
14 Journal Integrated Circuits and Systems 2007; v.2 / n.1:14-21

A Cryptography Core Tolerant to
DFA Fault Attacks

ABSTRACT

This work describes a hardware approach for the concurrent fault detection and error correction in
a cryptographic core. It has been shown in the literature that transient faults injected in a crypto-
graphic core can lead to the revelation of the encryption key using quite inexpensive equipments.
This kind of attack is a real threat to tamper resistant devices like Smart Cards. To tackle such
attacks, the cryptographic core must be immune to transient faults. In this work the DES algorithm
is taken as a vulnerable cryptosystem case study. We show how an attack against DES is performed
through a fault injection campaign. Then, a countermeasure based on partial hardware replication is
proposed and applied to DES. Experimental results show the efficiency of the proposed scheme to
protect DES against DFA fault attacks. Furthermore, the proposed solution is independent of imple-
mentation, and can be applied to other cryptographic algorithms, such as AES.

Index Terms: Smart Cards, Cryptography, Fault Attacks, Fault Tolerance.

Carlos R. Moratelli1, Érika Cota1 and Marcelo S. Lubaszewski2

1 Federal University of Rio Grande do Sul, Informatics Institute, Porto Alegre, RS, Brazil
e-mail: {crmoratelli}{erika}@inf.ufrgs.br

2 Federal University of Rio Grande do Sul, Depto. of Electric Engineering, Porto Alegre, RS, Brazil.
e-mail: luba@ece.ufrgs.br

1. INTRODUCTION

In many electronic systems, some type of infor-
mation must be stored in the electronic device. For
high security applications, encryption methods are
usually implemented in the electronic device to pro-
tect the information that is stored in or transmitted
to/from the device. Simpler devices, such as Smart
Cards, implement the encryption mechanisms in
hardware due to limitations in their embedded proces-
sors. However, the main cryptographic algorithms
used nowadays present some weaknesses when imple-
mented in hardware, thus being vulnerable to mali-
cious attacks against the system.

Attacks against the cryptographic hardware can
be divided into two classes: invasive and non-invasive.
Invasive attacks are based on reverse engineering and
require special laboratory equipments, making it too
expensive. Non-invasive attacks, also called side chan-
nel attacks, exploit hardware implementation weak-
nesses [12]. One possible form of attack is to observe
characteristics of the hardware during execution, such
as power consumption, execution time or electromag-
netic emissions, to extract statistical information that
can eventually lead to the recovery of the secret key.
For instance, Differential Power Analysis (DPA)

exploits the power consumption of the device [8]. A
second form of attack is called Differential Fault
Analysis (DFA), or simply fault attack. This attack was
proposed by Boneh, DeMillo and Lipton [3], and is
based on the injection of a transient fault in the cryp-
tosystem core. The attacker can use several techniques
to inject transient faults in the cryptographic hard-
ware. For instance, Glitch Attacks consist on submit-
ting VCC (power), GND (ground) or the clock inputs
to stress conditions. To do this, peaks on the power
supply voltage or an irregular clock can be used.
Another technique is the Light Attack. Intensive light
(such as a laser, for example) may cause disturbances
on semiconductors resulting in transient faults. Thus,
fault attacks can be performed using very inexpensive
equipment [14]. Different side channel attacks
require different countermeasures. For example, pre-
venting DPA attacks requires masking power con-
sumption or modifying the algorithm to avoid corre-
lation between consumption and input data. Solutions
for DPA do not prevent DFA, timing analysis or elec-
tromagnetic attacks. Therefore, solutions for different
attacks must coexist in the same cryptosystem.

Smart Cards are largely used in GSM mobile
phones and are beginning to spread in banking and
other applications. Such devices are an easy target to

A Cryptography Core Tolerant to DFA Fault Attacks
Moratelli, Cota & Lubaszewski

DFA attacks for two reasons. They are implemented
using high integration technologies, to make them
portable and energy-efficient. Those technologies are
becoming quite sensitive to transient faults [9].
Moreover, some of the most widely used cryptograph-
ic algorithms in Smart Cards are vulnerable to DFA
attacks, including DES, AES and RSA [15]. Due to the
vulnerabilities and the high demand for security of the
applications that involve such devices, the study and the
determination of real threads are extremely important.
The exposure of possible vulnerabilities in the existent
systems affects the credibility of such systems. Thus, the
study of different kinds of attacks to the cryptographic
hardware has highest importance, because the expan-
sion and use of cryptographic devices depends highly
on the approval and trust of the involved community.

