
J. Functional Programming 6(6): 839{857, November 1996 c
 1996 Cambridge University Press 1Optimal Purely Functional Priority QueuesGERTH ST�LTING BRODALyBRICSzDepartment of Computer Science, University of AarhusNy Munkegade, DK-8000 �Arhus C, Denmark(e-mail: gerth@daimi.aau.dk)CHRIS OKASAKIxSchool of Computer Science, Carnegie Mellon University5000 Forbes Avenue, Pittsburgh, Pennsylvania, USA 15213(e-mail: cokasaki@cs.cmu.edu)AbstractBrodal recently introduced the �rst implementation of imperative priority queues to sup-port �ndMin, insert, and meld in O(1) worst-case time, and deleteMin in O(log n) worst-case time. These bounds are asymptotically optimal among all comparison-based priorityqueues. In this paper, we adapt Brodal's data structure to a purely functional setting. Indoing so, we both simplify the data structure and clarify its relationship to the binomialqueues of Vuillemin, which support all four operations in O(log n) time. Speci�cally, we de-rive our implementation from binomial queues in three steps: �rst, we reduce the runningtime of insert to O(1) by eliminating the possibility of cascading links; second, we reducethe running time of �ndMin to O(1) by adding a global root to hold the minimum element;and �nally, we reduce the running time of meld to O(1) by allowing priority queues to con-tain other priority queues. Each of these steps is expressed using ML-style functors. Thelast transformation, known as data-structural bootstrapping, is an interesting applicationof higher-order functors and recursive structures.1 IntroductionPurely functional data structures di�er from imperative data structures in at leasttwo respects. First, many imperative data structures rely crucially on destructiveassignments for e�ciency, whereas purely functional data structures are forbiddenfrom using destructive assignments. Second, purely functional data structures areautomatically persistent (Driscoll et al., 1989), meaning that, after an update, bothy Research partially supported by the ESPRIT II Basic Research Actions Program of theEC under contract no. 7141 (project ALCOM II) and by the Danish Natural ScienceResearch Council (Grant No. 9400044).z Basic Research in Computer Science, Centre of the Danish National ResearchFoundationx Research supported by the Advanced Research Projects Agency CSTO under the title\The Fox Project: Advanced Languages for Systems Software", ARPA Order No. C533,issued by ESC/ENS under Contract No. F19628-95-C-0050.

2 Brodal and Okasakithe new and old versions of a data structure are available for further accessesand updates. In contrast, imperative data structures are almost always ephemeral,meaning that, after an update, only the new version of a data structure is available.In many cases, these di�erences prevent functional programmers from simply usingo�-the-shelf data structures, such as those described in most algorithms texts. Thedesign of e�cient purely functional data structures is thus of great theoretical andpractical interest to functional programmers, as well as to imperative programmersfor those occasions when a persistent data structure is required. In this paper, weconsider the design of an e�cient purely functional priority queue.The priority queue is a fundamental abstraction in computer programming, ar-guably surpassed in importance only by the dictionary and the sequence. Manyimplementations of priority queues have been proposed over the years; a smallsampling includes (Williams, 1964; Crane, 1972; Vuillemin, 1978; Fredman & Tar-jan, 1987; Brodal, 1996). However, all of these consider only imperative priorityqueues. Very little has been written about purely functional priority queues. Toour knowledge, only Paulson (1991), Kaldewaij and Schoenmakers (1991), Schoen-makers (1992), and King (1994) have explicitly treated priority queues in a purelyfunctional setting.We consider priority queues that support the following operations:�ndMin (q) Return the minimum element of queue q.insert (x; q) Insert the element x into queue q.meld (q1; q2) Merge queues q1 and q2 into a single queue.deleteMin (q) Discard the minimum element of queue q.In addition, priority queues supply a value empty representing the empty queueand a predicate isEmpty. For simplicity, we will ignore empty queues except whenpresenting actual code. Figure 1 displays a Standard ML signature for these priorityqueues.Brodal (1995) recently introduced the �rst imperative data structure to sup-port all these operations in O(1) worst-case time except deleteMin, which re-quires O(logn) worst-case time. Several previous implementations, most notablyFibonacci heaps (Fredman & Tarjan, 1987), had achieved these bounds, but in anamortized, rather that worst-case, sense. It is easy to show by reduction to sortingthat these bounds are asymptotically optimal among all comparison-based priorityqueues | the bound on deleteMin cannot be decreased without simultaneouslyincreasing the bounds on �ndMin, insert , and/or meld.It is reasonably straightforward to adapt Brodal's data structure to a purely func-tional setting by combining the recursive-slowdown technique of Kaplan and Tar-jan (1995) with a purely functional implementation of double-ended queues (Hood,1982; Okasaki, 1995c). However, this approach su�ers from at least two defects, onepractical and one pedagogical. First, both recursive slowdown and double-endedqueues carry non-trivial overheads, so the resulting data structure is quite slowin practice (even though asymptotically optimal). Second, the resulting design isdi�cult to explain and understand. The design choices are intermingled, and it is

