JS Econometrics Module I - C. Newman Topic 3: Multiple Regression Analysis

Homework 3
 Please answer all questions. Please submit solutions at the tutorial on Wednesday November $18{ }^{\text {Th }}$, Room 2041A, 6PM

1. The median starting salary for new law graduates is determined by:
$\log ($ salary $)=\beta_{0}+\beta_{1} S A T+\beta_{2} G P A+\beta_{3} \log ($ libvol $)+\beta_{4} \log (c s t)+\beta_{5}$ rank $+u$
where
$S A T$ is the median SAT score for the graduating class (higher the better)
GPA is the median college Grade Point Average for the class (higher the better)
libvol is the number of volumes in the law school library
cst is the annual cost of attending law school
rank is the law school ranking with rank=1 being the best
(i) Explain why we expect $\beta_{5} \leq 0$
(ii) What signs do you expect for the other slope parameters? Explain.
(iii) The estimated equation is:

$$
\begin{gathered}
\log (\hat{\text { salary })}=8.34+0.005 S A T+0.25 G P A+0.09 \log (\text { libvol })+0.04 \log (\text { cst })-0.003 \mathrm{rank} \\
n=136 \quad R^{2}=0.842
\end{gathered}
$$

Interpret the estimated coefficients on the variables in this model and comment on the reported R^{2}
(20 marks)
2. Suppose you estimate the following equation using data on working men:

$$
\begin{aligned}
\text { educ }= & 10.36-0.094 \text { sibs }+0.131 \text { meduc }+0.210 \text { feduc } \\
n=722 & R^{2}=0.214
\end{aligned}
$$

where
educ is years of schooling
sibs is the number of siblings
meduc is mother's years of education
feduc is father's years of education
(i) Does sibs have the expected effect? Explain. Holding meduc and feduc constant, by how much does sibs have to increase to reduce predicted years of education by one year?
(ii) Discuss the interpretation of the coefficient on meduc.
(iii) Suppose Man A has no siblings and his mother and father each have 12 years of education. Suppose Man B has no siblings and his mother and father have 16 years of education. What is the predicted difference in years of education between B and A ?
3. Consider the following model:
$Y_{i}=\beta_{0}+\beta_{1}$ Educ $_{i}+\beta_{2}$ Exper $_{i}+u_{i}$
(i) Explain how you would estimate this model using Ordinary Least Squares
(ii) What assumptions are required to show that the OLS estimators are unbiased and efficient? Say that all individuals surveyed are 50 years old and you construct the variable Exper as Exper $_{i}=50-$ Educ $_{i}-4$. Can this model be estimated using OLS?
(iii) Suppose instead of estimating this model you estimate $Y_{i}=\alpha_{0}+\alpha_{1} E d u c_{i}+u_{i}$ using OLS.
What is the relationship between $\hat{\alpha}_{1}$ and $\hat{\beta}_{1}$?
Comment on the properties of $\hat{\alpha}_{1}$.
(iv) Under what circumstances would $\hat{\alpha}_{1}=\hat{\beta}_{1}$?
(40 marks)
4. Suppose that you are interested in estimating the ceteris paribus relationship between Y and X_{1}. You collect data on two control variables, X_{2} and X_{3}. Let $\widetilde{\beta}_{1}$ be the simple regression estimate from Y on X_{1} and $\hat{\beta}_{1}$ be the multiple regression estimate from Y on X_{1}, X_{2} and X_{3}.
(i) If X_{1} is highly correlated with X_{2} and X_{3} in the sample, and X_{2} and X_{3} have large partial effects on Y, would you expect $\widetilde{\beta}_{1}$ and $\hat{\beta}_{1}$ to be similar or different? Explain
(ii) If X_{1} is almost uncorrelated with X_{2} and X_{3}, but X_{2} and X_{3} are highly correlated, will $\widetilde{\beta}_{1}$ and $\hat{\beta}_{1}$ to be similar or different? Explain
(iii) If X_{1} is highly correlated with X_{2} and X_{3}, and X_{2} and X_{3} have small partial effects on Y, would you expect $\operatorname{Var}\left(\widetilde{\beta}_{1}\right)$ or $\operatorname{Var}\left(\hat{\beta}_{1}\right)$ to be smaller? Explain.
(iv) If X_{I} is almost uncorrelated with X_{2} and X_{3}, X_{2} and X_{3} have large partial effects on Y, and X_{2} and X_{3} are highly correlated, would you expect $\operatorname{Var}\left(\widetilde{\beta}_{1}\right)$ or $\operatorname{Var}\left(\hat{\beta}_{1}\right)$ to be smaller? Explain.