In this work we propose a general and cost-
effective solution to protect a hardware-based encryp-
tion system against DFA attacks (called simply fault
attacks hereafter). To tackle such malicious attack, the
cryptographic system needs to implement a hardware
that is immune to transient faults. The proposed pro-
tection scheme uses partial hardware replication to
annihilate the effects of transient faults. Experimental
results presented for a DES cryptosystem show that
protection is achieved at a low cost and without com-
promising the system performance. Furthermore, the
proposed technique does not depend on the encryp-
tion algorithm and on its implementation.

The paper is organized as follows: Section 2
discusses related works. Section 3 shows how to break
DES with a fault attack and presents some experimen-
tal results on that. Section 4 presents the proposed
methodology to protect cryptographic cores and dis-
cusses its implementation and effectiveness in the case
of DES. Finally, in Section 5 some conclusions are
drawn and future works are discussed.

2. RELATED WORK

A few works have proposed techniques to pro-
tect cryptographic cores against fault attacks. Bertoni
et al. propose in [1] the use of parity code to detect
the injected transient fault on an AES core. For each
AES operation on the input data, similar transforma-
tions on parity bits are performed. In addition, check-
points are introduced in the algorithm to check the
data integrity so that the encryption is suspended
when a fault is detected. The area overhead is about
20% to protect the encryption module. The disadvan-
tage of this technique is that system operation is sus-
pended, which may not be desirable from the applica-
tion point of view (if an attack is performed in the
field or faults are caused by operation environment,
for instance).

Breveglieri et. al in [4] combine parity code and
hardware redundancy to detect and correct transient
faults caused by either malicious attack or operation
environment. Since the fault is corrected, system oper-
ation is not suspended. The overhead is about 40% for
the fault detection circuitry and 134% for the entire
fault detection and correction. However, the tech-
nique is directed to a special implementation of the
AES algorithm. Moreover, that solution does not cor-
rect multiple faults. As we will show in Section 2.3,
multiple faults are actually used to accelerate the fault
attack and reduce the time necessary to reveal the key.

Thus, countermeasures capable of dealing with
malicious fault attacks in cryptographic cores are still
needed. Such techniques should be based on fault tol-
erance mechanisms resistant to multiple transient
faults. Furthermore, they must avoid the suspension
of the system operation, since system availability and
dependability [6] are usual requirements of those
applications. In our approach, the faults are detected
and corrected in a way that is transparent for the user
as well as the attacker. This provides a new level of
security, where the attacker is unable to verify the effi-
ciency of the fault injection procedure. Finally, it is
important that the protection technique be independ-
ent from the algorithm implementation to ensure its
applicability.

3. CRYPTOGRAPHIC ALGORITHM
CODEBREAKING

Due to its simplicity, we use the Data
Encryption Standard (DES) algorithm to explain how
a fault attack is performed and how the system can be
protected.

A. The DES Algorithm

The Data Encryption Standard (DES) is a sym-
metric key block cipher, and has a 64-bit input block,
producing a 64-bit output cipher block. The secret
key is 56 bits wide. DES uses two basic cryptographic
techniques: confusion and diffusion. Confusion con-
sists on replacing plain text blocks by other data
blocks, while diffusion is simply a permutation of bits
of the plain text. The algorithm is a combination of
these two techniques applied to the plain text using
the Key [13].

Figure 1 shows a block diagram of DES. Let us
consider the processing of a single block (64 bits)
from the initial plain text. The initial operation applied
to the input is a permutation (IP) based on a 64-bit
input table. This table is shown in [13]. Then, the
result is split into two halves of 32 bits each (L and R).
After this operation, encryption proceeds in 16 stages

15Journal Integrated Circuits and Systems 2007; v.2 / n.1:14-21

A Cryptography Core Tolerant to DFA Fault Attacks
Moratelli, Cota & Lubaszewski

or rounds, called f function. Each round updates the L
and R registers to be used in the next round. In this
process, the data block is combined with the key.
Since the f function is the most important operation in
the DES algorithm, all rounds should run and finish
correctly. During each round, five operations are per-
formed in the data block: expansion/permutation
(EP), bitwise XOR with the key, substitution (S-Box),
permutation (P) and, bitwise XOR with the left half of
the input. After the last round, the left and right
halves are exchanged, and, finally, the result is per-
muted in the final permutation (FP). Note that DES
has only two registers (L and R). They are replicated
in the bottom of Figure 1 to make it easier to under-
stand. All other operations in the f function are imple-
mented by combinational logic. Furthermore, each
round uses a different subkey generated from the
original 56-bit encryption key.