Optimal Purely Functional Priority Queues 3signature ORDERED =sig type T (� type of ordered elements �)val leq : T � T ! bool (� total ordering relation �)endsignature PRIORITY QUEUE =sig structure Elem : ORDEREDtype T (� type of priority queues �)val empty : Tval isEmpty : T ! boolval insert : Elem.T � T ! Tval meld : T � T ! Texception EMPTYval �ndMin : T ! Elem.T (� raises EMPTY if queue is empty �)val deleteMin : T ! T (� raises EMPTY if queue is empty �)end Figure 1: Signature for priority queues.di�cult to see the purpose and contribution of each. Furthermore, the relationshipto other priority queue designs is obscured.For these reasons, we take an indirect approach to adapting Brodal's data struc-ture. First, we isolate the design choices in Brodal's data structure and rethinkeach in a functional, rather than imperative, environment. This allows us to re-place recursive slowdown with a simpler technique borrowed from the random-access lists of Okasaki (1995b) and to eliminate the need for double-ended queuesaltogether. Then, starting from a well-known antecedent | the binomial queuesof Vuillemin (1978) | we reintroduce each modi�cation, one at a time. This bothsimpli�es the data structure and clari�es its relationship to other priority queuedesigns.We begin by reviewing binomial queues, which support all four major opera-tions in O(logn) time. We then derive our data structure from binomial queuesin three steps. First, we describe a variant of binomial queues, called skew bino-mial queues, that reduces the running time of insert to O(1) by eliminating thepossibility of cascading links. Second, we reduce the running time of �ndMin toO(1) by adding a global root to hold the minimum element. Third, we apply atechnique of Buchsbaum et al. (Buchsbaum et al., 1995; Buchsbaum & Tarjan,1995) called data-structural bootstrapping, which reduces the running time of meldto O(1) by allowing priority queues to contain other priority queues. Each of thesesteps is expressed using ML-style functors. The last transformation, data-structuralbootstrapping, is an interesting application of higher-order functors and recursivestructures. After describing a few possible optimizations, we conclude with briefdiscussions of related work and future work.

4 Brodal and OkasakiRank 0s Rank 1ss Rank 2ss��ss Rank 3ss��ss,,,ss��ssFigure 2: Binomial trees of ranks 0{3.All source code is presented in Standard ML (Milner et al., 1990) and is availablethrough the World Wide Web fromhttp://foxnet.cs.cmu.edu/people/cokasaki/priority.html2 Binomial QueuesBinomial queues are an elegant form of priority queue introduced by Vuillemin (1978)and extensively studied by Brown (1978). Although they considered binomial queuesonly in an imperative setting, King (1994) has shown that binomial queues workequally well in a functional setting. In this section, we brie
y review binomial queues| see King (1994) for more details.Binomial queues are composed of more primitive objects known as binomial trees.Binomial trees are inductively de�ned as follows:� A binomial tree of rank 0 is a singleton node.� A binomial tree of rank r+ 1 is formed by linking two binomial trees of rankr, making one tree the leftmost child of the other.From this de�nition, it is easy to see that a binomial tree of rank r contains exactly2r nodes. There is a second, equivalent de�nition of binomial trees that is sometimesmore convenient: a binomial tree of rank r is a node with r children t1 : : : tr, whereeach ti is a binomial tree of rank r � i. Figure 2 illustrates several binomial treesof varying rank.Assuming a total ordering on nodes, a binomial tree is said to be heap-ordered ifevery node is � each of its descendants. To preserve heap order when linking twoheap-ordered binomial trees, we make the tree with the larger root a child of thetree with the smaller root, with ties broken arbitrarily.A binomial queue is a forest of heap-ordered binomial trees where no two treeshave the same rank. Because binomial trees have sizes of the form 2r, the ranksof the trees in a binomial queue of size n are distributed according to the ones inthe binary representation of n. For example, consider a binomial queue of size 21.The binary representation of 21 is 10101, and the binomial queue contains trees ofranks 0, 2, and 4 (of sizes 1, 4, and 16, respectively). Note that a binomial queueof size n contains at most blog2(n + 1)c trees.We are now ready to describe the operations on binomial queues. Since all thetrees in a binomial queue are heap-ordered, we know that the minimum element

Optimal Purely Functional Priority Queues 5in a binomial queue is the root of one of the trees. We can �nd this minimumelement in O(logn) time by scanning through the roots. To insert a new elementinto a queue, we �rst create a new singleton tree (i.e., a binomial tree of rank 0).We then step through the existing trees in increasing order of rank until we �nda missing rank, linking trees of equal rank as we go. Inserting an element intoa binomial queue corresponds precisely to adding one to a binary number, witheach link corresponding to a carry. The worst case is insertion into a queue of sizen = 2k � 1, requiring a total of k links and O(logn) time. The analogy to binaryaddition also applies to melding two queues. We step through the trees of bothqueues in increasing order of rank, linking trees of equal rank as we go. Once again,each link corresponds to a carry. This also requires O(logn) time.The trickiest operation is deleteMin. We �rst �nd the tree with the minimumroot and remove it from the queue. We discard the root, but then must return itschildren to the queue. However, the children themselves constitute a valid binomialqueue (i.e., a forest of heap-ordered binomial trees with no two trees of the samerank), and so may be melded with the remaining trees of the queue. Both �ndingthe tree to remove and returning the children to the queue require O(logn) time,for a total of O(logn) time.Figure 3 gives an implementation of binomial queues as a Standard ML func-tor that takes a structure specifying a type of ordered elements and produces astructure of priority queues containing elements of the speci�ed type. Two aspectsof this implementation deserve further explanation. First, the con
icting require-ments of insert and link lead to a confusing inconsistency, common to virtually allimplementations of binomial queues. The trees in binomial queues are maintainedin increasing order of rank to support the insert operation e�ciently. On the otherhand, the children of binomial trees are maintained in decreasing order of rank tosupport the link operation e�ciently. This discrepancy compels us to reverse thechildren of the deleted node during a deleteMin. Second, for clarity, every node con-tains its rank. In a realistic implementation, however, only the roots would storetheir ranks. The ranks of all other nodes are uniquely determined by the ranksof their parents and their positions among their siblings. King (1994) describesan alternative representation that eliminates all ranks, at the cost of introducingplaceholders for those ranks corresponding to the zeros in the binary representationof the size of the queue. 3 Skew Binomial QueuesIn this section, we describe a variant of binomial queues, called skew binomialqueues, that supports insertion in O(1) worst-case time. The problem with binomialqueues is that inserting a single element into a queue might result in a long cascadeof links, just as adding one to a binary number might result in a long cascade ofcarries. We can reduce the cost of an insert to at most a single link by borrowing atechnique from random-access lists (Okasaki, 1995b). Random-access lists are basedon a variant number system, called skew binary numbers (Myers, 1983), in whichadding one causes at most a single carry.

