
1

Locality-Awareness in BitTorrent-like P2P
Applications

Bo Liu, Yi Cui, Yansheng Lu, and Yuan Xue

Abstract—This paper presents the measurement study of
locality-aware P2P solutions over real-world Internet AS topol-
ogy. By using the accesses of nodes of PlanetLab testbed, we
create a detailed AS-level map including the end-to-end path of
all nodes, as well as the relationship of all involved ASes. Based on
this map, we evaluate the performance of a set of locality-aware
P2P solutions, including an optimal solution guaranteeing the
minimum AS hop count, as well as modified BitTorrent system
with locality-awareness built into its neighbor selection, peer
choking/unchoking, and piece selection processes. Our findings
suggest that locality-awareness can help existing P2P solution
to significantly decrease load on Internet, and achieve shorter
downloading time. By comparing the performance of different
kinds of locality-aware and traditional BitTorrent systems, we
also point out the necessity to tradeoff between the goals of
optimizing AS-related performance and achieving fairness among
peers such as intra-AS traffic and peer burden fairness.

I. INTRODUCTION

Peer-to-peer (P2P) communication has been proven to be an
extremely powerful paradigm to a diverse family of Internet
applications. A few examples include bulk content distribu-
tion [1], voice over IP [2], and broadcasting of TV-quality
program [3], [4], all of which have been proved by the
commercial deployment of planet-scale systems serving tens
of millions of users. Among them, BitTorrent is arguably the
biggest constituent of P2P traffic, which dominates today’s
Internet.

In P2P systems, every peer not only downloads content from
other peers, but also makes use of its upload bandwidth to
serve other peers. There is great diversity of different peers
both in terms of geographic distance and Internet topology,
which introduces tremendous amount of traffic crossing the
boundary of Internet Service Providers (ISPs). Such traffic
often causes great financial loss to ISPs with active P2P
users, which motivates them to control P2P traffic by “throt-
tling”, or bandwidth limiting. As countermeasures, many P2P
applications use traffic obfuscation technique to make itself
indistinguishable from other applications, an attempt to stop
ISPs from regulating P2P traffic. Such an interaction quickly
becomes an escalating game of mouse and cat.

This work was supported by NSF award 0643488, Vanderbilt Discovery
grant, and a gift from Microsoft Research. Views and conclusions of this
paper are those of authors, which should not be interpreted as representing
the official policies, either expressed or implied, of the funding agencies.

Bo Liu and Yansheng Lu are with the school of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan, Hubei,
430074 China e-mail: {newpoo, lys}@smail.hust.edu.cn.

Yi Cui and Yuan Xue are with the Department of Computer Sci-
ence, Vanderbilt University, Nashville, TN, 37240 USA e-mail: {yi.cui,
yuan.xue}@vanderbilt.edu.

To alleviate the tension between ISPs and P2P users, actions
can be taken on both sides. On one hand, ISP can install
cache nodes to increase the data availability and redirect P2P
applications to such opportunities within the same ISP. On the
other hand, P2P applications can employ a variety of tech-
niques such as ISP-friendly neighbor selection and locality-
aware piece scheduling algorithm to reduce the inter-ISP
traffic. So far, most works dedicated to this subject have been
focused on the feasibility of ISP-friendly P2P applications[5],
[6], quantitative study on saving of inter-ISP traffic through
trace analysis[7], and simulation study on the tradeoff between
downloading performance and enhancing intra-ISP traffic[8].
Given these works, we argue that what is still missing is
a comprehensive study on various ways to embed locality-
awareness into P2P applications and their impacts on the ISPs.
In particular, the following two facts are taken into account in
our study.

First, the relationship among ISPs is not as simple as
either inter- or intra-ISP. ISPs themselves interconnect into a
complex network of autonomous systems (AS)1. Two ASes, if
connected to each other, must have one of the following four
kinds of relationships: Provider-Customer, Customer-Provider,
Peer-to-Peer2, and Sibling. Each customer AS should pay its
provider AS for both inbound and outbound traffic. Traffic
across peer-to-peer ASes or sibling ASes are usually free. The
users of a single P2P application can reside in many ASes
which, together with third-party ASes interconnecting them,
easily form a network consisting of all above relationships.

Second, a P2P application is usually composed of sophis-
ticated semantics. Take BitTorrent as an example, it operates
at several levels. At the macroscopic level, a peer, if intended
to download a file, first retrieves from the tracker a list of
other peers interested in the same file (neighbor selection).
At the intermediate level, during the downloading, among
the list of peers, each peer dynamically determine the subset
of other peers to share data with (choking and unchoking).
At the microscopic level, a file is divided into many pieces.
Among multiple connections with other peers, each peer
chooses which piece to download from which peer (piece
picking policy). Readers can find a detailed discussion on the
same topic at Sec. III-C. This architectural design is inherited
by many P2P applications including P2P streaming systems.

1In the remainder of this paper, we use the terms AS and ISP interchange-
ably.

2We note that this notion should not be confused with the same term used
to described applications such as BitTorrent. To avoid confusion, we use peer-
to-peer to refer to relationship among ASes, and P2P to refer to BitTorrent
and applications alike.

2

Although existing work has studied ISP-friendly neighbor
selection[8] (macroscopic level), awareness to ISP-friendliness
can be actually built in at all levels.

These two facts call for a systematic field study on various
locality-aware P2P solutions and their impacts on ISPs. In
light of the first fact, we need a detailed and up-to-date AS-
level map revealing the connection among ASes and their
financial relationships. While mature techniques have been
practiced to infer AS relationship, we still need to know the
exact end-to-end path two peers connect with each other,
which often traversing multiple ASes. Such knowledge can
be only obtained when one is able to access a large number
of peer machines. In light of the second fact, it is extremely
challenging to rely on analytical study to model subtle locality-
aware mechanisms deployed at all operating levels of a P2P
application such as BitTorrent. Having a reasonably-sized
testbed to run the P2P application on all its nodes would be
a better appproach to fully capture the behavior of peers and
the impact on the ISPs they belong to.

