
Research on On-card Bytecode Verifier for Java
Cards

Tongyang Wang, Pengfei Yu, Jun-jun Wu and Xin-long Ma
Institute of Information & System Technology,Huazhong Univ. of Sci & Tech.,Wuhan 430074, China

Email: yupf@vip.qq.com

Abstract—The bytecode verification is a key point of the
security chain of the Java Platform. This feature is optional
in many embedded devices since the memory requirements
of the verification process and the process capability of
hardware are too high. In this paper we propose a verifier
that utilizes the logical flow graph based cache policy and an
improved non stressing type coding method, for the
bytecode verification on the Java card, which remarkably
reduces the use of the memory by the scheduling algorithm
of the bytecode verifier. Off-card pre-processing is
unnecessary for the bytecode, hence it is possible to be
implemented on card and to prevent any bytecode, which is
correct yet not pre-processed, from being refused by the on-
card verifier. This algorithm also features strong
transportability and feasibility with a perfect verification
process based on traditional bytecode verification. The
results of the experiments show that this bytecode
verification can be performed directly on small memory
systems.

Index Terms—java card, bytecode verification, type
deduction, cache scheduling policy

I. INTRODUCTION

The Java programming language was born in the early
90s in order to meet flexible and highly reliable smart
electronic device programming requirements. It is used in
a growing number of fields and lately also in the
embedded system world.

Actually, a Java Card is a Smart Card running a Java
Virtual Machine (VM), the Java Card Virtual Machine
(JCVM), and it is going to become a secure token in
various fields, such as banking and public administration.
The JCVM is the core of the Java Card: it is a software
CPU with a stack based architecture that creates an
execution environment between the device and the
programs (Java Card Applets). The JCVM guarantees
hardware-independence and enforces the security
constraints of the sandbox model. In particular, the Java
bytecode Verifier is one of the key components of the
sandbox model: the Java Card Applets are compiled in a
standardized compact code called Java Card bytecode and
the Verifier checks the correctness of the code before it is
executed on the JCVM.

As Java is a good trans-platform language, it is easy to
download Java applet from internet to personal computers,
and the Java card architecture [1] even allows users to

download the applet, once released, to a smart card.
However, we have to face some security problems while
enjoying this facility. For example, is the code
downloaded online safe? Is there any malicious code
attempting to falsify or even destroy the original applets?
What measures should be taken to ensure the applet
security? These are some of the outstanding security
problems, especially for the smart card, which is widely
used in payment, mobile communication and the
verification system, where security requirements are very
crucial.

To combat the security risks associated with mobile
code, Sun has developed a security model for Java in
which a central role is played by bytecode verification,
which ensures that no malicious programs are executed
by a Java Virtual Machine (JVM). Bytecode verification
takes place when loading a Java class file and the process
verifies that the loaded bytecode program has certain
properties that the interpreter’s security builds upon. The
essential, and nontrivial, part of bytecode verification is
checking type-safety properties of the bytecode, that is,
that operands are always applied to arguments of the
appropriate type and that there can be no stack overflows
or underflows. By checking these properties statically
prior to execution, the JVM can safely omit the
corresponding runtime checks.

In Java language, a model named “sandbox” [3] is
used to solve the security problems for the operational
environment of the Java program. The security of the
sandbox model relies on the following three aspects:

Firstly, the application is not compiled directly into an
executable code but a virtual machine-oriented named
“bytecode”. The operation of the virtual machine for data
processing is better than the low level hardware
processing operation, for example, substituting a memory
address with an object, and thus ensuring the basic
security.

Secondly, a series of well designed and encapsulated
API types and methods are required by the application to
access hardware, and the old methods, for example, direct
hardware access through a serial port, are prohibited.

Thirdly, the bytecode of the application undergoes a
static analysis called “bytecode verification” to ensure the
security of the bytecode. Bytecode verification aims to
verify the downloaded bytecode. Any problems occurring

502 JOURNAL OF COMPUTERS, VOL. 4, NO. 6, JUNE 2009

© 2009 ACADEMY PUBLISHER

in the verification, such as mismatch type, are likely to
incur hidden trouble for the security.

