCM on the other tree can not decrease
the number of crossings. We begin seesawing by finding the layout that minimizes
cr(C1, C2,MC , ·, <2). The analysis below would apply just as well if we were to fix
<1.

By Lemma 1, after fixing <2, any optimal layout for a copy of B1 in C1 is an
optimal drawing for B1 in isolation. Above the copies of B1 we have a copy of A1.
Each pair of leaves c, c′ of A has been replaced by a pair of copies of B1 such that if,
say, c < c′, then d < d′ for all leaves d ∈ B′1,c and d′ ∈ B′1,c′ . Using Algorithm 1,
any optimal drawing for the copy of A1 in C1 is reached by the same procedure as a
drawing for the original A1 was reached. It therefore can not reduce the number of
crossings.
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Figure 6: Tanglegrams for use in Theorem 9. A has a drawing with only 1 crossing,
but seesawing can only find a drawing with 5 crossings. B has a planar drawing, but
seesawing can only find a drawing with 1 crossing.

Given a tanglegram A with a leaves, b crossings in a seesaw-optimal layout, and c
crossings in an optimal layout. Iterating over(A,A) m− 1 times produces a tree with
am leaves, bam−1

(
am−1
a−1

)
crossings in a seesaw-optimal layout, and cam−1

(
am−1
a−1

)
crossings in an optimal layout. The difference between the optimal and seesaw-optimal
layouts, in this tree of size am, is greater than (b− c)(a2m−2), which is Ω((am)2).

To complete the proof, we need only an example of a tanglegram drawing with a
seesaw-optimal layout that is not optimal. Two examples are provided in Fig. 6. The
figure on the right shows that we can even find planar tanglegrams where seesawing
only finds layouts with Ω(n2) crossings.

7 Conclusion and Open Problems
We have shown several significantly faster algorithms for tanglegram drawing, includ-
ing for planar, k-crossing, and one-tree optimization problems. We have also intro-
duced the footrule distance measure for tanglegrams and shown an efficient one-tree
drawing algorithm. We conjecture that the two-tree footrule distance minimization
problem is NP-complete.

Future work includes improving drawing heuristics for tanglegrams with the dis-
tance measure. Our ILP solution for the crossing measure is efficient, but the ILP
solution for the footrule distance problem is slower and may perhaps be improved. It
also remains to explore the seesaw method for the distance heuristic, though we have
shown it can be larger than the optimal solution by Ω(n2) in the crossing case. For
permutations, footrule distance can be computed in linear time while counting cross-
ings takes Ω(n log n) time. However, for tanglegrams crossing minimization takes
Ω(n log n) time while footrule distance seems harder to optimize.
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Appendix

A Alternate Proofs
Here we will provide alternate proofs for Lemma 4 and Lemma 7.

Lemma (4). A tanglegram has a proper drawing with zero crossings iff the augmented
tanglegram has a planar drawing.

Proof. The “only if” direction of the lemma is straightforward. For the other direction,
consider a planar drawing of the augmented tanglegram. If the drawing of the aug-
mented tanglegram is proper, removing the augmenting edge gives us a proper planar
drawing. If the drawing of the augmented tanglegram is not proper, we need to show a
way to rearrange the edges of this drawing to produce a proper drawing.

To do so, first contract the internal edges of the two trees except for the two edges
out of each root. During the contracting process, shown in Fig. 7, no new planar regions
are produced. Regions that are bounded between the internal edges of one tree, the
edges connecting the leaves, and the internal edges of the other tree vanish when the
internal edges are contracted (see Fig. 7). We call the resulting graph the reduced graph
and label the root and its two children r1, u1, v1, respectively, in one tree and r2, u2, v2
in the other.

There are four possible edges between {u1, v1} and {u2, v2}. We call these edges
between the two trees super-edges. Each of these super-edges represents the union
(merger) of some of the regions. We claim that at most three of these edges exist. If
all four edges existed, then together with the augmented edge (r1, r2) they would form
K3,3 (see Fig. 7) contradicting the planarity of the original drawing.

Without loss of generality, let the three super-edges be (u1, u2), (v1, v2) and
(u2, v1). Any drawing on the reduced graph with these edges can be redrawn to a
proper drawing of the reduced graph (as the example in Fig. 7). Rearranging the
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Figure 7: (a) & (b): Contraction process: After contracting the dashed internal edges,
planar region 2 vanishes. The new edge can be thought of as containing the region 2
within it, and is called a super-edge. (c) & (d): Avoiding K3,3 minor: There are at
most 3 edges between pairs (u1, v1) and (u2, v2). (d) is not proper. The edges can be
rearranged to form (c).

super-edges is equivalent to rearranging of the edges and the regions of the original
graph. Now expanding the edges in the reverse order of contraction gives us a proper
drawing for the tanglegram.

The idea of the proof can be extended to get an algorithm that generates a proper
drawing for the tanglegram. For the curves of the planar graph we set a convention for
left and right children and remember the order of the children during edge contraction.
The order of some edges might be reversed in rearranging the super-edges. Finally,
the order information is used recursively during the edge expansion to obtain a proper
drawing.

The edge contraction and expansion takes time linear in the size of the input graph.
Since planar drawing of the graph takes linear time, together with the redrawing algo-
rithm described above gives a linear time algorithm for planar drawing of a tanglegram,
if one exists.

Alternate proof to lemma 7

Lemma (7). If there is a drawing with k crossings in which only matching edges cross
then there is a proper drawing with at most k crossings.

Proof. To prove this lemma we use the idea from the proof above retrace its steps.
Contract all the internal edges of the trees except the two edges out of the root of

the two trees. The contraction of edges does not introduce any new crossings. We now
have the reduced graph on six vertices r1, u1, v1, r2, u2, v2, the root and two internal
vertices in the two trees respectively. (Unlike in lemma 4 the super-edges represent
the merger of planar regions and also crossings between edges, and we cannot limit
the number of super edges to three.) We can rearrange the reduced graph to form a
proper drawing of the tanglegram. Finally, we expand the edges in the reverse order of
contraction.

This gives a proper drawing with at most k crossings. The algorithm to redraw
takes time linear in the size of the input graph.

22