As such, we conduct our study on the PlanetLab testbed[9],
we obtain the access to PlanetLab nodes around the globe,
and use the information on their all-pair end-to-end path to
construct a detailed AS-level map. Based on this map, we
conduct both simulation and real-system studies. First, we
devise the optimal locality-aware strategy, which minimizes
AS hop count of the entire P2P distribution structure. Since
the optimal structure is a static tree, obtaining its perfor-
mance via simulation on the AS-level map would achieve
the same effect as deploying it on PlanetLab. Second, we
modify the BitTorrent system at all operating levels and
test its performance on PlanetLab. In particular, we build
locality-awareness into neighbor selection (macroscopic level),
choking/unchoking mechanism (intermediate level) and piece
picking policy (microscopic level).

Our findings suggest that locality-awareness can help ex-
isting P2P solution to significantly decrease load on Internet
and achieve shorter downloading time. We point out the
necessity to tradeoff between the goals of achieving fairness
among peers and optimizing AS-related performance such as
intra-AS traffic and peer burden fairness. We also find that
continuous seeding can not improve the downloading time
of standard BitTorrent, but can significantly improve it for
locality policies. It can also reduce the number of connected
peers for choker and piece picker locality policies.

The rest of this paper is organized as follows. First, we
discuss the related work in Sec. II to prepare background
information to our study. Sec. III presents the evaluation
methodology. We present findings of our experiment in Sec. IV
and conclude the paper in Sec. V.

II. RELATED WORK

We summarize previous works in four key areas related to
our research: (1) BitTorrent system and studies which analyze
and measure it, (2) P2P streaming solutions and efforts to
adapt BitTorrent to streaming applications, (3) studies on
locality-aware P2P solutions, and (4) studies on inferring
Internet AS relationships.

Many analytical studies[10], [11], [12] have proved that
BitTorrent is nearly optimal in terms of user experienced
downloading time. In particular, [12] shows that the optimistic
unchoking policy and rarest-first policy are in fact unnecessary
for BitTorrent to achieve asymptotic optimality in terms of
user population, where random peer and piece selection
would suffice. The near-optimal performance of BitTorrent is
also confirmed in many simulation and measurement studies,
e.g., [13], [14]. However, all these studies, in fidelity with
the original BitTorrent design, do not consider the issues of
locality and ISP friendliness.

An extended set of works have proposed P2P solutions to
the large-scale distribution problem in the context of multi-
media streaming. Many works are developed under the term
overlay multicast, which we consider equal to P2P streaming.
Narada[15] is the pioneering work promoting the utilization
of peer resources to replace the infrastructure support, i.e.,
IP multicast. Other notable works include Bullet[16] and
SplitStream[19], etc. The P2P solution is shown to be able
to handle a variety of application scenarios, including live
streaming such as conferencing, and on-demand streaming
such as video-on-demand. In particular, peer-side caching is
widely used to address the asynchronous request problem
in on-demand streaming. oStream[20] utilizes application-
layer multicast and peer buffering to support video-on-
demand. A cache-and-relay architecture is proposed in [21].
Advanced coding schemes are also applied to increase the
system resilience or throughput, such as multiple descrip-
tion coding[22], erasure coding[23], rateless coding[24], and
network coding[25], etc. All these solutions build on certain
distribution structure, e.g., single tree, multiple trees, or mesh.
They are dynamic to withstand peer joining or leaving, but
have a clearly-defined parent-child relationship between any
pair of connected peers. This is in contrast with BitTorrent
design, where peers exchange data within a much less struc-
tured swarm.

Interesting enough, BitTorrent has been highly influential to
the design and development of many modern commercial P2P
streaming systems[3], [4], [26], which adopt a receiver-driven
piece selection approach. Given BitTorrent’s statue as the de
facto P2P downloading protocol and a high-quality open-
source software, there have been several proposals to directly
modify it to support the “viewing-while-downloading” feature,
such as BASS[27], BiToS[28], and Toast[29]. The basic idea
of these works is to restrain the piece picking action within
a moving window along with the playback, which is also
adopted by our research. These previous works primarily
focus on server load reduction by the aid of P2P downloading,
and proved that significant saving is achievable via simulation
and system deployment. In our work, we also explore
other performance-enhancement dimensions such as locality-
aware P2P downloading. BitTorrent inc. also promotes
DNA[30], a content distribution solution which claims
to support “viewing-while-downloading” as well. However,
its technical details remain unknown at the moment of writing.

There have been several proposals on locality-aware P2P

3

solutions. Bindal et al.[8] propose biased neighbor selection
mechanism to reduce inter-ISP traffic, which requires no
dedicated central servers. Karagiannis et al.[5] show locality-
aware P2P solutions can significantly alleviate the induced
cost at the ISP. The work by Ren et al.[6] confirm the
benefits gained by peer-relay in VoIP, and then propose an
AS-aware peer-relay protocol for P2P VoIP system. Huang
et al.[7] confirm the benefits of peer-assisted VoD, and
show that locality-aware P2P solution can reduce inter-ISP
traffic. [17], [18] propose some practical methods to provide
Internet locality topology information to peers. However,
there is little work on the evaluation of impact of locality-
aware P2P solutions based on real world Internet AS topology.

Finally, there are many works on inferring Internet AS
topology, which we simply leverage. The work by Gao [31] is
the first comprehensive study targeted on this topic. By analyz-
ing BGP table entries, it finds valley-free property of Internet
AS path, and further identifies relationships between neighbor
AS pairs. Spring et al.[32] present a technique for mapping
the router-level topology of an ISP or a focused portions of the
Internet, which use only end-to-end traceroute measurements.
Dimitropoulos et al.[33] introduce some heuristics to address
the problems of inferring peer-to-peer and sibling relation-
ships. They also validate the inferred AS relationships. Though
there are many works on inferring Internet AS relationships,
the data set of inferred AS relationships is still incomplete as
we will see in Sec. III.

III. EVALUATION METHODOLOGY

In this section, we present our methodology to evaluate
locality-aware P2P solutions. We first introduce how we obtain
the AS-level map, the topological foundation upon which our
study is performed. We then describe key issues determined
when planning the evaluation. Finally, we introduce how we
build locality-awareness into the BitTorrent system.