6 Brodal and Okasakifunctor BinomialQueue (E : ORDERED) : PRIORITY QUEUE =structstructure Elem = Etype Rank = intdatatype Tree = Node of Elem.T � Rank � Tree listtype T = Tree list(� auxiliary functions �)fun root (Node (x,r,c)) = xfun rank (Node (x,r,c)) = rfun link (t1 as Node (x1,r1,c1), t2 as Node (x2,r2,c2)) = (� r1 = r2 �)if Elem.leq (x1, x2) then Node (x1,r1+1,t2 :: c1) else Node (x2,r2+1,t1 :: c2)fun ins (t, []) = [t]j ins (t, t0 :: ts) = (� rank t � rank t0 �)if rank t < rank t0 then t :: t0 :: ts else ins (link (t, t0), ts)val empty = []fun isEmpty ts = null tsfun insert (x, ts) = ins (Node (x,0,[]), ts)fun meld ([], ts) = tsj meld (ts, []) = tsj meld (t1 :: ts1, t2 :: ts2) =if rank t1 < rank t2 then t1 :: meld (ts1, t2 :: ts2)else if rank t2 < rank t1 then t2 :: meld (t1 :: ts1, ts2)else ins (link (t1, t2), meld (ts1, ts2))exception EMPTYfun �ndMin [] = raise EMPTYj �ndMin [t] = root tj �ndMin (t :: ts) =let val x = �ndMin tsin if Elem.leq (root t, x) then root t else x endfun deleteMin [] = raise EMPTYj deleteMin ts =let fun getMin [t] = (t, [])j getMin (t :: ts) =let val (t0, ts0) = getMin tsin if Elem.leq (root t, root t0) then (t, ts) else (t0, t :: ts0) endval (Node (x,r,c), ts) = getMin tsin meld (rev c, ts) endend Figure 3: A functor implementing binomial queues.

Optimal Purely Functional Priority Queues 7(a)sBBBB���� r��sBBBB���� r (b)s\\��sBBBB���� r sBBBB���� r (c)sBBBB���� r���s ��sBBBB���� rFigure 4: The three methods of constructing a skew binomial tree of rank r + 1. (a) asimple link. (b) a type A skew link. (c) a type B skew link.In skew binary numbers, the kth digit represents 2k+1 � 1, rather than 2k as inordinary binary numbers. Every digit is either zero or one, except that the lowestnon-zero digit may be two. For instance, 92 is written 002101 (least-signi�cant digit�rst). A carry occurs when adding one to a number whose lowest non-zero digit istwo. For instance, 1+002101 = 000201. Because the next higher digit is guaranteednot to be two, only a single carry is ever necessary.Just as binomial queues are composed of binomial trees, skew binomial queuesare composed of skew binomial trees. Skew binomial trees are inductively de�nedas follows:� A skew binomial tree of rank 0 is a singleton node.� A skew binomial tree of rank r + 1 is formed in one of three ways:| a simple link, making a skew binomial tree of rank r the leftmost child ofanother skew binomial tree of rank r;| a type A skew link, making two skew binomial trees of rank r the childrenof a skew binomial tree of rank 0; or| a type B skew link, making a skew binomial tree of rank 0 and a skewbinomial tree of rank r the leftmost children of another skew binomialtree of rank r.Figure 4 illustrates the three kinds of links. Note that type A and type B skewlinks are equivalent when r = 0. Ordinary binomial trees and perfectly balancedbinary trees are special cases of skew binomial trees obtained by allowing onlysimple links and type A skew links, respectively. A skew binomial tree of rank rconstructed entirely with skew links (type A or type B) contains exactly 2r+1 � 1nodes, but, in general, the size of a skew binomial tree t of rank r is bounded by2r � jtj � 2r+1 � 1. In addition, the height of a skew binomial tree is equal toits rank. Once again, there is a second, equivalent de�nition: a skew binomial treeof rank r > 0 is a node with up to 2k children s1t1 : : : sktk (1 � k � r), whereeach ti is a skew binomial tree of rank r � i and each si is a skew binomial tree ofrank 0, except that sk has rank r � k (which is 0 only when k = r). Every si isoptional except that sk is optional only when k = r. Although somewhat confusing,this de�nition arises naturally from the three methods of constructing a tree. Everysktk pair is produced by a type A skew link, and every siti pair (i < k) is producedby a type B skew link. Every ti without a corresponding si is produced by a simple

8 Brodal and Okasakis s s s��� ��� ��� ���LLL LLL LLL LLLs s s ss s s ss s s s�� ��s ss ss s s s��� ��� ��� ���LLL LLL LLL LLLs s s ss s s s��� ��� ��� ���DDD DDD DDD DDDs s s ss s s s�� ��s ss ss s s s��� ��� ��� ���LLL LLL LLL LLLs s s ss s s ss ss s��� ���DDD DDDs ss s��� ���DDD DDDs ss sFigure 5: The twelve possible shapes of skew binomial trees of rank 2. Dashed boxessurround each siti pair.link. Unlike ordinary binomial trees, skew binomial trees may have many di�erentshapes. For example, the twelve possible shapes of skew binomial trees of rank 2are shown in Figure 5.A skew binomial tree is heap-ordered if every node is � each of its descendants.To preserve heap order during a simple link, we make the tree with the larger roota child of the tree with the smaller root. During a skew link, we make the two treeswith larger roots children of the tree with the smallest root. We perform a type Askew link if the rank 0 tree has the smallest root, and a type B skew link if one ofthe rank r trees has the smallest root.A skew binomial queue is a forest of heap-ordered skew binomial trees where notwo trees have the same rank, except possibly the two smallest ranked trees. Sinceskew binomial trees of the same rank may have di�erent sizes, there may be severalways to distribute the ranks for a queue of any particular size. For example, a skewbinomial queue of size 4 may contain one rank 2 tree of size 4; two rank 1 trees,each of size 2; a rank 1 tree of size 3 and a rank 0 tree; or a rank 1 tree of size 2and two rank 0 trees. However, the maximum number of trees in a queue is stillO(logn).We are now ready to describe the operations on skew binomial queues. The�ndMin and meld operations are almost unchanged. To �nd the minimum elementin a skew binomial queue, we simply scan through the roots, taking O(logn) time.To meld two queues, we step through the trees of both queues in increasing orderof rank, performing a simple link (not a skew link!) whenever we �nd two trees ofequal rank. Once again, this requires O(logn) time.The big advantage of skew binomial queues over ordinary binomial queues is thatwe can now insert a new element in O(1) time. We �rst create a new singleton tree(i.e., a skew binomial tree of rank 0). We then check the ranks of the two smallesttrees in the queue. If both trees have rank r, then we skew link these two trees withthe new rank 0 tree to get a new rank r + 1 tree. We know that there can be no

