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Abstract 

Have you ever wondered how the Ancient Greeks, and peoples before them, did their 

numerical calculations? Especially their mathematicians, astronomers, scientists, engineers, 

and architects? Without paper and pen? Before Hindu/Arabic numerals? Whatever the 

methods, wouldn't they have been extremely laborious and discouraging? … Not if the 

Ancients used counting boards like The Salamis Tablet, using operations described in this article! Then the 

Ancients could have routinely performed all the arithmetic operations on numbers of the 

form , where  and ba ±×± 10 99999999.199 1 ≤≤ a 999,19 0 ≤≤ b . 
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Multiplication

Let's start by calculating the product 

82503.0916.47 −× . We will use three Salamis 

Tablet1 style counting boards drawn on paper and 

arranged side by side (Figure 1). Drawing the 

boards on paper allows us to slide the middle 

board up and down. If the boards were immobile, 

you would have a little more administrative work to 

do to match the proper lines at each stage of the 

calculation. 

Multiplier Multiplicand Product

Figure 1

9.1647 x 102 -8.2503 x 10-1

The black dots represent pebbles, the tokens used on original counting boards2. A 

pebble on a horizontal line is worth 10 pebbles on the line below. A pebble in the space 

between horizontal lines is worth 1/2 of a pebble on the line above. Pebbles to the right of 

the vertical line are positive, to the left negative. The "×" marks the units line. The upper 

part of each board is for the exponent of 10. 

To conserve both board space and the number of pebbles needed, each digit, n, is 

represented as in this table: 

n Representation 
Pebbles 
Needed 

Unit Line 
Roman Numeral 

0 0 0  
1 1 1 I 
2 2 2 II 
3 5 – 2 3 IIV3

4 5 – 1 2 IV 
5 5 1 V 
6 5 + 1 2 VI 
7 5 + 2 3 VII 
8 10 – 2 3 IIX4

9 10 – 1 2 IX 
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n Representation 
Pebbles 
Needed 

Unit Line 
Roman Numeral 

 Sum for all digits: 19  
Average: 1.9  

By using five's and ten's complements, there are no more than 2 pebbles on any one 

horizontal line or space. Enough room is left to place another number on a board without 

having to combine (add) the two numbers at the same time. This is a very important 

checkpoint that significantly reduces operator 

errors. 

Let's start multiplying (Fig.2). First add the 

exponents. Then pick one pebble on a line of the 

multiplier and move it away from the median (the 

vertical line) to identify it. Slide the multiplicand 

table until its units line is collinear with the line of 

the identified pebble. Copy the pebbles of the 

multiplicand to the product table; on the same side 

of the median if the identified pebble is positive, 

on the opposite side of the median if the 

identified pebble is negative. 

Multiplier
Multiplicand

Product

Figure 2

Slide product pebbles away from the 

median to make room for the next number 

(Fig.3). Remove identified pebble in multiplier, 

and identify another. Slide multiplicand board so 

unit's line is collinear with multiplier's identified 

pebble, and copy multiplicand to product board; 

positive if identified multiplier pebble is positive, negative otherwise. 

Multiplier Multiplicand Product

Figure 3
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Replace combinations of pebbles on any line of product with most efficient 

representation (Fig.4). Slide pebbles away from the median to make room to add next partial 

product. Remove identified pebble in multiplier, identify another. Repeat process until no 

more pebbles exist on multiplier lines (Fig.5-8). 

 

Multiplier
Multiplicand

Product

Figure 4

Multiplier

Multiplicand

Product

Figure 5

 

 

 

 

 

 

 

 

 
Multiplier

Multiplicand

Product

Figure 6

Multiplier

Multiplicand

Product

Figure 7

 

 

 

 

 

 

 

 

Now let's double the Multiplier and halve the Multiplicand (Fig.9). This is easily 

accomplished on a pebble by pebble basis: double by duplicating every pebble, halve by 
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changing 1 to 1/2 and 5 to 2 + 1/2; then reduce to minimum representations. Do the 

halving by starting at the bottom line and working up; same for reducing to minimum 

representations. 

 

Multiplier

Multiplicand

Product

Figure 8

Multiplier

Multiplicand

Product

Figure 9

 

 

 

 

 

 

 

 

 
Multiplier

Multiplicand
Product

Figure 10

Multiplier

Multiplicand

Product

Figure 11
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Multiplier

Multiplicand

Product

Figure 12

Multiplier

Multiplicand

Product

Figure 13

 

 

 

 

 

 

 

 

In Figure 13 the white pebbles are added 

to facilitate forming readable digits. Reading the 

Product board in Figure 14 from the top down, 

the answer is 

. 41-756.1152410175.6115244- 1 =× +

Without using multiplication or addition 

tables, memorized or otherwise, we calculated a 

product of two five-digit numbers, yielding ten 

digits of precision, using only 50 pebbles and 

lines drawn in the sand! It's like writing an essay with paper and pen instead of computer, 

word processor, and printer. A little more time consuming, but the equipment is much 

cheaper. 