A. Obtaining AS-level Map

Our experiment is conducted over real-world Internet
topology. We construct an AS-level map on the PlanetLab
testbed[9]. Fig. 1 illustrates this process step by step.

start IP Paths AS Paths
AS Paths
(with AS

relationship)

1 32

(1) planet-lab

(2) http://www.cymru.com/BGP/asnlookup.html

(3) http://as-rank.caida.org/ and Valley Free

Fig. 1. Step-by-step Process of Obtaining AS-Level Map

First, we run traceroute between each pair of PlanetLab
nodes to obtain the IP-level end-to-end path between them. We
then assemble these paths into an IP-level map. Some nodes
are eliminated from the map since the traceroute program fails
to return the IP-level path over them.

Second, we convert each IP path obtained in step one into
an AS path. For each IP address shown up in the IP-level
map, we find its AS number through public AS-lookup service
such as the one run by the CYMRU team[34]. Since an end-
to-end path linearly traverses multiple ASes, we aggregate
consecutive IP addresses with the same AS number into a
single AS node. In this way, we condense an IP-level path
into an AS-level path, and further transfer the IP-level map
into an AS-level map. A small number of nodes are further
eliminated due to the failure of AS lookup.

Third, we mark the AS-level map with AS relationship data
provided by CAIDA[35]. Each adjacent AS pair must have
one of the following four kinds of relationships: Provider-
Customer, Customer-Provider, Peer-to-Peer, and Sibling. Each
customer AS should pay its provider AS for both inbound and
outbound traffic. Traffic across peer-to-peer ASes or sibling
ASes are usually free. 70% of the AS pairs in our AS-level
map are identified via the CAIDA dataset.

To identify the relationship of the remaining AS pairs, we
apply the “valley-free” property proposed in [31]. In brief,
if we represent our AS-level map in a hierarchical structure
where every AS is positioned lower than its provider, higher
than its customer, and at the same level with its siblings and
peers, then any AS-level path should not form a valley, i.e.,
the path should start with zero or more customer-provider
pairs, then zero or more peer-to-peer pairs, finally zero or
more provider-customer pairs, and sibling pairs can exist in
any place of an AS path. Assuming all AS-level paths follow
this property, we improve the percentage of identified AS pairs
to 90%. Finally, we eliminate the unidentified AS pairs from
the map.

AS 32

Stanford

University

AS 2153

California

State

University

Network

AS 25

UC Berkeley

169.229.50.3

169.229.50.1 171.66.3.182

171.64.1.138

137.164.27.158

137.164.27.129

128.32.0.38

169.229.51.230

planetlab1.millennium.berkeley.edu planet2.scs.stanford.edu

AS Path AS Path

Customer AS of

AS 2153

Customer AS of

AS 2153

Provider AS of

both AS 25 and

AS 32

IP Path IP Path

Fig. 2. A Processing Example

In Fig. 2, we illustrate the above steps by a sam-
ple PlanetLab pair “planetlab1.millennium.berkeley.edu” and
“planet2.scs.stanford.edu”. In this example, the IP path con-
sists of eight IPs, which locate in three different consecutive
ASes. These ASes are UC Berkeley(AS 25), California State
University Network(AS 2153) and Stanford University(AS
32). The AS 2153 is the provider of both AS 25 and AS
32. Therefore, for traffic from AS 25 to AS 32 or vice versa,
both of them will be charged by AS 2153.

4

B. Evaluation Setup
We evaluate various locality-aware P2P solutions on the

AS-level map we have obtained, either through simulation or
system deployment on PlanetLab. In what follows, we discuss
a few key issues we have determined when planning the
evaluation. We start by discussing the application scenarios
our evaluation covers, followed by the choice of primary
and secondary performance metrics, and finally the optimal
strategy we have derived based on our choice of the primary
performance metric.

1) Downloading vs. On-demand Streaming: The basic se-
mantic in each experiment of our evaluation is to have a
group of peers downloading a video file from a seed (a peer
possessing the whole copy of the file). Under this basic setting,
we mainly evaluate two common scenarios, downloading and
on-demand streaming.

In the downloading scenario, we assume that all peers show
the interest to the file to be downloaded at the same time.
Besides the purpose to mimic flash crowd, we set all peers
to join the P2P network simultaneously to avoid the temporal
dependency problem where a new peer has to download from
an earlier-joined peer. Instead, under the current setting, all
peers initiate downloading under the same condition, where
only a single copy is available at the seed, and race to finish.
From the end users’ perspective, the most important metric
is downloading time, i.e., the time it takes from the start of
downloading until the file is fully downloaded.

In the on-demand streaming scenario, we simulate a video-
on-demand application, where all peers are interested to
view one video file and these peers start viewing the video
at different times. In addition, this scenario supports the
“viewing-while-downloading” feature, where the video file
must be downloaded in an approximately sequential fashion.
In this scenario, the temporal dependency plays a much more
important role, where a peer is more likely to download from
an earlier-joined peer, unless a later-joined peer downloads at
a much faster speed exceeding its predecessors. From the end
users’ perspective, the viewing experience becomes the most
important factor, i.e, the video viewing should be continuous.
To achieve so, the downloading should be no slower than the
video playback speed, which will cause viewing interruption
otherwise. In Sec. IV, we will introduce “interruption time”,
a metric introduced to describe this phenomenon unique to
streaming.

2) Performance Metrics: Besides user-oriented metrics
such as downloading time or interruptions, we must choose
metrics matching the theme of this work: locality-awareness.
With this regard, our primary choice is AS hop count, the
number of ASes a data piece traverses from its sender to
receiver. This is a more generalized version of the intra-ISP
traffic used in previous works. Obviously, if a piece only travel
within a single ISP, its AS hop count is 0. Otherwise, its value
will be a positive integer representing the number of ASes it
has traveled. From this basic definition, we can also derive
weighted AS hop count, which is the average AS hop count
that all pieces downloaded by a peer have traversed.

We also consider redundancy proposed in [8], which mea-
sures the number of times a piece has to enter an ISP until all

peers in the ISP finish their downloading or streaming. The
lowest value is 1, which means that the piece only needs to
enter the ISP once, and all peers within the ISP are able to
distribute it without asking for additional help outside. On the
contrary, the highest value is N , the number of peers within
the ISP. We also propose normalized redundancy, which is the
redundancy normalized by the number of peers. We use this
metric to measure the relative effectiveness of a P2P solution
at restraining traffic within a single ISP. Finally, we note that
these redundancy metrics only apply to ISPs with peers inside,
not ISPs which only carry through traffic.