Optimal Purely Functional Priority Queues 9functor SkewBinomialQueue (E : ORDERED) : PRIORITY QUEUE =structstructure Elem = Etype Rank = intdatatype Tree = Node of Elem.T � Rank � Tree listtype T = Tree list(� auxiliary functions �)fun root (Node (x,r,c)) = xfun rank (Node (x,r,c)) = rfun link (t1 as Node (x1,r1,c1), t2 as Node (x2,r2,c2)) = (� r1 = r2 �)if Elem.leq (x1,x2) then Node (x1,r1+1,t2 :: c1) else Node (x2,r2+1,t1 :: c2)fun skewLink (t0 as Node (x0,r0,), t1 as Node (x1,r1,c1), t2 as Node (x2,r2,c2)) =if Elem.leq (x1,x0) andalso Elem.leq (x1,x2) then Node (x1,r1+1,t0 :: t2 :: c1)else if Elem.leq (x2,x0) andalso Elem.leq (x2,x1) then Node (x2,r2+1,t0 :: t1 :: c2)else Node (x0,r1+1,[t1, t2])fun ins (t, []) = [t]j ins (t, t0 :: ts) = (� rank t � rank t0 �)if rank t < rank t0 then t :: t0 :: ts else ins (link (t, t0), ts)fun uniqify [] = []j uniqify (t :: ts) = ins (t, ts) (� eliminate initial duplicate �)fun meldUniq ([], ts) = tsj meldUniq (ts, []) = tsj meldUniq (t1 :: ts1, t2 :: ts2) =if rank t1 < rank t2 then t1 :: meldUniq (ts1, t2 :: ts2)else if rank t2 < rank t1 then t2 :: meldUniq (t1 :: ts1, ts2)else ins (link (t1, t2), meldUniq (ts1, ts2))val empty = []fun isEmpty ts = null tsFigure 6: A functor implementing skew binomial queues (part I).more than one existing rank r + 1 tree, and that this is the smallest rank in thenew queue, so we simply add the new tree to the queue. If the two smallest treesin the queue have di�erent ranks, then we simply add the new rank 0 tree to thequeue. Since there was at most one existing tree of rank 0, the new queue containsat most two trees of the smallest rank. In either case, we are done.Again, deleteMin is the most complicated operation. We �rst �nd and removethe tree with the minimum root. After discarding the root, we partition its childreninto two groups, those with rank 0 and those with rank > 0. Other than sk andtk, every si has rank 0 and every ti has rank > 0. The ranks of sk and tk are both0 when k = r and both > 0 when k < r. Note that every rank 0 child contains asingle element. The children with rank > 0 constitute a valid skew binomial queue,so we meld these children with the remaining trees in the queue. Finally, we reinserteach of the rank 0 children. Each of these steps requires O(logn) time, so the totaltime required is O(logn).Figures 6 and 7 present an implementation of skew binomial queues as a Stan-

10 Brodal and Okasakifun insert (x, ts as t1 :: t2 :: rest) =if rank t1 = rank t2 then skewLink (Node (x,0,[]),t1,t2) :: restelse Node (x,0,[]) :: tsj insert (x, ts) = Node (x,0,[]) :: tsfun meld (ts, ts0) = meldUniq (uniqify ts, uniqify ts0)exception EMPTYfun �ndMin [] = raise EMPTYj �ndMin [t] = root tj �ndMin (t :: ts) =let val x = �ndMin tsin if Elem.leq (root t, x) then root t else x endfun deleteMin [] = raise EMPTYj deleteMin ts =let fun getMin [t] = (t, [])j getMin (t :: ts) =let val (t0, ts0) = getMin tsin if Elem.leq (root t, root t0) then (t, ts) else (t0, t :: ts0) endfun split (ts,xs,[]) = (ts, xs)j split (ts,xs,t :: c) =if rank t = 0 then split (ts,root t :: xs,c) else split (t :: ts,xs,c)val (Node (x,r,c), ts) = getMin tsval (ts0,xs0) = split ([],[],c)in fold insert xs0 (meld (ts, ts0)) endend Figure 7: A functor implementing skew binomial queues (part II).dard ML functor. Like the binomial queue functor, this functor takes a structurespecifying a type of ordered elements and produces a structure of priority queuescontaining elements of the speci�ed type. Once again, lists of trees are maintainedin di�erent orders for di�erent purposes. The trees in a queue are maintained in in-creasing order of rank (except that the �rst two trees may have the same rank), butthe children of skew binomial trees are maintained in a more complicated order. Theti children are maintained in decreasing order of rank, but they are interleaved withthe si children, which have rank 0 (except sk, which has rank r� k). Furthermore,recall that each si is optional (except that sk is optional only if k = r).4 Adding a Global RootWe next describe a simple module-level transformation on priority queues to reducethe running time of �ndMin to O(1). Although this transformation can be appliedto any priority queue module, it is only useful on priority queues for which �ndMinrequires more than O(1) time.Most implementations of priority queues represent a queue as a single heap-ordered tree so that the minimum element can always be found at the root in O(1)time.Unfortunately, binomial queues and skew binomial queues represent a queue asa forest of heap-ordered trees, so �nding the minimumelement requires scanning all