The above sandbox model can be applied to Java card
as well. Before the applet is downloaded as bytecode, to
smart card, it was verified by the off-card verifier. This
verification method is based on the data type analysis and
data overflow analysis during the operation.

Bytecode verification can be performed off-card or on-
card. However, because of the strong memory constraints
of the Java Cards, the bytecode verification is unfeasible
directly on-card in its standard form. The bytecode,
generated by Java program and verified by an off-card
bytecode verifier, is available in such an open
environment as the internet, for users to download.
However, the bytecode in this open environment is
unreliable because of human falsification and other
factors. A verification task which is not happened in the
real Java card progress is therefore necessary to ensure
the security after the bytecode is downloaded.

It can be seen that bytecode verification plays a critical
part in the security of Java card. The problem resulted
from the unreliable environment can be surmounted, if
the bytecode verifier is transferred from off-card to on-
card. Subsequently the security of the Java card will be
improved definitely. However, it is very difficult to
implement this verification process on Java card due to
the limitation of the smart card itself. Figure 1 shows the
utopian process of Java bytecode verification. After the
on-card verifier is inserted into the whole process, the
off-card verifier can be kept or removed from the schema
according to the concrete verification algorithm.

Off-card processing

On-card processing

javac Java
Compiler

 CAP
converter

Off-card
 verifier

Class
 file

CAP
 file

 JVM
Bytecode

Verified
 applet

Verified
CAP file

On-card
verifier

 Applet
installer

Non-defensive
 VM

Untrusted

Figure 1. Utopian bytecode verification schema.

II. RELATED WORKS

A. Bytecode Verifier from SUN
It is necessary to review the traditional method of

standard verification, as it was firstly implemented by
SUN. This traditional bytecode verifier is based on a
stack structure, where all the relevant local variables are
stored. The traditional Java card verification interprets
each method constituting the applet in an abstract way,
aiming to check the control flow and data flow
statistically so that they will not cause any error, for
example, overflow or underflow of the stack, incorrect
type of variable etc. This algorithm is called type

deduction, which is described in Leroy’s paper [3] in
detail.

The algorithm of traditional bytecode verification,
launched by Sun and developed by Gosling and Yellin,
can be roughly described as follows. The verifier consists
of a group of type stacks and a corresponding group of
local variable arrays. When processing linear codes
(without any branch or exceptional processing), the
verifier will process each instruction in order. That is, it
checks whether the entry is sufficient for or match each
instruction. While processing codes with branches, it
respectively takes folks and joins into account, and
employs a data structure called “dictionary”, which
consists of the stacks and local variable types of each
corresponding branch or exceptional processing program
point. When a branch instruction is analyzed, the branch
type stored in the corresponding dictionary must be
changed. That is, it is decided by the previous type in the
dictionary and the Least Upper Bound, LUB for short,
deducted from this instruction. Once the dictionary entry
is changed, the corresponding instruction and the
succeeding ones must be reanalyzed until a proper status
is achieved. It can be calculated that the time complexity
of this algorithm is O(S4), where S stands for the number
of instructions of the verified program, and the space
complexity is (3S+3N +3)×B, where S stands for the
maximum stack space, N for the number of local
variables in the method, and B for the number of different
branches, given 3 bytes are needed to store each type.

B. Resource Limitation
From the above analysis of the traditional algorithm, it

can be concluded that the Java Card Virtual Machine
(JCVM) will mainly face the problem of limitation on the
resource, which includes two aspects, namely hardware
stress and limited memory space, when we attempt to
transfer the off-card verifier to an on-card one. On a
typical Java card, the RAM space is about 3k-6k, the
EEPROM space about 16k-256k, and the CPU 16 or 32
bits. Based on the above discussed space complexity (3S
+ 3N + 3)×B for the algorithm of traditional bytecode
verification, about 3150 bytes are needed for the to-be-
stored dictionary structure in order to process a
moderately complicate bytecode verification, given S = 5,
N = 15, and B = 50. For the present Java card, it is
impossible to allocate so many memory space of RAM to
support the implementation of this algorithm. In addition,
linear increase of the number of branches B in the
program will probably lead to linear or even exponential
rise on the memory space of dictionary in the algorithm,
almost making the bytecode verification on Java card an
impossible task.