To evaluate the economic impact different P2P solutions
have on ISPs, we also introduce gain/cost, which is the
financial gain or loss of an ISP. An ISP gains by carrying
incoming/outgoing traffic for its customer ISPs, and likewise,
the customer ISP loses by asking its provider ISP to relay its
incoming/outgoing traffic. The traffic between a pair of peering
or sibling ISPs is not counted. Since financial charges agreed
by ISPs are unknown, we assume all provider ISPs charge by
the same rate and use number of bytes to represent the gain
or cost.

3) Minimum-AS-hop Strategy: With AS hop count as the
primary performance metric, we are able to derive the optimal
P2P strategy which minimizes the total number of AS hops.
We are also able to find optimal strategy for both downloading
and on-demand streaming scenarios.

For downloading scenario, the optimal strategy first con-
structs a complete graph, where each node represents a peer,
and the edge weight represents the AS hop count between
the pair of peers at both ends. Then, it finds the minimum
spanning tree on this graph, which is the P2P distribution
structure able to minimize the AS hop count. We also note
that this structure minimizes the redundancy value for each
ISP, since all peers within the same ISP, except one, choose
the edge whose weight is 0. Therefore, the algorithm could be
accelerated by aggregating all peers within a single ISP into
a cluster node, and find the minimum spanning tree among
these cluster nodes.

For on-demand streaming scenario, the minimum spanning
tree algorithm still applies with minor modification, where
each peer must choose, only from earlier-joined peers, the
one with the minimum AS hop count. In other words, the
complete graph described in previous paragraph becomes
directed, where at each edge the earlier-joined peer directs
to the later-joined peer. We note that because this graph is
acyclic, the above simple procedure is optimal since no loop-
removing action is needed as in the minimum spanning tree
algorithm for general directed graphs. Also under this strategy,
the redundancy value is minimized for each ISP.

Obviously, the optimal distribution structure for both scenar-
ios is a single tree, where a peer downloads the entire content
from its only parent who has the minimum AS hop count.
This structure suffers from all drawbacks of a tree solution,
such as lowest level of resilience. Also, no degree constraint
is enforced, which means a peer might be required to upload
to unlimited number of children. Nevertheless, the minimum-
AS-hop strategy constitutes the theoretical baseline, against
which other realistic P2P solutions can be measured in terms

5

of AS hop count. Given the static nature of these solutions,
we can easily obtain their performance through simulation on
AS-level map, instead of implementing and deploying it on
PlanetLab.

C. Locality-Aware BitTorrent

As mentioned in Sec. I, a BitTorrent peer operates at
three levels, neighbor selection at the macroscopic level, peer
choking/unchoking at the intermediate, and piece selection at
the microscopic level. In what follows, we first review design
of the original BitTorrent on these aspects, then propose our
modifications to bring locality-awareness into each of them.
Finally, we discuss how we adapt BitTorrent to make it serve
video streaming applications.

1) Overview: During the neighbor selection process, the
peer learns from the tracker the knowledge of other peers in
the same swarm, which is the group of peers interested in the
same file. The tracker returns a peer list to the the inquiring
peer, which contains the IP addresses and port numbers of at
most a constant number (default value is 50) of peers. If the
population of the swarm exceeds this number, the selection is
entirely random. Upon receiving the peer list, a peer connects
with the majority of them at the maximum number 35. It then
sends to its neighbors the bitfield messages, which advertise
the availability information of the pieces it already owns.
Based on the have message collected from neighbors, each
peer maintains an array of interest values, where each entry is
the number of neighbors owning the corresponding piece. If a
neighbor has pieces it needs, it informs the neighbor with an
interested message.

The peer choking/unchoking is the decision process made
by a peer about which of its “interested” neighbor it should
send data to. It first sends choke message to most of its
neighbors, which means it refuses to send the data. It then
sends unchoke message to a small number (default value 4)
of neighbors which have sent data to itself at the highest rate,
a criteria best known as tit-for-tat. Once a peer becomes seed
(the one that has the complete file), it unchokes the 4 neighbors
with the highest downloading rates from itself, in order to
speed up downloading of the entire swarm. Finally, it performs
optimistic unchoking by sending unchoke message to a random
peer, which is crucially important to bootstrap brand new peers
with nothing to share yet.

The piece picking policy is executed by each peer that
is unchoked. BitTorrent employs the rarest-first policy, in
which the piece with the minimum interest value is chosen. If
multiple pieces have the same minimum interest value, such
as 1, then the tie is broken by randomly choosing one. An
example illustrating this policy is given in Fig. 3 (a). The
greatest benefit of this policy is that it helps promote the
piece diversity of the entire swarm by help distributing the rare
pieces. A diverse swarm can ensure concurrent downloading
over multiple connections, thus increasing the aggregated
downloading speed.

All above processes are repeated at different time granular-
ities. The neighbor selection is renewed if the current active
neighbor count drops to below a certain threshold (default

value 20) due to peer leaving. The choking/unchoking process
is repeated every 10 seconds and optimistic unchoking at
every 30 seconds. The piece picking is executed every time
an unchoked connection is available again to download a new
piece.

1 1 2 1 3 1 2 1 2

Playback Window

2 1 1 3 1 4 2 3 1

(a) Rarest-First Policy

(b) Locality-First Policy

Downloaded Piece

Undownloaded Piece

Piece Chosen by the Policy

Interest Value

Distance Value

1

1

Fig. 3. BitTorrent Piece Picking Policies

2) Tracker Locality: To promote locality awareness, we
replace the random peer selection with the selection that
minimizes AS hop count metric. Upon a user request, the
tracker sorts by the ascending order all other peers in the
swarm by their distances to the requesting peer in terms of
AS hop count. The tracker sends the prefix of this sorted list
(e.g., first 50 peers) to the requesting peer. We note that this
solution bears great similarity with the one proposed in [8],
where 35 peers within the same ISP (AS hop count 0) are
returned together with 15 other random peers.

We note that the tracker not only returns the peer list in
the aforementioned fashion, but also attaches the distance
values in an add-on field to the list, due to the following
reason. The distance between two peers, if measured by AS
hop count, does not change unless the peer change its ISP
or the AS-level map is updated. Therefore, an existing peer
can quickly accumulate such knowledge as it contacts more
peers. However, a newly joined peer needs to learn its distance
to other peers as early as possible in order for other locality-
aware policies to function, which we will present immediately.
While a peer can learn on its own the distance to other peers
by probing them, the tracker is an ideal identity to collect and
disseminate such information. By the same token, the AS-level
map is best maintained by the tracker. The distance values can
be learned through any commercial package able to map an
IP address to the ISP it belongs to[36].