Optimal Purely Functional Priority Queues 11the roots in the forest. However, we can convert this forest into a single heap-orderedtree, thereby supporting �ndMin in O(1) time, by simply adding a global root tohold the minimum element. In general, this tree will not be a binomial or skewbinomial tree, but this is irrelevant since the global root will be treated separatelyfrom the rest of the queue. The details of this transformation are quite routine, butwe present them anyway as a warm-up for the more complicated transformation inthe next section.Given some type P� of primitive priority queues containing elements of type �,we de�ne the type of rooted priority queues RP� to beRP� = femptyg+ (�� P�)In other words, a rooted priority queue is either empty or a pair of a single ele-ment (the root) and a primitive priority queue. We maintain the invariant that theminimum element of any non-empty priority queue is at the root. For each oper-ation f on priority queues, let f and f 0 indicate the operations on P� and RP�,respectively. Then,�ndMin0 (hx; qi) = xinsert 0 (y; hx; qi) = hx; insert (y; q)i if x � yinsert 0 (y; hx; qi) = hy; insert (x; q)i if y < xmeld 0 (hx1; q1i; hx2; q2i) = hx1; insert (x2;meld (q1; q2))i if x1 � x2meld 0 (hx1; q1i; hx2; q2i) = hx2; insert (x1;meld (q1; q2))i if x2 < x1deleteMin0 (hx; qi) = h�ndMin (q); deleteMin (q)iIn Figure 8, we present this transformation as a Standard ML functor that takesa priority queue structure and produces a new structure incorporating this opti-mization. When applied to the skew binomial queues of the previous section, thistranformation produces a priority queue that supports both insert and �ndMin inO(1) time. However, meld and deleteMin still require O(logn) time.If a program requires several priority queues with di�erent element types, itmay be more convenient to implement this transformation as a higher-order func-tor (MacQueen & Tofte, 1994). First-order functors can only take and return struc-tures, but higher-order functors can take and return other functors as well. Althoughthe de�nition of Standard ML (Milner et al., 1990) describes only �rst-order func-tors, some implementations of Standard ML, notably Standard ML of New Jersey,support higher-order functors.A priority queue functor, such as BinomialQueue or SkewBinomialQueue, is onethat takes a structure specifying a type of ordered elements and returns a structureof priority queues containing elements of the speci�ed type. The following higher-order functor takes a priority queue functor and returns a priority queue functorincorporating the AddRoot optimization.functor AddRootToFun (functor MakeQ (E : ORDERED) :siginclude PRIORITY QUEUEsharing Elem = Eend)

12 Brodal and Okasakifunctor AddRoot (Q : PRIORITY QUEUE) : PRIORITY QUEUE =structstructure Elem = Q.Elemdatatype T = Empty j Root of Elem.T � Q.Tval empty = Emptyfun isEmpty Empty = truej isEmpty (Root) = falsefun insert (y, Empty) = Root (y, Q.empty)j insert (y, Root (x, q)) =if Elem.leq (y, x) then Root (y, Q.insert (x, q)) else Root (x, Q.insert (y, q))fun meld (Empty, rq) = rqj meld (rq, Empty) = rqj meld (Root (x1, q1), Root (x2, q2)) =if Elem.leq (x1, x2) then Root (x1, Q.insert (x2, Q.meld (q1, q2)))else Root (x2, Q.insert (x1, Q.meld (q1, q2)))exception EMPTYfun �ndMin Empty = raise EMPTYj �ndMin (Root (x, q)) = xfun deleteMin Empty = raise EMPTYj deleteMin (Root (x, q)) =if Q.isEmpty q then Empty else Root (Q:�ndMin q, Q:deleteMin q)end Figure 8: A functor for adding a global root to existing priority queues.(E : ORDERED) : PRIORITY QUEUE =AddRoot (MakeQ (E))Note that this functor is curried, so although it appears to take two arguments,it actually takes one argument (MakeQ) and returns a functor that takes the sec-ond argument (E). The sharing constraint is necessary to ensure that the functorMakeQ returns a priority queue with the desired element type. Without the sharingconstraint,MakeQ might ignore E and return a priority queue structure with somearbitrary element type.Now, if we need both a string priority queue and an integer priority queue, wecan writefunctor RootedSkewBinomialQueue =AddRootToFun (functor MakeQ = SkewBinomialQueue)structure StringQueue = RootedSkewBinomialQueue (StringElem)structure IntQueue = RootedSkewBinomialQueue (IntElem)where StringElem and IntElem match the ORDERED signature and de�ne thedesired orderings over strings and integers, respectively.

Optimal Purely Functional Priority Queues 135 Bootstrapping Priority QueuesFinally, we improve the running time of meld to O(1) by applying a technique ofBuchsbaum et al. (Buchsbaum et al., 1995; Buchsbaum & Tarjan, 1995) called data-structural bootstrapping. The basic idea is to reduce melding to simple insertion byusing priority queues that contain other priority queues. Then, to meld two priorityqueues, we simply insert one priority queue into the other.As in the previous section, we describe bootstrapping as a module-level transfor-mation on priority queues. Let P� be the type of primitive priority queues containingelements of type �. We wish to construct the type BP� of bootstrapped priorityqueues containing elements of type �. A bootstrapped priority queue will be a prim-itive priority queue whose \elements" are other bootstrapped priority queues. As a�rst attempt, we consider BP� = PP�Here we have applied a single level of bootstrapping. However, this simple solutiondoes not work because the elements of the top-level primitive priority queue have thewrong type | they are simple primitive priority queues rather than bootstrappedpriority queues. Clearly, we need to apply the idea of bootstrapping recursively, asin BP� = PBP�Unfortunately, this solution o�ers no place to store simple elements. We thereforeborrow from the previous section and add a root to every primitive priority queue.BP� = �� PBP�Thus, a bootstrapped priority queue is a simple element (which should be theminimum element in the queue) paired with a primitive priority queue containingother bootstrapped priority queues ordered by their respective minimums. Sincebootstrapping adds a root to every primitive priority queue, the bootstrappingtransformation subsumes the AddRoot transformation. Finally, we must allow forthe possibility of an empty queue. The �nal de�nition is thusBP� = femptyg+R� where R� = �� PR�Note that the primitive priority queues contain only non-empty bootstrapped pri-ority queues as elements.Now, each of the operations on bootstrapped priority queues can be de�ned interms of the operations on the primitive priority queues. For each operation f onpriority queues, let f and f 0 indicate the operations on PR� and BP�, respectively.