If the dictionary structure is stored in nonvolatile
memory (NVM), such as EEPROM or FLASH, the
bytecode verification will become very slow as it takes
too long time (1-10ms) to write data into NVM. Besides,
there are limited times for reading and writing of this
kind of memory. The typical endurance of NVM is
around 300,000, which can not meet the requirements for
frequent dictionary operations.

JOURNAL OF COMPUTERS, VOL. 4, NO. 6, JUNE 2009 503

© 2009 ACADEMY PUBLISHER

All the above mentioned problems make it impossible
to successfully implement this kind of traditional
bytecode verification on Java card without any
modification to it.

C. On-card Solutions Review
To solve the problems above, many researchers have

made great efforts in the bytecode verification on Java
card, as summarized below.

A Digital Signature method [3] uses the digital
signature of a trusted third party, thus “omitting” the
bytecode verification process on Java card. Though not
relating to the narrowly defined verification, this method
does not apply to those cases, where there is no trusted
third party, for example, an offline one. Lightweight
algorithm [5] processes all branches at the off-card stage
of verification, and puts additional information into the
bytecode. Then the instruction processed at the on-card
stage of verification will become a linear one, because
there is no branch, thus reducing the RAM space required
by the verifier. However, the volume of bytecode will
greatly increase (approximately by 50%) due to the
additional information attached at off-card stage. Xavier
Leroy [4] attempts to make semantic translation at the
off-card stage of verification, so as to unify all
instructions. While verifying the data structure, keep the
stacks empty both in the beginning and at the end of
processing, thus lowering the space complexity. This
algorithm contains less additional information than the
lightweight algorithm [5] (by approximately 2%).
However, this algorithm can not check the initialization
of local variables dynamically. Cinzia Bernardeschi [10]
described a dynamic algorithm, which processes all
branches in the control flow graph of the program, and
deletes data in the stack after processing a branch
structure before analyzing the following one. The
maximum space complexity of this algorithm depends on
the verification unit with the most branches in the
program. PCC method [9] uses NVM to store the data
structures corresponding to the bytecode verification, and
this method proves to be practical in experiment.
However, it takes much more time than the traditional
algorithm as the writing operation of NVM is much
slower than that of RAM, though this method does not
present any problem with the storage space. An improved
PCC method [2] differs from PCC in that a soft cache
severs to try to put the bytecode verification into RAM,
thus saving more time by the virtue of the quick speed of
accessing RAM. But no reasonable cache scheduling
algorithm is proposed in this method.

III. LOGICAL FLOW GRAPH BASED BYTECODE
VERIFIER

In response to the above-mentioned problems, this
article presents a verifier based on the Logical Flow
Graph (LFG), together with a corresponding cache
scheduling algorithm. The LFG based bytecode verifier
proposed in this article is to use NVM as the main
memory, storing data types and relevant dictionary, and
at the same time employs a part of RAM space as the

cache. To solve the problem that it takes long time for
NVM to complete writing or erasing operation, this
verifier adopts an improved non stressing type encoding
method and provides a corresponding cache scheduling
policy. In this way, it is possible to build an on-card
verifier to execute bytecode verification.

A. Improvement on Non Stressing Type Encoding
With the consideration on the performance of NVM on

smart card, this article attempts to improve the non
stressing type encoding method proposed by Damien [2],
and applies it in our proposed on-card verifier.

In traditional bytecode verification, the data structure
of dictionary occupies a very large storage space in the
whole verification process. To ease the space stress, we
suggest storing this data structure in NVM.

Since it takes quite long time for NVM to complete
reading and erasing/writing, it is necessary to minimize
the data processing in cache. As the whole process of
bytecode verification is type deduction, when processing
complex branches, for example, when two branches
converge on one instruction node, LUB can be available
through a type comparison (“and” logic) between the
corresponding types on the two branches. In terms of
hardware, this type comparison shows that this
processing process involves a large volume of data
storage processing via cache, and it also relates to the
operation of “and” logic, which will slow down the whole
bytecode verification.

