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Abstract—The bytecode verification is a key point of the 
security chain of the Java Platform. This feature is optional 
in many embedded devices since the memory requirements 
of the verification process and the process capability of 
hardware are too high. In this paper we propose a verifier 
that utilizes the logical flow graph based cache policy and an 
improved non stressing type coding method, for the 
bytecode verification on the Java card, which remarkably 
reduces the use of the memory by the scheduling algorithm 
of the bytecode verifier. Off-card pre-processing is 
unnecessary for the bytecode, hence it is possible to be 
implemented on card and to prevent any bytecode, which is 
correct yet not pre-processed, from being refused by the on-
card verifier. This algorithm also features strong 
transportability and feasibility with a perfect verification 
process based on traditional bytecode verification. The 
results of the experiments show that this bytecode 
verification can be performed directly on small memory 
systems.  
 
Index Terms—java card, bytecode verification, type 
deduction, cache scheduling policy 
 

I.  INTRODUCTION 

The Java programming language was born in the early 
90s in order to meet flexible and highly reliable smart 
electronic device programming requirements. It is used in 
a growing number of fields and lately also in the 
embedded system world.  

Actually, a Java Card is a Smart Card running a Java 
Virtual Machine (VM), the Java Card Virtual Machine 
(JCVM), and it is going to become a secure token in 
various fields, such as banking and public administration. 
The JCVM is the core of the Java Card: it is a software 
CPU with a stack based architecture that creates an 
execution environment between the device and the 
programs (Java Card Applets). The JCVM guarantees 
hardware-independence and enforces the security 
constraints of the sandbox model. In particular, the Java 
bytecode Verifier is one of the key components of the 
sandbox model: the Java Card Applets are compiled in a 
standardized compact code called Java Card bytecode and 
the Verifier checks the correctness of the code before it is 
executed on the JCVM. 

As Java is a good trans-platform language, it is easy to 
download Java applet from internet to personal computers, 
and the Java card architecture [1] even allows users to 

download the applet, once released, to a smart card. 
However, we have to face some security problems while 
enjoying this facility. For example, is the code 
downloaded online safe? Is there any malicious code 
attempting to falsify or even destroy the original applets? 
What measures should be taken to ensure the applet 
security? These are some of the outstanding security 
problems, especially for the smart card, which is widely 
used in payment, mobile communication and the 
verification system, where security requirements are very 
crucial. 

To combat the security risks associated with mobile 
code, Sun has developed a security model for Java in 
which a central role is played by bytecode verification, 
which ensures that no malicious programs are executed 
by a Java Virtual Machine (JVM). Bytecode verification 
takes place when loading a Java class file and the process 
verifies that the loaded bytecode program has certain 
properties that the interpreter’s security builds upon. The 
essential, and nontrivial, part of bytecode verification is 
checking type-safety properties of the bytecode, that is, 
that operands are always applied to arguments of the 
appropriate type and that there can be no stack overflows 
or underflows. By checking these properties statically 
prior to execution, the JVM can safely omit the 
corresponding runtime checks.  

In Java language, a model named “sandbox” [3] is 
used to solve the security problems for the operational 
environment of the Java program. The security of the 
sandbox model relies on the following three aspects: 

Firstly, the application is not compiled directly into an 
executable code but a virtual machine-oriented named 
“bytecode”. The operation of the virtual machine for data 
processing is better than the low level hardware 
processing operation, for example, substituting a memory 
address with an object, and thus ensuring the basic 
security. 

Secondly, a series of well designed and encapsulated 
API types and methods are required by the application to 
access hardware, and the old methods, for example, direct 
hardware access through a serial port, are prohibited. 

Thirdly, the bytecode of the application undergoes a 
static analysis called “bytecode verification” to ensure the 
security of the bytecode. Bytecode verification aims to 
verify the downloaded bytecode. Any problems occurring 
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in the verification, such as mismatch type, are likely to 
incur hidden trouble for the security. 

The above sandbox model can be applied to Java card 
as well. Before the applet is downloaded as bytecode, to 
smart card, it was verified by the off-card verifier. This 
verification method is based on the data type analysis and 
data overflow analysis during the operation.  