Inside the f function, the most important oper-
ation is the S-Box. This is a non-linear operation that
provides security to DES. Figure 2 shows how S-
Boxes work. The 48 bits resulting from the bitwise
XOR involving the sub-key of that round are divided
into eight 6-bit blocks and applied to 8 independent
S-Boxes. Each S-box receives a 6-bit input and gener-
ates a 4-bit output. Input bits are substituted inside
the S-Boxes using predefined rules. Every S-Box has
its own substitution table as shown in [13]. Sixteen
subkeys with 48 bits are generated, each one being
used in a round of the f function. The algorithm for

the generation of the subkeys is detailed in [13].
Decryption involves the same algorithm and the same
original key, but subkeys are applied to the internal
rounds in the reverse order [7].

B. Fault Attack on DES

This section shows how fault attacks are per-
formed against DES. Initially, the attacker runs DES
for a 64-bit block of a plain text and stores the result-
ing coded block. Then, DES is executed again for the
same plain text while transient faults are injected in
the hardware. Thus, the resulting coded blocks in
DES output may be faulty. By comparing several
faulty coded blocks against the correct coded block,
the attacker can extract the secret key used inside the
f function as will be shown next.

When a fault is injected in the R register in the
15th round of the DES execution, it affects specific
bits of the coded output. Knowing the fault-free and
the faulty coded words, and applying the algorithm,
the attacker is able to identify some bits of the secret
key. Repeatedly injecting faults in different bits of the
R register and performing the analysis described
above, the attacker will eventually expose all bits of the
secret key. This process is detailed below.

Let us consider L15 and R15 the result of the
15th round of the f function in Figure 1. After execut-
ing the last round of the DES algorithm, L16 and R16
are given by the following equations:

R16 = P(S(EP(R15) ⊕ K16)) ⊕ L15
R15 = L16
R16 = P(S(EP(L16) ⊕ K16)) ⊕ L15 (1)

16 Journal Integrated Circuits and Systems 2007; v.2 / n.1:14-21

Figure 1. Block diagram of DES algorithm

Figure 2. Details of DES S-Boxes

A Cryptography Core Tolerant to DFA Fault Attacks
Moratelli, Cota & Lubaszewski

where P is the permutation, S is the S-Box and EP is
the expansion/permutation operation. In Equation 1,
two variables are unknown: the subkey K16 and L15. If
a fault occurs in the right half of the dataflow (R reg-
ister) during the 15th round, R15 will be replaced by a
faulty R’15, as follows:

R16 = P(S(EP(R’15) ⊕ K16)) ⊕ L15
R’15 = L’16
R’16 = P(S(EP(L’16) ⊕ K16)) ⊕ L15 (2)

Equation 2 has also two unknown variables: the
subkey K16 and L15. Note that L16 and L’16 are the
resulting coded word after the final permutation step
of the algorithm, which can be easily performed back-
wards.

In order to find the value of K16, one must
eliminate L15. This can be done by performing a bit-
wise XOR operation between Equations 1 and 2:

R16 ⊕ R’16 = P(S(EP(L16) ⊕ K16)) ⊕ L15 ⊕
P(S(EP(L’16) ⊕ K16) ⊕ L15 =
(S(EP(L16 ⊕ K16)) ⊕ P(S(EP(L’16) ⊕ K16)) (3)

Thereby, the only unknown variable is K16,
which is a subkey generated from the sought secret
key. The remaining variables are known outputs from
DES. When K16 is known, it is possible to revert the
subkey generation process and obtain 48 bits of the
original key. The last 8 bits can be found by exhaus-
tive search.

On the other hand, faults injected in any other
round or any other part of the f function will not lead
to the secret key in this fault model. More elaborated
fault models can deal with faults in other rounds.
Although the fault-free and the faulty coded words
will be different after the 16th round, the application
of the algorithm will not converge to the original
encryption key. However, in a real attack, a fault
injected into the system can hit any part of DES, at
any iteration of the algorithm.