3) Choker Locality: We redefine the peer
choking/unchoking policy by making a peer unchoke
the 4 neighbors that are closest to itself in terms of AS hop
count. Although the distance between two peers seldomly
change, this policy will not result in the same selection
of peers again and again. The primary reason is that the
choking/unchoking decision is only made among interested
neighbors, i.e., the peers whose piece collections are different
from the local peer. Since piece collection of each peer will
asymptotically grow in time, the set of interested neighbors
will constantly change too. As such, this policy will enable
a peer to exchange data with its close-by neighbors in a
rotating fashion. The radius of this neighbor set is primarily
determined by its population. The more peers are concentrated
in a compact neighborhood, say a single ISP, the smaller
radius the neighbor set needs to be.

6

The same unchoking policy applies to the seed. In this
phase, the selection of unchoked peers will be much stabilized.
A seed will keep unchoking 4 of its closest neighbors who
still have not finished downloading. Only when a neighbor
finishes downloading all pieces will the seed chooses another
closest neighbor to unchoke. This is in sharp contrast with the
original BitTorrent design, which gives priority to uploading
speed. Giving priority to distance, our policy enables a seed
to send pieces to its closest neighbors first. If all peers in
the swarm have homogeneous uploading speeds, then peers
closest to the seed are highly likely to be the first to finish
downloading and become a seed too. This will result in the
seeding of peers to be propagated by a growing radius centered
around the original seed.

Finally, we keep the original BitTorrent optimistic unchok-
ing policy intact, for the same purpose to help bootstrap brand
new peers.

4) Piece Picker Locality: We propose a locality-first policy
to encourage a peer to download pieces closest to itself. As
shown in Fig. 3 (b), we introduce a distance value to each
piece, which is the mean value of the distances of all peers
possessing this piece. For example, if a piece is owned by three
peers (i.e., its interest value is 3), and the AS hop counts from
these peers to the downloading peer are 1, 2, 3, respectively,
then the distance value associated with this piece should be
2. The locality-first policy chooses the piece with the smallest
distance value. While the rarest-first policy promotes piece
diversity within the swarm regardless the distance it travels,
the locality-first policy encourages to distribute a piece by
gradually enlarging its radius centered around the seed.

We note that the distance value could be easily calculated by
a downloading peer, as long as it remembers its distances to its
neighbors, which are passed by the tracker during the neighbor
selection process. Upon receiving the have message from
its neighbors regarding a particular piece, it will increment
the interest value of this piece, meanwhile recalculating the
average distance value of this piece by taking into account
the distance value of the peer which just announced the have
message.

5) Adaptation to Streaming Applications: To adapt BitTor-
rent to accommodate the streaming scenario, we must enforce
it to support the “viewing-while-downloading” feature. The
primary reason for the incompatibility between BitTorrent and
the streaming scenario is its piece picking policy. Both the
rarest-first and the locality-first policies ignore the position
of a piece in the video playback. In the worst case, the first
piece might not be downloaded until all other pieces are, which
makes the video unable to play until the whole file is fetched.

Our solution is in accordance with existing proposals[27],
[28], [29], which restrain the piece picking action within a
window marching with the video playback. This window-
based solution applies for any type of piece picking policies.
In other words, we can deem the original rarest-first and
locality-first policies as one extreme case of the window-based
solution, where the window size equals to the entire file.

In order to keep up with the playback, the window must
advance itself. In our solution, the window is automatically
pushed forward whenever its leftmost piece is downloaded.

Therefore, the window might advance ahead of the playback
if the BitTorrent downloading speed is faster than the playback
rate, or behind the playback otherwise. We note that this
design, as well as all pure P2P-based solutions, are too
primitive to guarantee smooth playback. To address this issue,
[29] proposes a hybrid solution integrating P2P and client-
server downloading. Here, a stream-watcher process monitors
the downloading progress. If it falls behind the playback, it
pushes the window by downloading the leftmost pieces from
a video-on-demand server, until it catches up with the playback
again. In addition, the stream-watcher also needs external
information, such as the streaming rate of the video file, to
push the window at a proper speed.

IV. FINDINGS

We start by introducing the experiment setup, then present
the performance results related to user experience, followed by
locality-related results. Finally, we examine the results related
with peer workload.

A. Experiment Setup

We make our changes to BitTorrent on its source code
version 3.9.1 and deploy it over PlanetLab nodes. We use
two PC machines at Vanderbilt University to be the original
seed and BitTorrent tracker. Both machines run RedHat Linux,
one with a Intel Xeon(TM) 2.80GHz CPU (seed) and the
other with a Intel Pentium 4 2.80GHz CPU (tracker server).
We experiment with locality-awareness features with each of
them turned on individually, namely tracker locality, choker
locality, and picker locality. In all runs of our experiment, we
configure each peer, upon finishing downloading, to leave after
10 minutes, or stay as seed.

The test file is a flash video file downloaded from a video
website, which lasts 28 minutes 28 seconds and is sized
61889761 bytes. For the purpose of simplicity, we determine
its streaming rate to be the ratio of its size over playback
length. On the day of September 5, 2007, this file has been
requested for a total of 53165 times from the time point of
18:18:33 to 22:31:59. Such statistics is obtained by parsing the
webpage hosting this video. Since we are not able to study its
request pattern in a finer scale, we set the average request rate
of our experiment to be the same as the average rate this file
experienced during this period, which is around 1.5 request
per second.

In the downloading scenario, we schedule all PlanetLab
nodes to request this file at the same time. In the on-demand
streaming scenario, we schedule each PlanetLab node to
initiate a request based on this speed. All runs in the streaming
scenario follow the same request sequence.

Due to various reasons such as machine failure or testbed
administration, only part of PlanetLab nodes have successfully
participated all runs of our experiment. Therefore, we only
analyze and exhibit the results obtained from these nodes. Cor-
respondingly, we measure the performance of the minimum-
AS-hop strategy by only running it on these nodes in our
simulation.