Bytecode verification can be performed off-card or on-
card. However, because of the strong memory constraints 
of the Java Cards, the bytecode verification is unfeasible 
directly on-card in its standard form. The bytecode, 
generated by Java program and verified by an off-card 
bytecode verifier, is available in such an open 
environment as the internet, for users to download. 
However, the bytecode in this open environment is 
unreliable because of human falsification and other 
factors. A verification task which is not happened in the 
real Java card progress is therefore necessary to ensure 
the security after the bytecode is downloaded. 

It can be seen that bytecode verification plays a critical 
part in the security of Java card. The problem resulted 
from the unreliable environment can be surmounted, if 
the bytecode verifier is transferred from off-card to on-
card. Subsequently the security of the Java card will be 
improved definitely. However, it is very difficult to 
implement this verification process on Java card due to 
the limitation of the smart card itself.  Figure 1 shows the 
utopian process of Java bytecode verification. After the 
on-card verifier is inserted into the whole process, the 
off-card verifier can be kept or removed from the schema 
according to the concrete verification algorithm. 
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Figure 1.  Utopian bytecode verification schema. 

II.  RELATED WORKS 

A.  Bytecode Verifier from SUN 
It is necessary to review the traditional method of 

standard verification, as it was firstly implemented by 
SUN. This traditional bytecode verifier is based on a 
stack structure, where all the relevant local variables are 
stored. The traditional Java card verification interprets 
each method constituting the applet in an abstract way, 
aiming to check the control flow and data flow 
statistically so that they will not cause any error, for 
example, overflow or underflow of the stack, incorrect 
type of variable etc. This algorithm is called type 

deduction, which is described in Leroy’s paper [3] in 
detail.  

The algorithm of traditional bytecode verification, 
launched by Sun and developed by Gosling and Yellin, 
can be roughly described as follows. The verifier consists 
of a group of type stacks and a corresponding group of 
local variable arrays. When processing linear codes 
(without any branch or exceptional processing), the 
verifier will process each instruction in order. That is, it 
checks whether the entry is sufficient for or match each 
instruction. While processing codes with branches, it 
respectively takes folks and joins into account, and 
employs a data structure called “dictionary”, which 
consists of the stacks and local variable types of each 
corresponding branch or exceptional processing program 
point. When a branch instruction is analyzed, the branch 
type stored in the corresponding dictionary must be 
changed. That is, it is decided by the previous type in the 
dictionary and the Least Upper Bound, LUB for short, 
deducted from this instruction. Once the dictionary entry 
is changed, the corresponding instruction and the 
succeeding ones must be reanalyzed until a proper status 
is achieved. It can be calculated that the time complexity 
of this algorithm is O(S4), where S stands for the number 
of instructions of the verified program, and the space 
complexity is (3S+3N +3)×B, where S stands for the 
maximum stack space, N for the number of local 
variables in the method, and B for the number of different 
branches, given 3 bytes are needed to store each type.  

B.  Resource Limitation 
From the above analysis of the traditional algorithm, it 

can be concluded that the Java Card Virtual Machine 
(JCVM) will mainly face the problem of limitation on the 
resource, which includes two aspects, namely hardware 
stress and limited memory space, when we attempt to 
transfer the off-card verifier to an on-card one. On a 
typical Java card, the RAM space is about 3k-6k, the 
EEPROM space about 16k-256k, and the CPU 16 or 32 
bits. Based on the above discussed space complexity (3S 
+ 3N + 3)×B for the algorithm of traditional bytecode 
verification, about 3150 bytes are needed for the to-be-
stored dictionary structure in order to process a 
moderately complicate bytecode verification, given S = 5, 
N = 15, and B = 50. For the present Java card, it is 
impossible to allocate so many memory space of RAM to 
support the implementation of this algorithm. In addition, 
linear increase of the number of branches B in the 
program will probably lead to linear or even exponential 
rise on the memory space of dictionary in the algorithm, 
almost making the bytecode verification on Java card an 
impossible task. 

If the dictionary structure is stored in nonvolatile 
memory (NVM), such as EEPROM or FLASH, the 
bytecode verification will become very slow as it takes 
too long time (1-10ms) to write data into NVM. Besides, 
there are limited times for reading and writing of this 
kind of memory. The typical endurance of NVM is 
around 300,000, which can not meet the requirements for 
frequent dictionary operations. 
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All the above mentioned problems make it impossible 
to successfully implement this kind of traditional 
bytecode verification on Java card without any 
modification to it. 

C.  On-card Solutions Review 
To solve the problems above, many researchers have 

made great efforts in the bytecode verification on Java 
card, as summarized below. 