Thus, an attack consists in injecting single or
multiple faults in the DES implementation and com-
paring the faulty output against the fault-free coded
word. For each output, the algorithm presented in the
next section is applied to reveal the subkey. The
process is repeated until all 56 bits of the original key
have been defined.

C. Fault Attack simulation on DES

To help in understanding how a fault attack can
succeed, a Java-based software was implemented to
accomplish the search of the subkey K16. For the sake
of simplicity, faults are injected in the right half of the
data block (R register) and only in the 15th round.

The attack starts by analyzing a cipher block without
faults. Then it analyzes several erroneous cipher blocks
by solving Equation 3.

A block diagram of the key search algorithm is
shown in Figure 3. In the figure, the blocks that are
inside the dotted line represent the dataflow for one
algorithm iteration.

The algorithm execution starts by extracting
R16 and L16 from the fault-free cipher text. These val-
ues are obtained by undoing the final permutation
(FP), splitting the data block into two halves and
exchanging the left half with the right half. These val-
ues are then used all along the software execution.
The next step is to obtain R’16 and L’16 through a
process similar to the one mentioned above.

Following the diagram in Figure 3, the EP
operation is performed over L16 and L’16. The result
of the EP operation is a 48-bit block that must be
XORed to the 48-bit round subkey K’16, which is
unknown. At this point, it is important to highlight
the features of the DES S-Boxes, as mentioned previ-
ously in Section 3A The block resulting from the bit-
wise XOR with the round subkey is split into 8 blocks
of 6 bits, since there are 8 independent S-Boxes. Due
to the features of these S-Boxes, it is possible to
divide the key search into 8 different search spaces.
Thereby, the main goal of the key search algorithm is
to test all 64 input possibilities for each S-Box.

17Journal Integrated Circuits and Systems 2007; v.2 / n.1:14-21

Figure 3. Block diagram of key search algorithm.

A Cryptography Core Tolerant to DFA Fault Attacks
Moratelli, Cota & Lubaszewski

To test all these possibilities, one must firstly guess a
6-bit value for the key. Thus, the guessed 6-bit key is
XORed to the 6-bit value resulting from the EP step
and result is submitted to the respective S-Box. This
procedure is performed for both cipher texts with and
without errors, providing, at the end, two 4-bit
blocks. Then, the P operation is performed for both
blocks. Subsequently, a bitwise XOR is performed
using these two blocks. The result is the right side of
Equation 9. Similarly, a bitwise XOR is performed
between R16 and R’16 resulting in the left side of
Equation 9. Finally, the two sides of Equation 9 are
compared. If they are equal, the 6-bit value guessed
for the key is possibly the true key and should be test-
ed with another cipher text block. If the result is not
equal, the guessed key is not the correct one and can
be discarded.

It can be noticed that a single fault affects at
most two S-Boxes. For the unaffected S-Boxes, it is
not possible to deduce any key value. Furthermore,
the S-Boxes have 6 input and 4 output bits, and dif-
ferent input values can give the same output values.
Then, for each S-Box affected by a fault, several key
values exist that satisfy the equivalence given in
Equation 3. Thus, one can understand why several
erroneous cipher texts are needed to obtain the key
K16. For each erroneous cipher text analyzed, the key
search space becomes smaller, since the keys that do
not satisfy the equality are discarded. In the first iter-
ation, the search space contains 8 x 26 possibilities.
The algorithm then iteratively converges to a key that
satisfies any input of Equation 3. This is the K16 key.
Starting from K16 it is possible to obtain the 48 bits
of the input key while the last 8 bits can be found by
trying all remaining possibilities

During the simulation of fault attacks, faults
were injected into the right half block during the 15th

round, that is, R15. Experiments were accomplished
to determine the consequences of injecting a certain
number of faults into R15. These experiments consist
in injecting from 1 to 8 faults in random positions of
R15. Our purpose is to analyze the amount of erro-
neous cipher blocks necessary to obtain the secret
key. For each injection of a certain number of faults,
10 simulations were performed to determine the
average number of erroneous cipher blocks necessary
to obtain the secret key. The obtained results are pre-
sented in the graph shown in Figure 4. That plot
basically shows that the more faults that are injected,
the less erroneous cipher texts are needed. Starting
from 6 simultaneous faults, the amount of needed
blocks decreases slowly. This happens because faults
affect bits of different S-Boxes for a same cipher
block, thus revealing information about different
parts of the key, and reducing the amount of cipher
blocks needed. In an ideal fault injection campaign,

each fault would affect a distinct bit of R15. However,
during a real attack, this highly accurate fault injec-
tion is improbable. Even so, by injecting single faults
at random positions of R15 we have succeeded to
obtain the secret key with less than 40 erroneous
cipher blocks.