Multiplier

Multiplicand

Product

Figure 14

-75.61152441x10+1
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Division 

Division is a very similar process, except you keep a count of how many decimal 

fractions of the divisor you can subtract from the dividend until it is exhausted. The count is 

the quotient. 

Pebble Count Efficiency 

A fully populated counting board would have two pebbles on every line and one on 

every space, for a total of 32 + 14 = 46 pebbles. We need four boards worth of pebbles to 

do multiplication or division, so we should be able to do any problem with no more than 46 

x 4 = 184 pebbles. But if you assume that digits in a random number occur randomly, then it 

would take (10+4) × 1.9 × 4 = 106.4 pebbles. My "pebbles" are pennies and my bag contains 

$1.10 worth. 

If you do not allow negative parts, the digit representation table becomes: 

n Representation 
Pebbles 
Needed 

Unit Line 
Roman Numeral 

0 0 0  
1 1 1 I 
2 2 2 II 
3 3 3 III 
4 4 4 IIII 
5 5 1 V 
6 5 + 1 2 VI 
7 5 + 2 3 VII 
8 5 + 3 4 VIII 
9 5 + 4 5 VIIII 
 Sum for all digits: 25  
 Average: 2.5  

 

Here's an interesting investigation for students: In both representations, how high 

can you count sequentially on a counting board if you only have k pebbles? What patterns 

do the answers contain? 
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Here's what happens: 

 without neg. parts with neg. parts 

k 

Maximum 
Sequential 

Count Increment 

Maximum 
Sequential 

Count Increment 
0 0 0 0 0 
1 1 1 1 1 
2 2 1 2 1 
3 3 2 12 10 
4 8 5 22 10 
5 18 10 72 50 
6 28 10 172 100 
7 38 10 272 100 
8 48 10 772 500 
9 98 50 1,772 1,000 
10 198 100 2,772 1,000 
11 298 100 7,772 5,000 
12 398 100 17,772 10,000 
13 498 100 27,772 10,000 
14 998 500 77,772 50,000 
15 1,998 1,000 177,772 100,000 
16 2,998 1,000 277,772 100,000 
17 3,998 1,000 777,772 500,000 
18 4,998 1,000 1,777,772 1,000,000 
19 9,998 5,000 2,777,772 1,000,000 
20 19,998 10,000 7,777,772 5,000,000 
…     
31 2,999,998 1,000,000 27,777,777,772 10,000,000,000 

 

So the representation using negative parts is much more efficient, adding 10 billion 

to the maximum count from 30 to 31 pebbles, vs. 1 million for the representation without 

negative parts. We stop at 31 pebbles because the number 277.77777772 × 108 fills the large 

table on The Salamis Tablet. The number's configuration is interesting: a 2 followed by two 

7's for the integer part, and seven 7's followed by a 2 for the fractional part. Wouldn't these 

results elevate the number 7 to a very special, even mystical, place in the minds of the 

ancients? 
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Archimedes 

Archimedes was born in 287 BC and died in 212 BC. The Salamis Tablet has been 

dated to the third or fourth century BC. Could Archimedes have been involved in The 

Salamis Tablet's creation? (Not the counting board, just the actual marble Salamis Tablet.) 

The Sand Reckoner is probably the most accessible work of Archimedes … In this 

work, Archimedes sets himself the challenge of debunking the then commonly held 

belief that the number of grains of sand is too large to count. In order to do this, he 

first has to invent a system of naming large numbers in order to give an upper 

bound, and he does this by starting with the largest number around at the time, the 

myriad myriad or one hundred million (a myriad is 10,000). Archimedes' system 

goes up to 10^{8* 10^{16}} which is a myriad myriad to the myriad myriadth 

power, all taken to the myriad myriadth power. (Retrieved 6/26/05 from 

http://en.wikipedia.org/wiki/The_Sand_Reckoner) 

The Salamis Tablet's 11 line large table can accommodate multiples of 100 myriad-

myriad, and its 5 line small table can accommodate multiples of 1 myriad. (The 31-pebble 

efficiency using negative parts, above, is a myriad times more efficient than not using 

negative parts.)  

The Salamis Tablet is a Monument, Not a Working Counting Board 

The Salamis Tablet is a marble slab 4.9 feet long, 2.5 feet wide, and 1.75 inches thick. 