A Digital Signature method [3] uses the digital 
signature of a trusted third party, thus “omitting” the 
bytecode verification process on Java card. Though not 
relating to the narrowly defined verification, this method 
does not apply to those cases, where there is no trusted 
third party, for example, an offline one. Lightweight 
algorithm [5] processes all branches at the off-card stage 
of verification, and puts additional information into the 
bytecode. Then the instruction processed at the on-card 
stage of verification will become a linear one, because 
there is no branch, thus reducing the RAM space required 
by the verifier. However, the volume of bytecode will 
greatly increase (approximately by 50%) due to the 
additional information attached at off-card stage. Xavier 
Leroy [4] attempts to make semantic translation at the 
off-card stage of verification, so as to unify all 
instructions. While verifying the data structure, keep the 
stacks empty both in the beginning and at the end of 
processing, thus lowering the space complexity. This 
algorithm contains less additional information than the 
lightweight algorithm [5] (by approximately 2%). 
However, this algorithm can not check the initialization 
of local variables dynamically. Cinzia Bernardeschi [10] 
described a dynamic algorithm, which processes all 
branches in the control flow graph of the program, and 
deletes data in the stack after processing a branch 
structure before analyzing the following one. The 
maximum space complexity of this algorithm depends on 
the verification unit with the most branches in the 
program. PCC method [9] uses NVM to store the data 
structures corresponding to the bytecode verification, and 
this method proves to be practical in experiment. 
However, it takes much more time than the traditional 
algorithm as the writing operation of NVM is much 
slower than that of RAM, though this method does not 
present any problem with the storage space. An improved 
PCC method [2] differs from PCC in that a soft cache 
severs to try to put the bytecode verification into RAM, 
thus saving more time by the virtue of the quick speed of 
accessing RAM. But no reasonable cache scheduling 
algorithm is proposed in this method. 

III.  LOGICAL FLOW GRAPH BASED BYTECODE 
VERIFIER 

In response to the above-mentioned problems, this 
article presents a verifier based on the Logical Flow 
Graph (LFG), together with a corresponding cache 
scheduling algorithm. The LFG based bytecode verifier 
proposed in this article is to use NVM as the main 
memory, storing data types and relevant dictionary, and 
at the same time employs a part of RAM space as the 

cache. To solve the problem that it takes long time for 
NVM to complete writing or erasing operation, this 
verifier adopts an improved non stressing type encoding 
method and provides a corresponding cache scheduling 
policy. In this way, it is possible to build an on-card 
verifier to execute bytecode verification. 

A.  Improvement on Non Stressing Type Encoding 
With the consideration on the performance of NVM on 

smart card, this article attempts to improve the non 
stressing type encoding method proposed by Damien [2], 
and applies it in our proposed on-card verifier. 

In traditional bytecode verification, the data structure 
of dictionary occupies a very large storage space in the 
whole verification process. To ease the space stress, we 
suggest storing this data structure in NVM. 

Since it takes quite long time for NVM to complete 
reading and erasing/writing, it is necessary to minimize 
the data processing in cache. As the whole process of 
bytecode verification is type deduction, when processing 
complex branches, for example, when two branches 
converge on one instruction node, LUB can be available 
through a type comparison (“and” logic) between the 
corresponding types on the two branches. In terms of 
hardware, this type comparison shows that this 
processing process involves a large volume of data 
storage processing via cache, and it also relates to the 
operation of “and” logic, which will slow down the whole 
bytecode verification. 
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Figure 2.  Improved non stressing type encoding 

The non stressing encoding proposed by Damien sets 
type encoding according to the type lattice, so that each 
type corresponds to a group of Boolean data. Since it 
takes less time for NVM to complete the writing 
operation than the erasing operation, we can change a 
certain bit position from 0 to 1 when several types are 
combined as one in the lattice, thus obtaining an 
improved encoding mode. 

With characteristics of the above mentioned encoding 
mode taken into account, we represent encoding of 
different levels with Boolean data of different lengths 
according to the type lattice, with the improved non 
stressing coding shown in Figure 2. This kind of 
improved coding, compared with original one, reduces 
the type memory space, and abandons some data when it 
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is necessary to get LUB of two types. For example, to get 
the LUB of D and E, just keep the first 8 bit positions that 
are the same for D and E. In this way, the “and” operation 
in hardware can complete type deduction by abandoning 
some data. With the cache scheduling policy, which will 
be described later, this improved type encoding mode is 
advantageous in that it is only necessary to record the 
length of the corresponding data type when the data in 
cache are written back into NVM, which saves the time 
of writing or erasing operation in NVM, thus reducing 
time for the whole verification process. Therefore, the 
improved non stressing type encoding can be well applied 
in bytecode verification on Java card. 