Cryptographic algorithms are developed so
that a supposed attack based on the analysis of correct
cipher blocks is computationally infeasible. However,
previous experiments show that an attack can indeed
be performed with very low computational cost
against a hardware implementation of the DES algo-
rithm. Therefore, we propose in the next section a
protection scheme to neutralize the effects of a DFA
attack to cryptographic cores.

4. CRYPTOGRAPHIC CORE PROTECTION

A. F function tolerant to fault attacks

Considering the simulation results obtained
from fault attacks in the f function of DES, a coun-
termeasure is proposed in this section to enhance the
security of a cryptographic core implementing that
algorithm. This approach is based on partial replica-
tion of the vulnerable parts of the core. Other possi-
bilities could be total hardware duplication and time
redundancy. The former has many drawbacks: First of
all, the hardware area and power consumption are at
least duplicated, which is not interesting (sometimes
not even acceptable) in portable applications.
Secondly, performance penalty is also a problem in
the hardware duplication approach. The results are
compared by a voter only in the end of the execution,

18 Journal Integrated Circuits and Systems 2007; v.2 / n.1:14-21

Figure 4. Relation between number of faults injected and number
of cipher blocks needed to break the algorithm.

A Cryptography Core Tolerant to DFA Fault Attacks
Moratelli, Cota & Lubaszewski

i.e., after the 16 rounds of the f function. Thus, if
results of duplicated blocks are different, the whole
execution must be repeated, increasing both execu-
tion time and energy consumption. Finally, the dupli-
cated hardware is also vulnerable to fault attacks. A
specialized attacker can attempt to inject transient
faults into the two cryptographic processors simulta-
neously and may even obtain the secret key with less
computational effort since the number of points for
fault injection are largely increased and are strongly
correlated in the two replicas.

To avoid partial or total hardware replication,
it is possible to use a time redundancy approach that
consists in computing the same input twice and com-
paring the resulting outputs. Nevertheless, Biham
and Shamir [2] state that computing the encryption
function twice is insufficient for high security sys-
tems, because the probability of the same fault to
occur during both encryption processes may not be
sufficiently low.

The countermeasure proposed in this paper
consists in adding to the core a simple coprocessor
that will assist the cryptography execution by detect-
ing and correcting transient faults. A similar scheme
was originally proposed by [5] to control the system
frequency. In such work, the coprocessor assists the
execution of the main processor by detecting and sig-
naling fault occurrences. If the fault incidence is
high, the coprocessor reduces de system frequency,
aiming to reduce the number of faults. Thus, the sys-
tem can operate at the highest possible frequency. In
our proposal, we use the coprocessor to detect and
correct the transient faults. Hereafter, the coproces-
sor will be called assistant hardware.

The assistant hardware must replicate only the
most vulnerable parts of the encryption algorithm.
For the DES algorithm, for instance, Section 3.2 has
shown that the f function is the vulnerable part. So,
the f function is replicated into the assistant hardware.
The block diagram of the resulting system is shown in
Figure 5. The arrows indicate system input and out-
put signals.

In our context, as the f function is purely com-
binational, it is possible to implement the coprocessor
as a combinational circuit. The assistant hardware
consists basically in a replica of the f function, a com-
parator and a parity checker. The f function replica
computes the same input data of the main processor at
each round, aiming at assuring data integrity. The
comparator is used to check the output data of the f
function of the main processor against that of the
assistant hardware at the end of each round. If the
results are not equal, only that round operation is
repeated. Finally, the parity checker verifies the
integrity of the input data of the f function in the assis-
tant hardware.

As shown in Figure 5, the assistant hardware
performs the f function and compares its result against
the corresponding result of the main processor. This
comparison is purely combinational. Signals data
round and input key are the input signals to the f func-
tion. At the end of each round, the results are com-
pared by the assistant hardware using the out data
round signal. This signal is the result of the f function
of the main processor. If the results are not the same,
the assistant hardware uses elr to signal to the main
processor to perform the last round again. Before the
execution of each round, the assistant hardware veri-
fies the parity of the data round signal. If the parity is
not the same, then a fault in the f function input
occurred. The system cannot recover from this fault
and (only in this case) execution is stopped. Parity
error signals that the system must be restarted.