14 Brodal and OkasakiThen,�ndMin0 (hx; qi) = xinsert 0 (x; q) = meld 0 (hx; emptyi; q)meld 0 (hx1; q1i; hx2; q2i) = hx1; insert (hx2; q2i; q1)i if x1 � x2meld 0 (hx1; q1i; hx2; q2i) = hx2; insert (hx1; q1i; q2)i if x2 < x1deleteMin0 (hx; qi) = hy;meld(q1; q2)iwhere hy; q1i = �ndMin (q)q2 = deleteMin (q)Next, we consider the e�ciency of bootstrapped priority queues. Since the min-imum element is stored at the root, �ndMin requires O(1) time regardless of theunderlying implementation. The insert and meld operations depend only on the in-sert of the primitive implementation. By bootstrapping a priority queue with O(1)insertion, such as the skew binomial queues of Section 3, we obtain both O(1) inser-tion and O(1) melding. Finally, deleteMin on bootstrapped priority queues dependson �ndMin, meld, and deleteMin from the underlying implementation. Since skewbinomial queues support each of these in O(logn) time, deleteMin on bootstrappedskew binomial queues also requires O(logn) time.In summary, bootstrapped skew binomial queues support every operation in O(1)time except deleteMin, which requires O(logn) time. It is easy to show by reduc-tion to sorting that these bounds are optimal among all comparison-based priorityqueues. Other tradeo�s between the running times of the various operations arealso possible, but no comparison-based priority queue can support insert in betterthan O(logn) worst-case time or meld in better than O(n) worst-case time unlessone of �ndMin or deleteMin takes at least O(logn) worst-case time (Brodal, 1995).The bootstrapping process can be elegantly expressed in Standard ML extendedwith higher-order functors and recursive structures, as shown in Figure 9. Thehigher-order nature of Bootstrap is analogous to the higher-order nature of Add-RootToFun, while the recursion between RootedQ and Q captures the recursion be-tween R� and PR�. Unfortunately, although some implementations of Standard MLsupport higher-order functors (MacQueen & Tofte, 1994), none support recursivestructures, so the recursion between RootedQ and Q is forbidden. In fact, thereare good reasons for not supporting recursion like this in general. For instance,this recursion may not even be sensible if MakeQ can have computational e�ects!However, many priority queue functors, such as SkewBinomialQueue, simply de�nea few datatypes and functions, and have no computational e�ects. For these well-behaved functors, the recursion between RootedQ and Q does appear to be sensible,and it would be pleasant to be able to bootstrap these functors in this manner.Without recursive structures, we can still implement bootstrapped priority queues,but much less cleanly. We manually specialize Bootstrap to each desired primitivepriority queue by inlining the appropriate priority queue functor for MakeQ andeliminating Q and RootedQ as separate structures. This reduces the recursion onstructures to recursion on datatypes, which is easily supported by Standard ML.Of course, as with any manual program transformation, this process is tedious anderror-prone.

Optimal Purely Functional Priority Queues 15functor Bootstrap (functor MakeQ (E : ORDERED) : siginclude PRIORITY QUEUEsharing Elem = Eend)(E : ORDERED) : PRIORITY QUEUE =structstructure Elem = E(� recursive structures not supported in SML! �)structure rec RootedQ =structdatatype T = Root of Elem.T � Q.Tfun leq (Root (x1, q1), Root (x2, q2)) = Elem.leq (x1, x2)endand Q = MakeQ (RootedQ)open RootedQ (� expose Root constructor �)datatype T = Empty j NonEmpty of RootedQ.Tval empty = Emptyfun isEmpty Empty = truej isEmpty (NonEmpty) = falsefun insert (x, xs) = meld (NonEmpty (Root (x, Q.empty)), xs)and meld (Empty, xs) = xsj meld (xs, Empty) = xsj meld (NonEmpty (r1 as Root (x1, q1)), NonEmpty (r2 as Root (x2, q2))) =if Elem.leq (x1, x2) then NonEmpty (Root (x1, Q.insert (r2, q1)))else NonEmpty (Root (x2, Q.insert (r1, q2)))exception EMPTYfun �ndMin Empty = raise EMPTYj �ndMin (NonEmpty (Root (x, q))) = xfun deleteMin Empty = raise EMPTYj deleteMin (NonEmpty (Root (x, q))) =if Q:isEmpty q then Emptyelse let val (Root (y, q1)) = Q:�ndMin qval q2 = Q:deleteMin qin NonEmpty (Root (y, Q.meld (q1, q2))) endend Figure 9: A higher-order functor for bootstrapping priority queues.