B.  Logical Flow Graph 
In our proposed bytecode verifier, a cache scheduling 

policy is used to solve the limited resource problem when 
doing bytecode verification based on Logical Flow 
Graph, LFG for short. Figure 3 shows a simple example 
of bytecode and the corresponding LFG. 

entryv

exitv

Byte code Sample:

01: iload_1
02: iconst_3
03: if_icmpne 10
 {ASN(03)=13}
04: aload_0
05: invokevirtual test
06: istore_2
07: jsr 13
... ...
10: iconst_0
11: iload_1
12: ireturn
13: astore_3

13=ASN(03)

OB2=OB1+01

OB1

01

03

04

07 10

 
Figure 3.  Bytecode example and corresponding LFG 

Definition 1: LFG (Logical Flow Graph) 
If a graph G is a logical flow graph, then it conforms to 

the following two conditions: 
G is a directed graph, where the number of directed 

paths is greater than 1 ( ( ) 1P G ≥ ) and the number of 

nodes is greater than 3 ( ( ) 3V G ≥ ); There are only one 
entry node u , the in-degree of which is zero ( ( ) 0inD u = ), 
and only one exit node v , the out-degree of which is zero 
as well ( ( ) 0outD v = ). 

The process of bytecode verification can be imaged as 
a LFG, where any node u , except for the entry node and 
the exit one, can be subdivided into a new graph. When 
all the nodes in LFG can not be subdivided any more, 
every node in LFG stands for a VM instruction uI  and 
every edge ( , )E u v the dependency between instruction 

uI  and vI . 

Definition 2: MN (Master Node) and SN (Slave Node) 

Supposed , ( )u v V LFG∈ , if direct path ( , )P u v  exists, 
then u  is the MN of v  and v  is the SN of u . Specially, 
when ( )e E LFG∈ and { }( , )| , ( )e E u v u v V LFG= ∈ , u  is the 
DMN of v , and v  the DSN of u . Otherwise, u  is the 
indirect MN, and v  the indirect SN of u . If v  is the SN 
of u  and the distance between them is longer than that 
between any other SN of u  and u , u  is the associated 
MN of v , denoted as ( )u AMN v= , when ( ) 2outD u ≥  

and ( ) 2inD v ≥ . At the same time, v  is the associated SN 
of u , expressed as ( )v ASN u= . 
Definition 3: OB (Operation Block)  

Let , ( )u v V LFG∈ , if path set  

( ) { }P , ( , ) |1iu v P u v i n= ≤ ≤  stands for all the possible 
directed paths from u to v , then 
( ) { }w w |1 , w ( , )j jV j m P u v= ≤ ≤ ¨  is the set of all 

the nodes located on ( )P ,u v , where w ( , )j P u v¨ means 
that w j  is located on ( , )P u v . 

Furthermore, ( ) { }k k|1 , ( , )E e e k q w P u v= ≤ ≤ ¨  

stands for the set of edges located on ( )P ,u v . If v is the 
associated SN of u , namely ( )v ASN u= , then graph 

( ) ( ){ },G V w E e=  is an OB . Supposed that 

,s fOB OB LFG∈  and s fOB OB⊂ , if a node tOB , which 
satisfies s t fOB OB OB⊂ ⊂  can not be found in LFG , 

fOB  is the minimal envelope graph of sOB , represented 

as ( )f sOB MEG OB= . 
When applied to bytecode verification, an OB in fact 

includes all the nodes which have the same entry and the 
same exit nodes, which can be considered as a basic 
verification and cache unit after combined with the other 
linear bytecode nodes or not. 

C.  Bytecode Verification Based on Cache Scheduling 
Policy 

In addition to the non stressing type encoding method, 
a cache scheduling policy based on LFG is necessary to 
copy some data from NVM to RAM during bytecode 
verification, and then to substitute the data in RAM 
through scheduling cache, thus enabling the verifying 
instruction to extract data from RAM as more as possible. 