To support the proposed modifications, the
main processor needs some adaptations. The main
change to the original DES core is the addition of the
elr signal. This signal indicates that the last f function
round must be performed again. To do this, the main
processor shall save the f function inputs in an auxil-
iary register. The parity signal is created to ensure the
consistency of the data stored in this register. If a fault
occurs in the f function inputs, the system cannot
recover from it. Then, the execution is aborted. Data
round, out data round and out key round signals cor-
respond to data input of f function, data output, and
cryptographic key, respectively, for each round. The
other signals of the main processor are the original
control signals of the DES core.

19Journal Integrated Circuits and Systems 2007; v.2 / n.1:14-21

Figure 5. Block diagram of resulting system.

A Cryptography Core Tolerant to DFA Fault Attacks
Moratelli, Cota & Lubaszewski

B. Experimental Results

An existing DES implementation obtained from
[10] is re-used in this work. The main processor and
the assistant hardware of the DES core were imple-
mented in VHDL. Fault injection experiments using
ModelSim XE III 6.0a were performed to check the
level of security attained in the resulting cryptosystem.
The VHDL description of the protected core is modi-
fied to include simple fault injection mechanisms based
on duplicated registers and multiplexers. Faults are
programmed into the additional registers whose con-
tents replace, through the additional multiplexers, the
contents of the original registers when the attack is
simulated. This scheme allows the qualitative valida-
tion of the protected cryptosystem, helping to identify
the protected and unprotected portions of the circuit
and the level of protection achieved.

During simulation, faults were injected in reg-
isters L, R, their replicas, and in the inputs of the main
processor. Table 1 summarizes our experimental
results. Our fault injection campaign has demonstrat-
ed that the proposed solution allows the detection and
correction of all transient faults inside the f function.
These faults were injected in different locations and
rounds of the cryptosystem execution. More specifi-
cally, faults were exhaustively injected in the f function
registers in the 15th round, to ensure that malicious
attacks are indeed avoided. In addition, faults in the
inputs of the f function are also detected and, for those
faults, execution is stopped. Faults occurring in a reg-
ister of the datapath before or after the whole f func-
tion rounds are not detected and corrupt the output
data. However, this corrupted output does not lead to
the secret key. Thus, this protection scheme provides
a fault coverage that is good enough to protect the f
function against critical faults.

We note that the block that generates subkeys
for each round of the f function is also vulnerable to
fault attacks. However, the same fault analysis can be
performed in this block to define the most critical parts
to be duplicated. Some implementations of this core
are built as a combinational circuit that generates every
subkey during system initialization and stores them in
registers. Those registers can be protected, for
instance, by Hamming code and the assistant hardware
composed of a Hamming checker. Other implementa-
tions generate a new subkey at each round. In this case,
more detailed fault analysis must be performed.

Information about area and speed was
obtained using the Leonardo synthesis tool and is
presented in Table 2. One can observe a minimal per-
formance penalty of 10% caused by the inclusion of
the comparator at the end of f function, forcing the
comparison to the assistant hardware in the same
clock cycle. The area overhead of about 38% is quite

small compared to the area overhead of a totally
duplicated hardware.

We note also that the proposed method is not
related to a specific implementation of the DES algo-
rithm, since it is based on the logic instead of the
VHDL code. Furthermore, it is possible to perform a
fault attack analysis and define the most critical parts
of other encryption algorithms such as AES to define
its most vulnerable parts to be replicated. In [11], a
number of possible attacks to AES algorithms are pre-
sented. In addition, fault injection tools considering
permanent and transient faults have been largely stud-
ied in the last few years and can be reused and/or
adapted for this analysis. Current work includes the
use of partial replication as a protection scheme for
the AES algorithm.