Top
 0

 int
0001

Object
0010

float
0100

 int[]
0010 0001

 float[]
0010 0010

 C
0010 0100

 Object[]
0010 1000

 D
0010 0100 0001

 E
0010 0100 0010

 C[]
0010 1000 0001

 D[]
0010 1000 0001 0001

 E[]
0010 1000 0001 0010

 NULL
0010 1100 0011 0011

Figure 2. Improved non stressing type encoding

The non stressing encoding proposed by Damien sets
type encoding according to the type lattice, so that each
type corresponds to a group of Boolean data. Since it
takes less time for NVM to complete the writing
operation than the erasing operation, we can change a
certain bit position from 0 to 1 when several types are
combined as one in the lattice, thus obtaining an
improved encoding mode.

With characteristics of the above mentioned encoding
mode taken into account, we represent encoding of
different levels with Boolean data of different lengths
according to the type lattice, with the improved non
stressing coding shown in Figure 2. This kind of
improved coding, compared with original one, reduces
the type memory space, and abandons some data when it

504 JOURNAL OF COMPUTERS, VOL. 4, NO. 6, JUNE 2009

© 2009 ACADEMY PUBLISHER

is necessary to get LUB of two types. For example, to get
the LUB of D and E, just keep the first 8 bit positions that
are the same for D and E. In this way, the “and” operation
in hardware can complete type deduction by abandoning
some data. With the cache scheduling policy, which will
be described later, this improved type encoding mode is
advantageous in that it is only necessary to record the
length of the corresponding data type when the data in
cache are written back into NVM, which saves the time
of writing or erasing operation in NVM, thus reducing
time for the whole verification process. Therefore, the
improved non stressing type encoding can be well applied
in bytecode verification on Java card.

B. Logical Flow Graph
In our proposed bytecode verifier, a cache scheduling

policy is used to solve the limited resource problem when
doing bytecode verification based on Logical Flow
Graph, LFG for short. Figure 3 shows a simple example
of bytecode and the corresponding LFG.

entryv

exitv

Byte code Sample:

01: iload_1
02: iconst_3
03: if_icmpne 10
 {ASN(03)=13}
04: aload_0
05: invokevirtual test
06: istore_2
07: jsr 13
... ...
10: iconst_0
11: iload_1
12: ireturn
13: astore_3

13=ASN(03)

OB2=OB1+01

OB1

01

03

04

07 10

Figure 3. Bytecode example and corresponding LFG

Definition 1: LFG (Logical Flow Graph)
If a graph G is a logical flow graph, then it conforms to

the following two conditions:
G is a directed graph, where the number of directed

paths is greater than 1 (() 1P G ≥) and the number of

nodes is greater than 3 (() 3V G ≥); There are only one
entry node u , the in-degree of which is zero (() 0inD u =),
and only one exit node v , the out-degree of which is zero
as well (() 0outD v =).

The process of bytecode verification can be imaged as
a LFG, where any node u , except for the entry node and
the exit one, can be subdivided into a new graph. When
all the nodes in LFG can not be subdivided any more,
every node in LFG stands for a VM instruction uI and
every edge (,)E u v the dependency between instruction

uI and vI .

Definition 2: MN (Master Node) and SN (Slave Node)

Supposed , ()u v V LFG∈ , if direct path (,)P u v exists,
then u is the MN of v and v is the SN of u . Specially,
when ()e E LFG∈ and { }(,)| , ()e E u v u v V LFG= ∈ , u is the
DMN of v , and v the DSN of u . Otherwise, u is the
indirect MN, and v the indirect SN of u . If v is the SN
of u and the distance between them is longer than that
between any other SN of u and u , u is the associated
MN of v , denoted as ()u AMN v= , when () 2outD u ≥

and () 2inD v ≥ . At the same time, v is the associated SN
of u , expressed as ()v ASN u= .
Definition 3: OB (Operation Block)

Let , ()u v V LFG∈ , if path set

() { }P , (,) |1iu v P u v i n= ≤ ≤ stands for all the possible
directed paths from u to v , then
() { }w w |1 , w (,)j jV j m P u v= ≤ ≤ ¨ is the set of all

the nodes located on ()P ,u v , where w (,)j P u v¨ means
that w j is located on (,)P u v .