Before describing the detailed verification process, it 
should be helpful to define some necessary functions, 
namely abstract interpreters (AI), which are based on 
LFG and play an important role in the process. Every AI 
includes a state, represented as ,i S , where i  is the 
value of the program counter and S  is the current state of 
registers and operand stack. Define ( )type i  to return the 

label corresponding to the instruction i , ( )argt et i to 

return the targets of instruction i , ( )succ i  to return the 
successor of instruction i   according to LFG and 
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( )outst i to denote the function of the standard verifier 
that generates the after-state of instruction i . Specially, 
there are two other functions regarding cache scheduling 
should be defined. One is ( )writecache S , which 
represents that the current state S  and the stack will be 
written into the cache when the instruction i  does not hit 
the data in the cache, which is substituted according to 
the FIFO (First In, First Out) policy. Otherwise, if 
instruction i  hit the data in the cache, the verification 
will be done in this cache. The other is ( )writeback S , 
which represents that the verifier will write the current 
state and the stack back to the NVM, when the current 
instruction is verified. Based on these definitions, the 
detailed bytecode verification process is described below. 

Step 1．initialization 
All the control nodes corresponding to instructions 

with “if” or “switch” are analyzed according to the 
structure of LFG, to search the ASN of every node. The 
additional message indicating the positions of these nodes 
and the number of branches for each verification unit will 
be stored in the dictionary structure. 

Step 2．verifystr 
The instruction i  will be verified as the traditional 

way and the instruction j  is predecessor of i , if it is not a 
control node or an ASN. If the instruction i  does not hit 
the data in the cache, the data structure corresponding to 
instruction i  will be put in the RAM, and the dictionary 
corresponding to instruction i  in the cache. The 
state ,i S  is transferred to ( ), ( , )succ i outst i S〈 〉 . This step 
can be described as below. 

( ), ={ ( ),
                         , ( ), ( , )
                          | ( ),  ( ) {if, switch}}

verifystr i S writecache S
i S succ i outst i S
i ASN j type i

〈 〉 → 〈 〉
≠ ∉

 

Step 3．inunit 
When the control node (instructions with “if” and 

“switch”) is verified, the verifier finds the ASN 
corresponding to it. Then the NVM puts the instruction 
and the related stack in the RAM. The dictionary 
corresponding to the instruction is written in the Cache 
including the present state S to the ASN (if the space of 
the Cache is not large enough, the size of the data which 
is written in the Cache is equal to the size of the Cache). 
Then, verify them. The state ,i S< >  is transferred 
to <target( ), outst( )>i I, S . This step can be described as 
below: 

min{ ( ), }inunit( )={    ( ),

                           , target( ), ( , )
                     |     ASN( ), ( ) {if  , switch}  }

ipd j i Ni S writecache S,S

i S i outst i S
i j type i

+

〈 〉→〈 〉
≠ ∈

，

 Step 4．outunit 

When the ASN is verified, the verifier judges whether 
all the branches is verified (C is equal to 0 or not). If yes, 
all the control node-related node data, which can be 
substituted in the following verification, will be released 
from the RAM. The related structure of the current 
instruction is put into the RAM to be verified and the 
dictionary is put into the Cache. The state ,i S is 
transferred to <succ( ),outst( , )>i I S and the state 
outst( , )  i S is rewritten into the NVM. This process can 
be stated as below. 

outunit( )={    ( ),  ,
                              ( ), ( , ), ( ( , )
                        |     ASN( ), ( ) {if, switch}, 0    }

i S writecache S i S
succ i outst i S writeback outst i S

i j type i c

〈 〉→
〈 〉
= ∉ =

，

Step5．branch 
When the ASN is verified, it should be determined 

whether all the branches are verified (C is equal to 0 or 
not). If no, the writecache( , )i S  is executed. When the 
instruction is not hit, the verifier substitutes the data in 
Cache and verifies it in the RAM. The state< , >i S is 
transferred to <target( ),outst( , )>j i S . Then the verification 
jumps to the next branch. 

branch( )={  ( ),
                           , target( ), ( , ) ,
                        |   ASN( ), ( ) {if, switch}, 0 }

i S writecache S
i S j outst i S c
i j type i c
〈 〉→〈 〉 −−
= ∉ ≠

，

 Step6．end 
When the exit node EXIT is verified, the verification 

process finishes. The state “success” stands for the 
verification is completed successfully. 