7

B. User-Perceived Performance Results

1) Downloading Time in Downloading Scenario: In Fig. 4,
we show the downloading time in downloading scenario.
Fig. 4 (a) shows the case with seeding time of 10 mins.
In this case, the downloading time are very uneven with
neighbor selection policy. Some peers need less than 200
seconds to finish downloading, but some others need nearly
1200 seconds. This may come from two facts: One is that
tracker locality policy is very likely to partition the peers
into some localized sets; another is that some peers might
have limited network bandwidth. Choker locality and picker
locality policies have more even downloading time. All of
these policies download faster than standard BitTorrent. Fig. 4
(b) shows the case of unlimited seeding time. In this case,
choker policy downloads faster than other policies. Again, the
tracker locality policy makes a very uneven downloading time
among peers. In both 10 mins seeding and unlimited seeding
time cases, the choker locality policy gets the shortest and
most even downloading time. From this two figures, we find
a fact that continuing seeding after 10 mins seeding can not
improve the downloading time of standard BitTorrent, but can
significantly improve it for choker and picker locality policies.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140

D
o

w
n

lo
a

d
 T

im
e

 (
se

co
n

d
s)

Peer Index

Standard BT (st = 10 mins)
Choker Locality (st = 10 mins)

Picker Locality (st = 10 mins)
Tracker Locality (st = 10 mins)

(a) Maximum Seeding Time = 10 minutes

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140

D
o

w
n

lo
a

d
 T

im
e

 (
se

co
n

d
s)

Peer Index

Standard BT (unlimited st)
Choker Locality (unlimited st)

Picker Locality (unlimited st)
Tracker Locality (unlimited st)

(b) Unlimited Seeding Time

Fig. 4. Downloading Time (Downloading Scenario)

2) Interruptions in Streaming Scenario: In Fig. 5, we show
the interruption time in streaming scenario. For each peer,
during its streaming, we monitor the pieces received along the
playback time. During the playback, if any piece is missing,
the peer enters the “interruption” stage where the playback
is starved. It will exit this stage when the missing pieces are

received. The aggregated interruption time is the summation
of time lengths of all interruptions experienced by the peer.
This monitoring procedure starts from the point where the first
piece is received.

This two figures show that in both 10 mins seeding and
unlimited seeding time cases, the tracker locality policy makes
the most number of peers suffering interruptions. The other
three policies result in similar interruption experience. All
these policies make more than 80% peers with no interrup-
tions, and 90% peers with less than 100 seconds interruptions
during the whole streaming process. From this two figures,
we find that continuing seeding after 10 mins seeding can
not further improve interruption time. The overall amounts
of data uploaded by server are 1969MB, 2776MB, 1962MB
and 3107MB for standard BitTorrent, choker locality, picker
locality and tracker locality policies respectively. From these
numbers, we can find that picker locality policy put similar
load on server as standard BitTorrent, but choker locality and
tracker locality policies put about 40% to 50% more burden
on server than standard BitTorrent.

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

A
g

g
re

g
a

te
 In

te
ru

p
ti

o
n

 T
im

e
 (

se
co

n
d

)

Peer Index

Standard BT (st = 10 mins)
Choker Locality (st = 10 mins)

Picker Locality (st = 10 mins)
Tracker Locality (st = 10 mins)

(a) Maximum Seeding Time = 10 minutes

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

A
g

g
re

g
a

te
 In

te
ru

p
ti

o
n

 T
im

e
 (

se
co

n
d

)

Peer Index

Standard BT
Choker Locality

Picker Locality
Tracker Locality

(b) Unlimited Seeding Time

Fig. 5. Interruption (Streaming Scenario)

C. Locality-Related Performance Results

1) AS Hop Count: In Fig. 6, we show the weighted
average hop count across all downloading paths of a peer
in downloading scenario. Fig. 6 shows that tracker locality
policy makes the shortest AS hop count, except the theoretical
optimal bound by the minimum-AS-hop strategy. The other
three policies achieve similar AS hop count. All these policies
in unlimited seeding time case get a little lower hop count than

8

in 10 mins seeding time case. This may come from the fact
that peers have lower probability to download from close by
peers in 10 mins seeding case than in unlimited seeding case.

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140 160

W
e

ig
h

te
d

 H
o

p
 c

o
u

n
t

Peer Index

Standard BT (st = 10 mins)
Choker Locality (st = 10 mins)

Picker Locality (st = 10 mins)
Tracker Locality (st = 10 mins)

Optimal Locality

(a) Maximum Seeding Time = 10 minutes

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140 160

W
e

ig
h

te
d

 H
o

p
 c

o
u

n
t

Peer Index

Standard BT (unlimited st)
Choker Locality (unlimited st)

Picker Locality (unlimited st)
Tracker Locality (unlimited st)

Optimal Locality

(b) Unlimited Seeding Time

Fig. 6. AS Hop Count (Downloading Scenario)

In Fig. 7, we show the weighted average hop count across
all downloading paths of a peer in streaming scenario. Fig. 7
shows that tracker locality policy makes the shortest AS hop
count, except the theoretical optimal bound. Among the other
three policies, the choker locality policy makes smaller AS
hop count. Again, all these policies in 10 mins seeding time
case get about 1 hop larger than in unlimited seeding time.

2) Redundancy: In Fig. 8 and 9, we show the normalized
redundancy achieved in less than 80 ISPs, which host the
PlanetLab peers in our experiment. Majority of them achieve
the minimum value across all solutions, due to the fact each
ISP only hosts one peer. For ISPs hosting multiple peers, all
solutions are able to perform within 2 to 3 times of the optimal
value achieved by the minimum-AS-hop strategy.