Furthermore, () { }k k|1 , (,)E e e k q w P u v= ≤ ≤ ¨

stands for the set of edges located on ()P ,u v . If v is the
associated SN of u , namely ()v ASN u= , then graph

() (){ },G V w E e= is an OB . Supposed that

,s fOB OB LFG∈ and s fOB OB⊂ , if a node tOB , which
satisfies s t fOB OB OB⊂ ⊂ can not be found in LFG ,

fOB is the minimal envelope graph of sOB , represented

as ()f sOB MEG OB= .
When applied to bytecode verification, an OB in fact

includes all the nodes which have the same entry and the
same exit nodes, which can be considered as a basic
verification and cache unit after combined with the other
linear bytecode nodes or not.

C. Bytecode Verification Based on Cache Scheduling
Policy

In addition to the non stressing type encoding method,
a cache scheduling policy based on LFG is necessary to
copy some data from NVM to RAM during bytecode
verification, and then to substitute the data in RAM
through scheduling cache, thus enabling the verifying
instruction to extract data from RAM as more as possible.

Before describing the detailed verification process, it
should be helpful to define some necessary functions,
namely abstract interpreters (AI), which are based on
LFG and play an important role in the process. Every AI
includes a state, represented as ,i S , where i is the
value of the program counter and S is the current state of
registers and operand stack. Define ()type i to return the

label corresponding to the instruction i , ()argt et i to

return the targets of instruction i , ()succ i to return the
successor of instruction i according to LFG and

JOURNAL OF COMPUTERS, VOL. 4, NO. 6, JUNE 2009 505

© 2009 ACADEMY PUBLISHER

()outst i to denote the function of the standard verifier
that generates the after-state of instruction i . Specially,
there are two other functions regarding cache scheduling
should be defined. One is ()writecache S , which
represents that the current state S and the stack will be
written into the cache when the instruction i does not hit
the data in the cache, which is substituted according to
the FIFO (First In, First Out) policy. Otherwise, if
instruction i hit the data in the cache, the verification
will be done in this cache. The other is ()writeback S ,
which represents that the verifier will write the current
state and the stack back to the NVM, when the current
instruction is verified. Based on these definitions, the
detailed bytecode verification process is described below.

Step 1．initialization
All the control nodes corresponding to instructions

with “if” or “switch” are analyzed according to the
structure of LFG, to search the ASN of every node. The
additional message indicating the positions of these nodes
and the number of branches for each verification unit will
be stored in the dictionary structure.

Step 2．verifystr
The instruction i will be verified as the traditional

way and the instruction j is predecessor of i , if it is not a
control node or an ASN. If the instruction i does not hit
the data in the cache, the data structure corresponding to
instruction i will be put in the RAM, and the dictionary
corresponding to instruction i in the cache. The
state ,i S is transferred to (), (,)succ i outst i S〈 〉 . This step
can be described as below.

(), ={ (),
 , (), (,)
 | (), () {if, switch}}

verifystr i S writecache S
i S succ i outst i S
i ASN j type i

〈 〉 → 〈 〉
≠ ∉

Step 3．inunit
When the control node (instructions with “if” and

“switch”) is verified, the verifier finds the ASN
corresponding to it. Then the NVM puts the instruction
and the related stack in the RAM. The dictionary
corresponding to the instruction is written in the Cache
including the present state S to the ASN (if the space of
the Cache is not large enough, the size of the data which
is written in the Cache is equal to the size of the Cache).
Then, verify them. The state ,i S< > is transferred
to <target(), outst()>i I, S . This step can be described as
below:

min{ (), }inunit()={ (),

 , target(), (,)
 | ASN(), () {if , switch} }

ipd j i Ni S writecache S,S

i S i outst i S
i j type i

+

〈 〉→〈 〉
≠ ∈

，

 Step 4．outunit

When the ASN is verified, the verifier judges whether
all the branches is verified (C is equal to 0 or not). If yes,
all the control node-related node data, which can be
substituted in the following verification, will be released
from the RAM. The related structure of the current
instruction is put into the RAM to be verified and the
dictionary is put into the Cache. The state ,i S is
transferred to <succ(),outst(,)>i I S and the state
outst(,) i S is rewritten into the NVM. This process can
be stated as below.