end( )={    , success     |     EXIT    }i S i S i〈 〉 → =，  
The flow chart of this Cache scheduling algorithm is as 

shown in Figure 4. 

inunit( )i S，

outunit( )i S，

verifystr( )i S，

branch( )i S，

preprocess

START

EXIT

END

∈type(i)   {if,switch}

C=0

N

N

N

N

Y Y

Y

YASN( )i j=

End( )i S，

 
Figure 4.  Flow chart of Cache scheduling algorithm 

As a whole, in this scheduling algorithm, the part 
between the folks and joins of each branch (OB) is 
verified in the RAM and the verification result is put into 
the Cache. In this way, it can greatly benefit from the 

506 JOURNAL OF COMPUTERS, VOL. 4, NO. 6, JUNE 2009

© 2009 ACADEMY PUBLISHER



time advantage of RAM and the space advantage of 
NVM. 

IV.  RESULT AND ANALYSIS 

A.  Compare to the traditional algorithm 
Because the traditional algorithm puts all the data in 

RAM, the space complexity is (3S+3N +3) ×B. In our 
algorithm, the space complexity on RAM depends on the 
part with most branches in the LFG. Assume C as the 
maximum number of branches between the total control 
nodes and the corresponding ASN, then the 
corresponding space complexity of RAM will be (3S + 
3N + 3) × C, C < B. 

B.  Compare to the improved PCC algorithm 
The verification process can be described and analyzed 

in detail, with the following bytecodes in Figure 3 as an 
example. 

In the beginning, the verification program searches all 
control nodes, indicated by 3 in the figure, and the 
corresponding ASN (3) =10. The number of branches of a 
verification unit is recorded as C=2.Verification begins 
from where START is indicated, and the dictionary is 
empty. The corresponding data in RAM are null, and 
instructions are scheduled in order from NVM and stored 
in the corresponding status stacks. When verification 
comes to the first control instruction, which is 03: 
if_icmpne10, the instruction enters an OB, and the 
corresponding successor status is written into RAM until 

it reaches 13: astore_3. The verifier reads out 
corresponding status from RAM and verifies this 
verification unit. 

When verification reaches 13 for the first time, C=1, 
and not all the branches have been verified. Then the 
verification program returns to the entry control node 3 to 
continue verification until it reaches the ASN of the 
control node. After the analysis, the program saves the 
entry status and input status into Cache, and all data of 
this OB in RAM can be substituted in the following 
verification. The verification program implements 
operation in this way until it reaches the node indicated 
by “END”, then verification finishes. 

The following is an analysis of the above presented 
bytecodes. Assume 8 for the number of instruction stack 
structures that can be stored in RAM. Based on the 
algorithm of improved PCC [2], relevant data are called 
every time by the program flow. When verification starts 
from node 1, relevant information of nodes 1-8 will be 
written into Cache, and both verification nodes 2 and 3 
are hit. When node 10 is not hit upon verification, 
information of this node will be written into Cache and 
substitute node 1 based on the principle of “First in, first 
out”. Similarly, if none of the nodes 11, 12, 13, 3, 4, 5, 6, 
7 and 13 is hit upon verification, the substituted nodes 
will be respectively 2, 3, 4, 5, 6, 7, 8, 10 and 11. See 
Table 1 for the hit status. 

Table 1 is based on the above-analyzed Improved PCC 
algorithm and the substitution policy introduced in this 
article. 

TABLE I.   
COMPARISON BETWEEN IMPROVED PCC ALGORITHM AND THE POLICY MENTIONED IN THIS ARTICLE (√ STANDS FOR “HIT” WHILE × FOR “NOT 

HIT”) 

Label of nodes 01 02 03 10 11 12 13 03 04 05 06 07 13 

Improved PCC algorithm √ √ √ × × × × × × × × × × 

Our algorithm √ √ √ √ √ √ √ √ √ √ √ × √ 

 
According to the data in the table, obviously the hit 

rate is approximately 23.08% for improved PCC 
algorithm, while it is approximately 92.31% for the 
scheduling algorithm introduced in this article, which 
means the hit rate can be greatly improved with the 
Cache scheduling policy introduced in this article. 

It is normal and reasonable for improvement of the hit 
rate since the scheduling algorithm in this article follows 
the LFG, that is, the scheduling follows the verification 
process. It is improved on the complicated scheduling 
algorithm. However, since this scheduling algorithm 
process is similar to the flow process, the program can 
guarantee its implementation without occupying large 
extra memory space while implementing the Cache 
scheduling policy during the verification process. 