That's a monument, not a working device. No others have been found. So if a monument, 

why a monument? Because it documents huge advances in the ability of ancient peoples to 

do arithmetic calculations; serious and necessary calculations in mathematics, astronomy, 

science, engineering, architecture, empire sized government accounting and taxation systems, 

and commercial accounting. 

http://www.ee.ryerson.ca/%7Eelf/abacus/history.html#salamis
http://en.wikipedia.org/wiki/The_Sand_Reckoner
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Earlier Counting Boards 

But when did these advances in calculation methods appear? How much earlier than 

the creation of The Salamis Tablet? The Egyptians had a decimal number system from 2700 

BC, and the Babylonians had a place value sexagesimal number system from 2000 BC. Did 

their counting boards have the features of The Salamis Tablet? 

The Salamis Tablet can be easily modified to do sexagesimal arithmetic while still 

using the pebble saving technique of using positive and negative parts for appropriate digits, 

just replace every second line from the bottom with a dashed line. Then a pebble on a solid 

line is worth 60 pebbles on the solid line below it. A pebble on a dashed line is worth 10 

pebbles on the solid line below it. A pebble in a space is worth 1/2 a pebble on either kind 

of line immediately above it. 

The resulting Sexagesimal Counting Board accommodates 5 digits in the large table 

and 2 digits in the small table. These numbers of digits make a lot of sense! One units digit, 

four fractional digits (one thumb and four fingers), and 2 digits for an exponent (one digit 

would be too few). The Babylonians are credited with the invention of the first counting 

boards; was this Sexagesimal Counting Board the one they used? If so, The Salamis Tablet 

would be a direct descendent of such a board; in fact, an exact copy! References to the 

Salamis Tablet often say that it was used by the Babylonians, even though there are Greek 

inscriptions on it. Why? Are there sources documenting this? If true, the Greeks copied the 

technology; and Archimedes probably got the idea of exponents from the Babylonians. Two 

questions for historians: how often did Babylonians write sexagesimal numbers with more 

than 5 significant digits; and, how necessary would a zero symbol for the ends of numbers 

be if all numbers were registered on a sexagesimal counting board in what we now call 

scientific notation? 
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Clues That Led to These Conjectures 

The semicircles on the top of the large table and at the bottom of the small table of 

The Salamis Tablet are halves of a whole circle, the "perfect" geometric shape. So the two 

halves must indicate that their tables are part of the same whole, the same number. Likewise, 

the ends of each semicircle are pointing to the left and right sides of their table, again 

indicating that the two halves are connected; are one. 

Many philosophies teach that "things" occur in pairs of opposites: male/female, 

positive/negative, Yin/Yang, … Wouldn't opposite numbers make sense, then, to the 

Ancients? 

A manual for the Japanese Soroban teaches the use of 5 and 10 complements in 

forming and working with numbers on the abacus. If for abacii, why not for counting 

boards? 

The Soroban and the Roman Hand Abacus both have a 5-count bead above 4 one-

count beads. This leads naturally to using the space between lines on a counting board for 

pebbles worth 1/2 those on the line above. 

Roman Numerals are naturals for setting up a counting board or for recording the 

results. They certainly can't be used easily for calculations. So the Romans must have used 

counting boards in the manner described here. 

Egyptian numeral hieroglyphs are also naturals for setting up a Salamis Tablet 

counting board or for recording the results, if you assume Egyptians recorded their numbers 

only as positive digits. 

Babylonian cuneiform numbers are naturals for setting up a sexagesimal counting 

board. Like the Romans, they also used subtractive notation. 
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Endnotes 
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1 See http://www.ee.ryerson.ca/~elf/abacus/history.html#salamis. Retrieved June 27, 2005. 

2 "The Roman expression for 'to calculate' is 'calculus ponere' - literally, 'to place pebbles'. When a Roman 
wished to settle accounts with someone, he would use the expression  'vocare aliquem ad calculos' - 'to call 
them to the pebbles.'" Retrieved July 3, 2004 from http://mathforum.org/library/drmath/view/57572.html. 

3 Three would be entered on a counting board as IIV, but would be written as III since that form is simpler. I 
wonder if there are any written examples of IIV (which would be scribe errors). 

4 "… constructions such as IIX for eight have been discovered." Retrieved July 2, 2004, from 
http://en.wikipedia.org/wiki/Roman_numeral. Also retrieved July 2, 2004: 
http://www2.inetdirect.net/~charta/Roman_numerals.html contains a page from Pietro Bongo's Mysticae 
Numerorum Significationis Liber that clearly shows 8,000 = (I)(I)((I)); i.e., 8 being represented in the form IIX. 
Even the date, 1584 = (I) I) XXCIV, on the book's title page at http://www2.inetdirect.net/~charta/tp.html 
demonstrates the usage. 
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