outunit()={ (), ,
 (), (,), ((,)
 | ASN(), () {if, switch}, 0 }

i S writecache S i S
succ i outst i S writeback outst i S

i j type i c

〈 〉→
〈 〉
= ∉ =

，

Step5．branch
When the ASN is verified, it should be determined

whether all the branches are verified (C is equal to 0 or
not). If no, the writecache(,)i S is executed. When the
instruction is not hit, the verifier substitutes the data in
Cache and verifies it in the RAM. The state< , >i S is
transferred to <target(),outst(,)>j i S . Then the verification
jumps to the next branch.

branch()={ (),
 , target(), (,) ,
 | ASN(), () {if, switch}, 0 }

i S writecache S
i S j outst i S c
i j type i c
〈 〉→〈 〉 −−
= ∉ ≠

，

 Step6．end
When the exit node EXIT is verified, the verification

process finishes. The state “success” stands for the
verification is completed successfully.

end()={ , success | EXIT }i S i S i〈 〉 → =，
The flow chart of this Cache scheduling algorithm is as

shown in Figure 4.

inunit()i S，

outunit()i S，

verifystr()i S，

branch()i S，

preprocess

START

EXIT

END

∈type(i) {if,switch}

C=0

N

N

N

N

Y Y

Y

YASN()i j=

End()i S，

Figure 4. Flow chart of Cache scheduling algorithm

As a whole, in this scheduling algorithm, the part
between the folks and joins of each branch (OB) is
verified in the RAM and the verification result is put into
the Cache. In this way, it can greatly benefit from the

506 JOURNAL OF COMPUTERS, VOL. 4, NO. 6, JUNE 2009

© 2009 ACADEMY PUBLISHER

time advantage of RAM and the space advantage of
NVM.

IV. RESULT AND ANALYSIS

A. Compare to the traditional algorithm
Because the traditional algorithm puts all the data in

RAM, the space complexity is (3S+3N +3) ×B. In our
algorithm, the space complexity on RAM depends on the
part with most branches in the LFG. Assume C as the
maximum number of branches between the total control
nodes and the corresponding ASN, then the
corresponding space complexity of RAM will be (3S +
3N + 3) × C, C < B.

B. Compare to the improved PCC algorithm
The verification process can be described and analyzed

in detail, with the following bytecodes in Figure 3 as an
example.

In the beginning, the verification program searches all
control nodes, indicated by 3 in the figure, and the
corresponding ASN (3) =10. The number of branches of a
verification unit is recorded as C=2.Verification begins
from where START is indicated, and the dictionary is
empty. The corresponding data in RAM are null, and
instructions are scheduled in order from NVM and stored
in the corresponding status stacks. When verification
comes to the first control instruction, which is 03:
if_icmpne10, the instruction enters an OB, and the
corresponding successor status is written into RAM until

it reaches 13: astore_3. The verifier reads out
corresponding status from RAM and verifies this
verification unit.

When verification reaches 13 for the first time, C=1,
and not all the branches have been verified. Then the
verification program returns to the entry control node 3 to
continue verification until it reaches the ASN of the
control node. After the analysis, the program saves the
entry status and input status into Cache, and all data of
this OB in RAM can be substituted in the following
verification. The verification program implements
operation in this way until it reaches the node indicated
by “END”, then verification finishes.

The following is an analysis of the above presented
bytecodes. Assume 8 for the number of instruction stack
structures that can be stored in RAM. Based on the
algorithm of improved PCC [2], relevant data are called
every time by the program flow. When verification starts
from node 1, relevant information of nodes 1-8 will be
written into Cache, and both verification nodes 2 and 3
are hit. When node 10 is not hit upon verification,
information of this node will be written into Cache and
substitute node 1 based on the principle of “First in, first
out”. Similarly, if none of the nodes 11, 12, 13, 3, 4, 5, 6,
7 and 13 is hit upon verification, the substituted nodes
will be respectively 2, 3, 4, 5, 6, 7, 8, 10 and 11. See
Table 1 for the hit status.