D. Financial Impact on ISPs

The minimum-AS-hop strategy only involves less than 150
ISPs, while other solutions involve between 200 and 250 ISPs.
Among these ISPs, most of them just pass through traffics.
So the overall financial gain/cost of these ISPs is zero. We
also notice that the number of ISPs paying money is larger
than the number of ISPs gaining money. The distribution of
financial gain/cost is very uneven. Some ISPs cost a lot, such
as AS 680(DFN-IP service G-WiN) which costs more than 1.7
GB data. And some ISPs gain a lot, such as AS 20965(The

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140 160

W
e

ig
h

te
d

 H
o

p
 c

o
u

n
t

Peer Index

Standard BT (st = 10 mins)
Choker Locality (st = 10 mins)

Picker Locality (st = 10 mins)
Tracker Locality (st = 10 mins)

Optimal Locality

(a) Maximum Seeding Time = 10 minutes

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140 160
W

e
ig

h
te

d
 H

o
p

 c
o

u
n

t

Peer Index

Standard BT (unlimited st)
Choker Locality (unlimited st)

Picker Locality (unlimited st)
Tracker Locality (unlimited st)

Optimal Locality

(b) Unlimited Seeding Time

Fig. 7. AS Hop Count (Streaming Scenario)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

R
e

d
u

n
d

a
n

ce

AS Index

Standard BT (st = 10 mins)
Choker Locality (st = 10 mins)

Picker Locality (st = 10 mins)
Tracker Locality (st = 10 mins)

Optimal Locality

(a) Maximum Seeding Time = 10 minutes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

R
e

d
u

n
d

a
n

ce

AS Index

Standard BT (unlimited st)

Choker Locality (unlimited st)

Picker Locality (unlimited st)

Tracker Locality (unlimited st)
Optimal Locality

(b) Unlimited Seeding Time

Fig. 8. Normalized Redundancy (Downloading Scenario)

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

R
e

d
u

n
d

a
n

ce

AS Index

Standard BT (st = 10 mins)
Choker Locality (st = 10 mins)

Picker Locality (st = 10 mins)
Tracker Locality (st = 10 mins)

Optimal Locality

(a) Maximum Seeding Time = 10 minutes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

R
e

d
u

n
d

a
n

ce

AS Index

Standard BT (unlimited st)
Choker Locality (unlimited st)

Picker Locality (unlimited st)
Tracker Locality (unlimited st)

Optimal Locality

(b) Unlimited Seeding Time

Fig. 9. Normalized Redundancy (Streaming Scenario)

GEANT IP Service) which gains more than 1.3 GB data and
AS 11537(ABILENE) which gains more than 1.8 GB data.

E. Peer Contributions

1) Traffic Uploaded per Peer: We show the amount of
traffic uploaded by each peer in Fig. 10. The minimum-AS-
hop strategy makes very small number(less than 70) of peers to
contribute. Among all the other policies, the tracker locality
policy makes the most uneven traffic distribution. Standard
BitTorrent makes the most even traffic distribution. This may
also come from the fact that tracker locality separates peers
into localized sets. In summary, locality policies localize the
traffic by paying the price of uneven traffic distribution.

2) Number of Downloading Neighbors per Peer: Obvi-
ously, every peer always downloads from a single neighbor
in optimal policy. We show the number of peers each peer
downloading data from in Fig. 11. Some peers download all
data from one peer, while some other peers download from
up to 80 peers. Most of peers download data from about 20
to 30 peers. The standard BitTorrent downloads from more
peers than other policies. We can see that the more neighbors
downloading from the more even the traffic distribution.

F. Findings

In downloading scenario, choker and picker locality policies
can significantly reduce downloading time, while tracker lo-
cality policy achieves similar downloading time as standard
BitTorrent. Tracker locality policy achieves the lowest AS

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 50 100 150 200 250

D
a

ta
 C

o
n

tr
ib

u
te

d
 b

y
 O

n
e

 P
e

e
r

(b
y

te
)

Peer Index

Standard BT (st = 10 mins)
Choker Locality (st = 10 mins)

Picker Locality (st = 10 mins)
Tracker Locality (st = 10 mins)

Optimal Locality

(a) Maximum Seeding Time = 10 minutes

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 50 100 150 200 250
D

a
ta

 C
o

n
tr

ib
u

te
d

 b
y

 O
n

e
 P

e
e

r
(b

y
te

)

Peer Index

Standard BT (unlimited st)
Choker Locality (unlimited st)

Picker Locality (unlimited st)
Tracker Locality (unlimited st)

Optimal Locality

(b) Unlimited Seeding Time

Fig. 10. Traffic Uploaded per Peer (Downloading Scenario)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140 160

N
u

m
b

e
r

o
f

N
o

d
e

s
D

o
w

n
lo

a
d

in
g

 D
a

ta
 F

ro
m

Peer Index

Standard BT (st = 10 mins)
Choker Locality (st = 10 mins)

Picker Locality (st = 10 mins)
Tracker Locality (st = 10 mins)

(a) Maximum Seeding Time = 10 minutes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160

N
u

m
b

e
r

o
f

N
o

d
e

s
D

o
w

n
lo

a
d

in
g

 D
a

ta
 F

ro
m

Peer Index

Standard BT (unlimited st)
Choker Locality (unlimited st)

Picker Locality (unlimited st)
Tracker Locality (unlimited st)

(b) Unlimited Seeding Time

Fig. 11. Number of Downloading Neighbors per Peer (Downloading
Scenario)

10

hop count, but suffers most unbalanced peer load in terms
of number of downloading neighbors and traffic uploaded per
peer. So in downloading scenario, if shorter downloading time
is of high priority, we should use choker or picker locality
policies. If less inter-AS traffic is of high priority, we should
use tracker locality policy.

In streaming scenario, Standard BitTorrent achieves similar
disruption as choker and picker locality policies and less
disruption than tracker locality policy. But it comes with much
larger startup delay. The same as in downloading scenario,
tracker locality policy achieves the lowest AS hop count. So
in streaming scenario, if less playback disruption is of high
priority, we should choose choker and picker locality policies.
If less inter-AS traffic is of high priority, we should use tracker
locality policy.

V. CONCLUSION

In this paper, we propose a set of locality-aware P2P
solutions. In particular, we propose an optimal solution which
returns a distribution structure with the minimum AS hop
count. We also modify the BitTorrent system to embed
locality-awareness into its neighbor selection, peer chok-
ing/unchoking, and piece selection processes. We evaluate
the performance of these solutions, as well their impacts
on ISPs on a real-world Internet AS topology derived from
the PlanetLab testbed. While it clearly shows the advantage
of locality-aware solutions at reducing inter-AS traffic and
achieving shorter downloading time, they also demonstrate
deficiency at evenly distributing peer workload as done by
the traditional random strategy employed by BitTorrent. We
also find that continuing seeding after 10 mins seeding can
not improve the downloading time of standard BitTorrent,
but can significantly improve it for locality policies. It can
also reduce the number of connected peers for choker and
piece picker locality policies. As such, our study suggests the
necessity to consider, in the design of future P2P downloading
and streaming solutions, the tradeoff between the goals of
optimizing AS-related performance and achieving fairness
among peers such as intra-AS traffic and peer burden fairness.