16 Brodal and Okasaki6 OptimizationsAlthough bootstrapped skew binomial queues as described in the previous sectionare asymptotically optimal, there are still further optimizations we can make. Con-sider the type of priority queues resulting from inlining SkewBinomialQueue forMakeQ:datatype Tree = Node of Root � Rank � Tree listand Root = Root of Elem.T � Tree listdatatype T = Empty j NonEmpty of RootIn this representation, a node has the form Node(Root (x; f); r; c), where x is anelement, f is a list of trees representing a forest, r is a rank, and c is a list of treesrepresenting the children of the node. Since every node contains both x and f wecan
atten the representation of nodes to bedatatype Tree = Node of Elem.T � Tree list � Rank � Tree listIn many implementations, this will eliminate an indirection on every access to x.Next, note that f is completely ignored until its root is deleted. Thus, we do notrequire direct access to f and can in fact store it at the tail of c, combining thetwo into a single list representing c++ f . This leads to the following representation,which usually saves a word of storage at every node:datatype Tree = Node of Elem.T � Rank � Tree listIn this representation, it is necessary to traverse c during deleteMin to access f ,but we need to traverse c anyway to extract the rank 0 children and reverse theremaining children. Given a rank r node, determining where c ends and f begins isusually quite easy. If r = 0, then c = []. If r = 1, then c consists of either one or tworank 0 nodes. If r > 1, then c ends with either a pair of nodes of the same non-zerorank or a rank 1 node followed by one or two rank 0 nodes. The only ambiguitiesinvolve rank 0 nodes: it is sometimes impossible to distinguish the case where cends with two rank 0 nodes from the case where c ends with a single rank 0 nodeand f begins with a rank 0 node. However, in every such situation, it does no harmto treat the ambiguous node as if it were part of c rather than f .As a �nal simpli�cation, note that the distinction between trees and roots isunnecessary, since every root can be treated as a tree of rank 0. Our �nal represen-tation is thendatatype Tree = Node of Elem.T � Rank � Tree listdatatype T = Empty j NonEmpty of TreeThis increases the size of every root slightly, but also eliminates some minor copyingduring melds. 7 Related WorkAlthough there is an enormous literature on imperative priority queues, there hasbeen very little work on purely functional priority queues.

Optimal Purely Functional Priority Queues 17Paulson (1991) describes a (non-meldable) priority queue combining the tech-niques of implicit heaps (Williams, 1964), which traditionally are implemented us-ing arrays, with a balanced-tree representation of arrays supporting extension atthe rear. Hoogerwoord (1992) represents arrays using the same trees as Paulson, butalso allows the arrays to be extended at the front. A variant of Paulson's queues,using the slightly simpler front-extension of Hoogerwoord, appears to be part ofthe functional programming folklore.King (1994) presents a purely functional implementation of binomial queues.Although binomial queues are considered to be rather complicated in imperativesettings (Jones, 1986), King demonstrates that the more convenient list-processingcapabilities of functional languages support binomial queues quite elegantly.Schoenmakers (1992), extending earlier work with Kaldewaij (1991), uses func-tional notation to aid in the derivation of amortized bounds for a number of datastructures, including three priority queues: skew heapsy (Sleator & Tarjan, 1986),Fibonacci heaps (Fredman & Tarjan, 1987), and pairing heaps (Fredman et al.,1986). Schoenmakers also discusses splay trees (Sleator & Tarjan, 1985), a form ofself-adjusting binary search tree that has been shown by Jones (1986) to be particu-larly e�ective as a non-meldable priority queue. Each of these four data structures ise�cient only in the amortized sense. Although he uses functional notation, Schoen-makers restricts his attention to ephemeral uses of data structures, where only themost recent version of a data structure may be accessed or updated. Ephemeral-ity is closely related to the notion of linearity (Wadler, 1990). When persistence isallowed, traditional amortized analyses break down because operations on \expen-sive" versions of a data structure can be repeated arbitrarily often. Okasaki (1995a;1996) describes how to use the memoization implicit in lazy evaluation to supportamortized data structures whose bounds hold even under persistence. However,of the above data structures, only pairing heaps appear to be amenable to thistechnique.Finally, our data structure borrows techniques from several sources. Skew linkingis borrowed from the random-access lists of Okasaki (1995b), which in turn are amodi�cation of the random-access stacks of Myers (1983). We use skew linking toreduce the cost of insertion in binomial queues to O(1), but recursive slowdown (Ka-plan & Tarjan, 1995) and lazy evaluation (Okasaki, 1996) could be used for the samepurpose. Data-structural bootstrapping is used by Buchsbaum et al. (Buchsbaumet al., 1995; Buchsbaum & Tarjan, 1995) to support catenation for double-endedqueues, much as we use it to support melding for priority queues.8 DiscussionWe have described the �rst purely functional implementation of priority queuesto support �ndMin, insert, and meld in O(1) worst-case time, and deleteMin iny Note that the \skew" in skew heaps is completely unrelated to the \skew" in skewbinomial queues.

18 Brodal and OkasakiO(logn) worst-case time. These bounds are asymptotically optimal among all com-parison-based priority queues. Our data structure is an adaptation of an imper-ative data structure introduced by Brodal (1995), but we have both simpli�edhis original data structure and clari�ed its relationship to the binomial queues ofVuillemin (1978). Our data structure is reasonably e�cient in practice; however,there are several competing data structures that, although not asymptotically op-timal, are somewhat faster than ours in practice. Hence, our work is primarily oftheoretical interest. The major area in which our data structure should be useful inpractice is applications dominated by melding, particularly applications that alsorequire persistent priority queues.Although we have implemented our data structure in Standard ML, a strict func-tional language, it could easily be translated into other functional languages, evenlazy languages such as Haskell (Hudak et al., 1992). However, in a lazy language,the worst-case bounds become amortized because the actions of each insert, meld,and deleteMin are delayed until their results are needed by a �ndMin. For instance,a �ndMin following a sequence of m insertions and melds will take
(m) time,although that time can be amortized over the insertions and melds in the usualway. This problem is not unique to our data structure | it applies to virtually allnominally worst-case data structures in a lazy language. See Okasaki (1995a; 1996)for a fuller discussion of the interaction between lazy evaluation and amortization.Next, we note that imperative priority queues often support two additional op-erations, decreaseKey and delete, that decrease and delete a speci�ed element ofthe queue, respectively. The element in question is usually speci�ed by a pointerinto the middle of the queue, but this is awkward in a functional setting. One ap-proach is to represent the queue as a binary search tree, so that we can e�cientlysearch for arbitrary elements. This is essentially the approach taken by King (1994).Empirical comparisons by Jones (1986) suggest that splay trees would be ideal forthis purpose, at least for predominantly ephemeral usage.z Unfortunately, meldingbinary search trees (including splay trees) requires O(n) time.An alternative approach is to use two priority queues, one containing \positive"occurrences of elements and one containing \negative" occurrences of elements. Todelete an element, simply insert it into the negative queue. To decrease an element,delete the old value and insert the new value. Positive and negative occurrencesof the same element cancel each other out when they both become the minimumelements of their respective queues. This approach can be viewed as the functionalanalogue of the lazy delete operation of Tarjan (1983). This solution works wellprovided the number of negative elements is relatively small. However, when thereare many positive-negative pairs that have not yet cancelled each other out, thissolution may be ine�cient in both time and space. Further research is needed tosupport decreaseKey and delete e�ciently in a functional setting.A �nal area of future work concerns the Standard ML module system. As notedin Section 5, recursive modules are not always sensible, and hence are currentlyz However, since �ndMin on splay trees takes O(log n) amortized time, it may be desirableto �rst apply the AddRoot transformation of Section 4.