Table 1 is based on the above-analyzed Improved PCC
algorithm and the substitution policy introduced in this
article.

TABLE I.
COMPARISON BETWEEN IMPROVED PCC ALGORITHM AND THE POLICY MENTIONED IN THIS ARTICLE (√ STANDS FOR “HIT” WHILE × FOR “NOT

HIT”)

Label of nodes 01 02 03 10 11 12 13 03 04 05 06 07 13

Improved PCC algorithm √ √ √ × × × × × × × × × ×

Our algorithm √ √ √ √ √ √ √ √ √ √ √ × √

According to the data in the table, obviously the hit

rate is approximately 23.08% for improved PCC
algorithm, while it is approximately 92.31% for the
scheduling algorithm introduced in this article, which
means the hit rate can be greatly improved with the
Cache scheduling policy introduced in this article.

It is normal and reasonable for improvement of the hit
rate since the scheduling algorithm in this article follows
the LFG, that is, the scheduling follows the verification
process. It is improved on the complicated scheduling
algorithm. However, since this scheduling algorithm
process is similar to the flow process, the program can
guarantee its implementation without occupying large
extra memory space while implementing the Cache
scheduling policy during the verification process.

A comparison of the time for substitution between the
algorithm introduced in this article and that with the
algorithm of improved PCC shall be given for the Cache
of different lengths because the time is affected by the

size of the Cache block. Figure 5 and Figure 6 present
these comparisons. In Figure 5, the real line represents a
curve of the time for substitution with the algorithm
introduced in this article, and the dotted line represents
that with the algorithm of improved PCC. We suppose
the time that write in one block of the Cache is T. The
vertical axis in Figure 6 represents the ratio of time for
substitution with the algorithm introduced in this article
to that with the algorithm of improved PCC. The
horizontal axis in both figures represents the size of the
Cache block. As shown in the figures, the algorithm
introduced in this article is most efficient when the size
of the Cache block coincides with that of the OB in the
LFG. The shorter the size of the Cache, the more obvious
improvement the algorithm introduced in this article will
make on efficiency of the substitutional time of the
Cache. The longer the size of the Cache, the more
service efficiency the algorithm introduced in this article
will make. The less the traffic of data exchange between

JOURNAL OF COMPUTERS, VOL. 4, NO. 6, JUNE 2009 507

© 2009 ACADEMY PUBLISHER

Cache and NVM, the more there will be data verified in
Cache.

Therefore, the difference between algorithms will
become insignificant.

The time for substitution
13 T

1 T

1 2 3 4 5 6 7 8 9 10 11 12 13
Cache size

The algorithm in this article

Improved PPC algorithm

Figure 5. The time for substitution between the algorithm introduced
in this article and that with the algorithm of improved PCC for Cache

of different length

1 2 3 4 5 6 7 8 9 10 11 12 13

0.5

1.0
ratio

Cache size

Figure 6. Ratio of time with the algorithm introduced in this article to

that with the algorithm of improved PCC

As for the time of the algorithm, the whole
verification process consumes the traditional verification
time plus the time for the Cache scheduling algorithm,
with the process of the Cache scheduling algorithm taken
into account. The algorithm introduced in this article try
to avoid the writing and reading problems of NVM by
converting the writing and erasing operations of NVM
into reading operation in the improved non stressing
encoding mode, thus removing the bottleneck in the time
of reading and writing with NVM.

For the operation of writing into RAM necessary the
scheduling algorithm, the whole verification process
consumes the traditional verification time and the time
for the Cache scheduling algorithm, based on the
analysis of the time complexity, and as the processor
reads and accesses data in a short time, the time
complexity O(S) of the added verification time △T with
the Cache scheduling algorithm is completely acceptable,
compared with the time complexity of the traditional
verification algorithm O(S4).

 In addition, it will not take more than 0.2 for RAM to
write in a bit data. Based on such time complexity, it can
be guaranteed that the verification process can be
completed within the time acceptable to users with
enough verification space as mentioned above for the
whole verification process.