5. FINAL REMARKS

This paper has proposed a cost-effective solu-
tion to protect cryptographic cores against malicious
attacks. First, a successful DFA attack was simulated in
a Java-based platform, showing that hardware imple-
mentations of encryption algorithms have some weak-
nesses that can lead to the revelation of the secret
encryption key. Then, a countermeasure has been pro-
posed. It consists in replicating only the most critical
parts of the logic. This scheme was implemented and
validated for the DES core, resulting in 38% area over-
head and 10% performance penalty. For this specific
core, the implemented protection approach drastically
reduced the probability of revealing the key by reduc-
ing the vulnerable area in the circuit. The main advan-
tage of the proposed approach is that it is independ-

20 Journal Integrated Circuits and Systems 2007; v.2 / n.1:14-21

Table 1: Behavior of protected cryptosystem in the occurrence of
a fault attack.

Place of injected fault Effect
Any register of datapath Undetected, the result is
before f function corrupted, but the secret key

is not revealed.
In registers of f function Detected, execution is stopped,
inputs the result is not shown.
In signals inside f function Detected and corrected.
In registers or signals of Undetected, the result is
datapath after f function corrupted, but the secret key

is not revealed.
Signals of key generator Corrupts the result and can
core reveal the secret key.

Table 2: Comparison between the original core and the resulting
system.

Clock (Mhz) Area (gates)
DES Core 165 3291
Resulting System 150 4561

A Cryptography Core Tolerant to DFA Fault Attacks
Moratelli, Cota & Lubaszewski

ent of the core implementation. Moreover, it can be
easily applied to other algorithms, such as AES, which
are also based on the iterative combination of the
original data and the encryption key. However, only
quantitative, randomized fault injection experiments
can identify the statistical probability of the unpro-
tected portions of the hardware to be attacked and
reveal the cryptosystem secret key.

Current work includes the analysis and protec-
tion of the subkey generator core of the DES imple-
mentation and the application of the method to the
AES algorithm. Furthermore, statistical fault analysis
will be performed to quantitatively evaluate the pro-
tection of the encryption systems.

ACKNOWLEDGMENTS

This work has been partly supported by the
Brazilian research agency CNPq. Thanks are also due to
Dr. Luigi Carro for valuable discussions on the subject.

REFERENCES

[1] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. A
parity code based fault detection for an implementation of the
advanced encryption standard. Defect and Fault Tolerance in
VLSI Systems, 2002. DFT 2002., 2002.

[2] E. Biham and A. Shamir. Differential fault analysis of secret
key cryptosystems. Lecture Notes in Computer Science,
1294:513{??, 1997.

[3] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance
of checking cryptographic protocols for faults. Lecture Notes
in Computer Science, 1233:37{51, 1997.

[4] L. Breveglieri, I. Koren, and P. Maistri. Incorporating error
detection and online reconfiguration into a regular architec-
ture for the advanced encryption standard. Defect and Fault
Tolerance in VLSI Systems. DFT 2005, 2005.

[5] T. A. Chris Weaver, Fadi Gebara and R. Brown. Remora: A
dynamic self-tuning processor. University of Michigan CSE
Technical Report CSE-TR-460-02, July 2002.

[6] J.-C. Laprie. Dependability of computer systems: concepts,
limits, improvements. Software Reliability Engineering, 1995,
pages 2{11, October 1995.

[7] A. J. Menezes. Handbook of Applied Cryptography. Boca
Raton, 1997.

[8] D. Mesquista, J.-D. Techer, L. Torres, G. Sassatelli, G.
Cambon, M. Robert, and F. Moraes. Current mask genera-
tion: A transistor level security against dpa attacks. 18th
Symposium on Integrated Circuits and Systems Design
(SBCCI2005), 2005.

[9] M. Nicolaidis. Design for soft-error mitigation. IEEE
Transactions on Device and Materials Reliability, Sept 2002.

[10]Opencores. Opencores.org, 2005. Disponvel em:
http://www.opencores.org. Acessado em Setembro de 2005.

[11]G. Piret and J.-J. Quisquater. A differential fault attack tech-
nique against spn structures, with application to the aes and
khazad. Cryptographic Hardware and Embedded Systems -
CHES 2003, 2003.

[12]M. Renaudin and F. Bouesse. High security smartcards.
Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE’04), 2004.

[13]B. Scheier. Applied Cryptography. John Wiley, 2rd edition,
1996.

[14]S. P. Skorobogatov and R. J. Anderson. Optical fault induction
attacks. Cryptographic Hardware and Embedded Systems,
2002.

[15]W. Stallings. Cryptography and Network Security. Prentice
Hall, 2rd edition, 1999.

21Journal Integrated Circuits and Systems 2007; v.2 / n.1:14-21