Optimal Purely Functional Priority Queues 19disallowed in implementations of the language. However, recursion at the modulelevel does appear to be sensible | and useful | for certain well-behaved modules.It would be interesting to formalize the conditions under which recursive modulesshould be allowed, and extend some implementation of Standard ML accordingly.AcknowledgmentsThanks to Peter Lee, David King, and AmyMoormann Zaremski for their commentsand suggestions on an earlier draft of this paper.ReferencesBrodal, G. S. (1995) Fast meldable priority queues. Workshop on Algorithms and DataStructures. LNCS 955, pp. 282{290. Springer-Verlag.Brodal, G. S. (1996) Worst-case priority queues. ACM-SIAM Symposium on DiscreteAlgorithms pp. 52{58.Brown, M. R. (1978) Implementation and analysis of binomial queue algorithms. SIAMJournal on Computing 7(3):298{319.Buchsbaum, A. L. and Tarjan, R. E. (1995) Con
uently persistent deques via data struc-tural bootstrapping. Journal of Algorithms 18(3):513{547.Buchsbaum, A. L., Sundar, R. and Tarjan, R. E. (1995) Data-structural bootstrapping,linear path compression, and catenable heap-ordered double-ended queues. SIAM Jour-nal on Computing 24(6):1190{1206.Crane, C. A. (1972) Linear lists and priority queues as balanced binary trees. PhD thesis,Computer Science Department, Stanford University. Available as STAN-CS-72-259.Driscoll, J. R., Sarnak, N., Sleator, D. D. K. and Tarjan, R. E. (1989) Making datastructures persistent. Journal of Computer and System Sciences 38(1):86{124.Fredman, M. L. and Tarjan, R. E. (1987) Fibonacci heaps and their uses in improvednetwork optimization algorithms. Journal of the ACM 34(3):596{615.Fredman, M. L., Sedgewick, R., Sleator, D. D. K. and Tarjan, R. E. (1986) The pairingheap: A new form of self-adjusting heap. Algorithmica 1(1):111{129.Hood, R. (1982) The E�cient Implementation of Very-High-Level Programming LanguageConstructs. PhD thesis, Department of Computer Science, Cornell University. (CornellTR 82-503).Hoogerwoord, R. R. (1992) A logarithmic implementation of
exible arrays. Conferenceon Mathematics of Program Construction. LNCS 669, pp. 191{207. Springer-Verlag.Hudak, P., Peyton Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guzm�an,M. M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain,W. and Peterson, J. (1992) Report on the functional programming language Haskell,Version 1.2. SIGPLAN Notices 27(5).Jones, D. W. (1986) An empirical comparison of priority-queue and event-set implemen-tations. Communications of the ACM 29(4):300{311.Kaldewaij, A. and Schoenmakers, B. (1991) The derivation of a tighter bound for top-downskew heaps. Information Processing Letters 37(5):265{271.Kaplan, H. and Tarjan, R. E. (1995) Persistent lists with catenation via recursive slow-down. ACM Symposium on Theory of Computing pp. 93{102.King, D. J. (1994) Functional binomial queues. Glasgow Workshop on Functional Pro-gramming pp. 141{150.

20 Brodal and OkasakiMacQueen, D. B. and Tofte, M. (1994) A semantics for higher-order functors. EuropeanSymposium on Programming pp. 409{423.Milner, R., Tofte, M. and Harper, R. (1990) The De�nition of Standard ML. The MITPress.Myers, E. W. (1983) An applicative random-access stack. Information Processing Letters17(5):241{248.Okasaki, C. (1995a) Amortization, lazy evaluation, and persistence: Lists with catenationvia lazy linking. IEEE Symposium on Foundations of Computer Science pp. 646{654.Okasaki, C. (1995b) Purely functional random-access lists. Conference on FunctionalProgramming Languages and Computer Architecture pp. 86{95.Okasaki, C. (1995c) Simple and e�cient purely functional queues and deques. Journal ofFunctional Programming 5(4):583{592.Okasaki, C. (1996) The role of lazy evaluation in amortized data structures. ACM SIG-PLAN International Conference on Functional Programming pp. 62{72.Paulson, L. C. (1991) ML for the Working Programmer. Cambridge University Press.Schoenmakers, B. (1992) Data Structures and Amortized Complexity in a FunctionalSetting. PhD thesis, Eindhoven University of Technology.Sleator, D. D. K. and Tarjan, R. E. (1985) Self-adjusting binary search trees. Journal ofthe ACM 32(3):652{686.Sleator, D. D. K. and Tarjan, R. E. (1986) Self-adjusting heaps. SIAM Journal onComputing 15(1):52{69.Tarjan, R. E. (1983) Data Structures and Network Algorithms. CBMS Regional ConferenceSeries in Applied Mathematics, vol. 44. Society for Industrial and Applied Mathematics.Vuillemin, J. (1978) A data structure for manipulating priority queues. Communicationsof the ACM 21(4):309{315.Wadler, P. (1990) Linear types can change the world! Proceedings of the IFIP TC 2Working Conference on Programming Concepts and Methods pp. 561{581.Williams, J. W. J. (1964) Algorithm 232: Heapsort. Communications of the ACM7(6):347{348.