C. Guarantee of the Algorithm Correctness
The following aspects can guarantee correctness of the

verification program. First, the basic principle of
verification is the algorithm of traditional verification,
which guarantees that the verification has been testified
and proved correct in terms of algorithm. Second, the
memory capacity of NVM guarantees the algorithm of
traditional verification, thus avoiding verification failure
caused by any fault as a result of insufficient memory
capacity during the verification process. Last, the Cache
scheduling policy and the improved non stressing
encoding guarantee reliable verification in terms of time.

Based on the comparison between the above-
mentioned algorithm of improved PCC and the analysis
of time complexity, we can draw a conclusion that this
scheduling algorithm is better for the bytecode
verification on Java card.

V. CONCLUSION

This article designs a mode of bytecode verification
on Java card based on the Cache scheduling algorithm.
In this mode, the bytecode verification can be
implemented completely on Java card through Cache,
without being restricted by limitation of the Java card
itself. Another reason for preference of this scheduling
algorithm is that any preprocessing is unnecessary for the
bytecode, that is, any bytecode, which is correct yet not
pre-processed, will not been refused by the verifier.
Through data scheduling of NVM and RAM, this
algorithm realizes a perfect verification process based on
traditional bytecode verification, featuring strong
transportability and feasibility.

ACKNOWLEDGMENT

Instructions and supervisions from Prof. Xinfang
Zhang, constructive suggestions from Xinlong Ma and
Mingwei Fang, and collaborations of Tongyang Wang
and Jun-jun Wu are gratefully acknowledged.

REFERENCES

[1] Zhiqun Chen. Java Card Technology for Smart Cards:
Architecture and Programmer’s Guide. Addison Wesley
Longman Publishing co., Inc., 2000.

[2] Damien Deville. Building an “impossible” verifier on a
Java Card. In USENIX Workshop on Industrial
Experiences with Systems Software(WIESS’02), 2002.

[3] X.Leroy. Java bytecode verification: algorithms and
formalizations. Journal on automated reasoning, 30, 2003.

[4] X.Leroy. Bytecode verification on Java Smart card.
Software Practice & Experience, 32:319-340, 2002.

[5] Rose E, Rose K. Lightweight bytecode verification. In
Workshop Fundamental Underpinnings of Java, 1998.

508 JOURNAL OF COMPUTERS, VOL. 4, NO. 6, JUNE 2009

© 2009 ACADEMY PUBLISHER

[6] Joachim Posegga and Harad Vogt. Java bytecode
verification using model checking. In 26th symposium
Principles of Programming Languages, pages 70-78. ACM
Press, 2002.

[7] Raymie Stata and Martín Abadi. A Type system for Java
bytecode subroutines. ACM Transactions on
Programming Languages and System, 21(1): 90-137,
1999.

[8] Virtual Machine Specification. Java Card TM Platform,
Version 2.2.2. Sun Microsystems, Inc, 2006.

[9] George C.Necula. Proof-carrying code. In 24th
symposium Principles of programming Language, pages
106-119. ACM Press, 1997.

[10] C. Bernardeschi, L. Martini, and P. Masci. Java bytecode
verification with dynamic structures. International
Conference on Software Engineering and Applications
(SEA), Cambridge, MA, USA, 2004.

Tongyang Wang(1963-), male, Wuhan Hubei, Institute of
Information & System Technology, Huazhong Univ. of Sci &
Tech. associate professor, Ph.D, Research in Embedded
System, CAD.

Pengfei Yu(1981-), male, Chibi Hubei, Institute of Information
& System Technology, Huazhong Univ. of Sci & Tech. Ph.D
Candidate, Research in Embedded System, Trusted Computing,
Secured Portable Storage, Information Security.

Jun-jun Wu(1972-), male, Wuhan Hubei, Institute of
Information & System Technology, Huazhong Univ. of Sci &
Tech. associate professor, Ph.D, Research in Information
Security, Embedded System, CAD.

JOURNAL OF COMPUTERS, VOL. 4, NO. 6, JUNE 2009 509

© 2009 ACADEMY PUBLISHER