REFERENCES

[1] “BitTorrent,” http://bittorrent.com.
[2] “Skpe,” http://skype.com.
[3] “PPLive,” http://pplive.com.
[4] “UUSEE,” http://uusee.com.
[5] T. Karagiannis and P. Rodriguez, and K. Papagiannaki , “Should Internet

service providers fear peer-assisted content distribution,” in Internet
Measurement Conference, 2005.

[6] S. Ren and L. Guo and X. Zhang, “ASAP: an AS-Aware Peer-Relay
Protocol for High Quality VoIP,” in ICDCS, 2006.

[7] C. Huang and J. Li and K. W. Ross, “Can internet video-on-demand be
profitable?,” in ACM SIGCOMM, 2007.

[8] R. Bindal and P. Cao and W. Chan and J. Medved, G. Suwala and
T. Bates and A. Zhang , “Improving Traffic Locality in BitTorrent via
Biased Neighbor Selection,” in ICDCS, 2006.

[9] “Planetlab,” http://www.planet-lab.org.
[10] Dongyu Qiu and R. Srikant, “Modeling and performance analysis of

bittorrent-like peer-to-peer networks,” in SIGCOMM ’04: Proceedings
of the 2004 conference on Applications, technologies, architectures, and
protocols for computer communications, New York, NY, USA, 2004,
pp. 367–378, ACM Press.

[11] X. Yang and G. Veciana, “Service capacity of peer to peer networks,”
in Proc. of INFOCOM, 2004.

[12] Laurent Massoule and Milan Vojnovic, “Coupon replication systems,”
in SIGMETRICS ’05: Proceedings of the 2005 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems, New York, NY, USA, June 2005, vol. 33, pp. 2–13, ACM
Press.

[13] A. Bharambe and C. Herley and V. Padmanabhan, “Some Observations
on BitTorrent Performance,” 2005.

[14] L. Guo and S. Chen and Z. Xiao and E. Tan and X. Ding and X. Zhang,
“Measurements, Analysis, and Modeling of BitTorrent-like Systems,”
2005.

[15] Y. Chu, R. Rao, and H. Zhang, “A case for end system multicast,” in
Proc. of ACM SIGMETRICS, 2000.

[16] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh,” in Proc. of ACM
Symposium on Operating Systems Principles (SOSP), 2003.

[17] H. Xie and Y. R. Yang and A. Krishnamurthy and Y. Liu and A. Silber-
schatz, “P4P: Provider Portal for Applications,” in Proc. of SIGCOMM,
2008.

[18] D. R. Choffnes and F. E. Bustamante, “Taming the Torrent: A Practical
Approach to Reducing Cross-ISP Traffic in P2P Systems,” in Proc. of
SIGCOMM, 2008.

[19] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-bandwidth multicast in cooperative
environments,” in Proc. of ACM Symposium on Operating Systems
Principles (SOSP), October 2003.

[20] Y. Cui, B. Li and K. Nahrstedt, “oStream: Asynchronous Streaming
Multicast in Application-Layer Overlay Networks,” IEEE Journal on
Selected Areas of Communications, Special Issue on Recent Advances
in Service Overlay Networks, vol. 22, 2004.

[21] S. Jin and A. Bestavros, “Cache-and-Relay Streaming Media Delivery
for Asynchronous Clients,” in Proc. of International Workshop on
Networked Group Communication (NGC), 2002.

[22] Venkata N. Padmanabhan, Helen J. Wang, Philip A. Chou, and Kun-
wadee Sripanidkulchai, “Distributing streaming media content using
cooperative networking,” in NOSSDAV ’02: Proceedings of the 12th
international workshop on Network and operating systems support for
digital audio and video, New York, NY, USA, 2002, pp. 177–186, ACM
Press.

[23] J. Li and Y. Cui and B. Chang, “PeerStreaming: Design and Imple-
mentation of an On-Demand Distributed Streaming System with DRM
Capabilities,” ACM/Springer Multimedia Systems Journal, 2007.

[24] C. Wu and Baochun Li, “rStream: Resilient and Optimal Peer-to-Peer
Streaming with Rateless Codes,” IEEE Transactions on Parallel and
Distributed Systems, 2007.

[25] C. Gkantsidis and J. Miller and P. Rodriguez, “Anatomy of a P2P
Content Distribution System with Network Coding,” in IPTPS, 2006.

[26] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Y. S. P. Yum, “Coolstream-
ing/donet: a data-driven overlay network for peer-to-peer live media
streaming,” in INFOCOM 2005: 24th Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings IEEE,
2005, vol. 3, pp. 2102–2111 vol. 3.

[27] C. Dana and D. Li and D. Harrison and C.N. Chuah, “BASS: BitTorrent
Assisted Streaming System for Video-on-Demand,” in IEEE MMSP,
2005.

[28] A. Vlavianos and M. Iliofotou and M. Faloutsos, “BiToS: Enhancing
BitTorrent for Supporting Streaming Applications,” in IEEE INFOCOM,
2006.

[29] Y. Choe and D. Schuff and J. Dyaberi and V. Pai, “Improving VoD
Server Efficiency with BitTorrent,” in ACM Multimedia, 2007.

[30] “BitTorrent DNA,” http://www.bittorrent.com/dna/.
[31] L. Gao, “On inferring autonomous system relationships in the internet,”

IEEE/ACM Transaction on Networking, 2001.
[32] N. Spring and R. Mahajan and David. Wetherall and T. Anderson,

“Measuring ISP topologies with rocketfuel,” IEEE/ACM Transaction
on Networking, 2004.

[33] X. Dimitropoulos and D. Krioukov and M. Fomenkov and B. Huffaker
and Y. Hyun and k. claffy and G. Riley, “AS relationships: inference
and validation,” in ACM SIGCOMM, 2007.

[34] “Cymru,” http://www.cymru.com.
[35] “Caida,” http://www.caida.org.
[36] “IP2Location,” http://www.ip2location.com.