A comparison of the time for substitution between the 
algorithm introduced in this article and that with the 
algorithm of improved PCC shall be given for the Cache 
of different lengths because the time is affected by the 

size of the Cache block. Figure 5 and Figure 6 present 
these comparisons. In Figure 5, the real line represents a 
curve of the time for substitution with the algorithm 
introduced in this article, and the dotted line represents 
that with the algorithm of improved PCC. We suppose 
the time that write in one block of the Cache is T. The 
vertical axis in Figure 6 represents the ratio of time for 
substitution with the algorithm introduced in this article 
to that with the algorithm of improved PCC. The 
horizontal axis in both figures represents the size of the 
Cache block. As shown in the figures, the algorithm 
introduced in this article is most efficient when the size 
of the Cache block coincides with that of the OB in the 
LFG. The shorter the size of the Cache, the more obvious 
improvement the algorithm introduced in this article will 
make on efficiency of the substitutional time of the 
Cache. The longer the size of the Cache, the more 
service efficiency the algorithm introduced in this article 
will make. The less the traffic of data exchange between 
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Cache and NVM, the more there will be data verified in 
Cache. 

Therefore, the difference between algorithms will 
become insignificant. 

The time for substitution
13 T

1 T

1       2       3        4        5       6       7        8        9       10     11     12     13
Cache size

The algorithm in this article

Improved PPC algorithm

 
Figure 5.  The time for substitution between the algorithm introduced 
in this article and that with the algorithm of improved PCC for Cache 

of different length 

1       2       3        4        5       6       7        8        9       10     11     12     13

0.5

1.0
ratio

Cache size

 
Figure 6.  Ratio of time with the algorithm introduced in this article to 

that with the algorithm of improved PCC 

As for the time of the algorithm, the whole 
verification process consumes the traditional verification 
time plus the time for the Cache scheduling algorithm, 
with the process of the Cache scheduling algorithm taken 
into account. The algorithm introduced in this article try 
to avoid the writing and reading problems of NVM by 
converting the writing and erasing operations of NVM 
into reading operation in the improved non stressing 
encoding mode, thus removing the bottleneck in the time 
of reading and writing with NVM.  

For the operation of writing into RAM necessary the 
scheduling algorithm, the whole verification process 
consumes the traditional verification time and the time 
for the Cache scheduling algorithm, based on the 
analysis of the time complexity, and as the processor 
reads and accesses data in a short time, the time 
complexity O(S) of the added verification time △T with 
the Cache scheduling algorithm is completely acceptable, 
compared with the time complexity of the traditional 
verification algorithm O(S4). 

 In addition, it will not take more than 0.2  for RAM to 
write in a bit data. Based on such time complexity, it can 
be guaranteed that the verification process can be 
completed within the time acceptable to users with 
enough verification space as mentioned above for the 
whole verification process. 

C.  Guarantee of the Algorithm Correctness 
The following aspects can guarantee correctness of the 

verification program. First, the basic principle of 
verification is the algorithm of traditional verification, 
which guarantees that the verification has been testified 
and proved correct in terms of algorithm. Second, the 
memory capacity of NVM guarantees the algorithm of 
traditional verification, thus avoiding verification failure 
caused by any fault as a result of insufficient memory 
capacity during the verification process. Last, the Cache 
scheduling policy and the improved non stressing 
encoding guarantee reliable verification in terms of time.  

Based on the comparison between the above-
mentioned algorithm of improved PCC and the analysis 
of time complexity, we can draw a conclusion that this 
scheduling algorithm is better for the bytecode 
verification on Java card. 

V.  CONCLUSION 

This article designs a mode of bytecode verification 
on Java card based on the Cache scheduling algorithm. 
In this mode, the bytecode verification can be 
implemented completely on Java card through Cache, 
without being restricted by limitation of the Java card 
itself. Another reason for preference of this scheduling 
algorithm is that any preprocessing is unnecessary for the 
bytecode, that is, any bytecode, which is correct yet not 
pre-processed, will not been refused by the verifier. 
Through data scheduling of NVM and RAM, this 
algorithm realizes a perfect verification process based on 
traditional bytecode verification, featuring strong 
transportability and feasibility. 
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