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Abstract

It is well known that rational interpolation sometimes gives better approximations than polynomial
interpolation, especially for large sequences of points, but it is difficult to control the occurrence of
poles. In this paper we propose and study a family of barycentric rational interpolants that have no
poles and arbitrarily high approximation orders, regardless of the distribution of the points. These
interpolants depend linearly on the data and include a construction of Berrut as a special case.

1 Introduction

A simple way of approximating a function f : [a, b] → R is to choose a sequence of points

a = x0 < x1 < · · · < xn = b,

and to fit to f the unique interpolating polynomial pn of degree at most n at these points, i.e., set

pn(xi) = f(xi), 0 ≤ i ≤ n.

However, as is well-known pn may not be a good approximation to f , and for large n it can exhibit
wild oscillations. For the well-documented example of Runge in which f(x) = 1/(1+x2) and the points
xi are sampled uniformly from the interval [−5, 5], i.e., xi = −5 + 10i/n, the sequence of polynomials
(pn) diverges as n → ∞. If we are free to choose the distribution of the interpolation points xi, one
remedy is to cluster them near the end-points of the interval [a, b], for example using various kinds of
Chebyshev points [6].

On the other hand, if the interpolation points xi are given to us, we have to make do with them,
and then we need to look for other kinds of interpolants. A very popular alternative nowadays is to use
splines (piecewise polynomials) [9], which have become a standard tool for many kinds of interpolation
and approximation algorithms, and for geometric modelling. However, it has been known for a long
time that the use of rational functions can also lead to much better approximations than ordinary
polynomials. In fact, both polynomial and rational interpolation can exhibit exponential convergence
when approximating analytic functions [1, 23].

In “classical” rational interpolation, one chooses some M and N such that M + N = n and fits to
the values f(xi) a rational function of the form pM/qN where pM and qN are polynomials of degrees
at most M and N respectively. If n is even, it is typical to set M = N = n/2, and some authors have
reported excellent results. The main drawback, though, is that there is no control over the occurrence
of poles in the interval of interpolation.

Berrut and Mittelmann [5] suggested that it might be possible to avoid poles by using rational
functions of higher degree. They considered algorithms which fit rational functions whose numerator
and denominator degrees can both be as high as n. This is a convenient class of rational interpolants
because, as observed in [5], every such interpolant can be written in barycentric form

r(x) =
n∑

i=0

wi

x− xi
f(xi)

/ n∑
i=0

wi

x− xi
(1)
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for some real values wi. Thus it suffices to choose the weights w0, w1, . . . , wn in order to specify r,
and the idea is to search for weights which give interpolants r that have no poles and preferably
good approximation properties. Various aspects of this kind of interpolation are surveyed by Berrut,
Baltensperger, and Mittelmann [4].

The polynomial interpolant pn itself can be expressed in barycentric form by letting

wi =
n∏

j=0
j 6=i

1
xi − xj

, (2)

a fact first observed by Taylor [22] and Dupuy [10], and the favourable numerical aspects of this way of
evaluating Lagrange interpolants are summarized by Berrut and Trefethen [6]. Thus the weights in (2)
prevent poles, but for interpolation points in general position, they do not yield a good approximation.
Another option, suggested by Berrut [3], is simply to take

wi = (−1)i, k = 0, . . . , n,

giving

r(x) =
n∑

i=0

(−1)if(xi)
x− xi

/ n∑
i=0

(−1)i

x− xi
, (3)

which is a truly rational function. Berrut showed that this interpolant has no poles in R. He also used
it to interpolate Runge’s function and his numerical experiments suggest an approximation order of
O(1/n) as n →∞ for various distributions of points, including evenly spaced ones.

We independently came across the interpolant (3) while working on a method for interpolating height
data given over nested planar curves [15]. Without going into details, one can view the interpolant (3)
as a kind of univariate analogue of the bivariate interpolant of [15]. Our numerical examples confirmed
its rather low approximation rate of 1/n, and this motivated us to seek rational interpolants with higher
approximation orders.

The purpose of this paper is to report that there is in fact a whole family of barycentric rational
interpolants with arbitrarily high approximation orders which includes Berrut’s interpolant (3) as a
special case. The construction is very simple. Choose any integer d with 0 ≤ d ≤ n, and for each
i = 0, 1, . . . , n − d, let pi denote the unique polynomial of degree at most d that interpolates f at the
d + 1 points xi, xi+1, . . . , xi+d. Then let

r(x) =
∑n−d

i=0 λi(x)pi(x)∑n−d
i=0 λi(x)

, (4)

where

λi(x) =
(−1)i

(x− xi) · · · (x− xi+d)
. (5)

Thus r is a blend of the polynomial interpolants p0, . . . , pn−d with λ0, . . . , λn−d acting as the blending
functions. This gives a whole family of rational interpolants, one for each d = 0, 1, 2, . . . , n, and it
turns out that none of them have any poles in R. Furthermore, for fixed d ≥ 1 the interpolant has
approximation order O(hd+1) as h → 0, where

h := max
0≤i≤n−1

(xi+1 − xi), (6)

as long as f ∈ Cd+2[a, b], a property comparable to spline interpolation of (odd) degree d and smoothness
Cd−1 [9]. The interpolant r can also be expressed in the barycentric form (1) and is easy and fast to
evaluate in that form.

The concept of blending local approximations to form a global one is certainly not a new idea in
computational mathematics. For example, Catmull and Rom [7] suggested blending polynomial in-
terpolants using B-splines as the blending functions (see also [2]). Shepard’s method and its variants
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[21, 13, 11, 12, 19] for interpolating multivariate scattered data can also be viewed as blends of local
interpolants, where the blending functions are based on Euclidean distance to the interpolation points.
Moving least squares methods [17, 18] have become quite popular recently, where again a global ap-
proximation is formed from local ones. However, we have not seen the idea of blending developed in
the context of rational interpolation and we have not seen the construction (4) in the literature. Unlike
many blending methods, the blending functions λi in (5) do not have local support. This could be
seen as a disadvantage, but on the other hand, an advantage of the interpolant r is that it is infinitely
smooth.

In the following sections, we derive the main properties of the interpolant and finish with some
numerical examples. As well as offering an alternative way of interpolating univariate data, we hope
that these interpolants might also lead to generalizations of the bivariate interpolants of [15].

2 Absence of poles

An important property of the interpolants in (4) is that they are free of poles. In order to establish
this, it will help to rewrite r as a quotient of polynomials. Multiplying the numerator and denominator
in (4) by the product

(−1)n−d(x− x0) · · · (x− xn)

(the factor (−1)n−d simplifies subsequent expressions) gives

r(x) =
∑n−d

i=0 µi(x)pi(x)∑n−d
i=0 µi(x)

, (7)

where
µi(x) = (−1)n−d(x− x0) · · · (x− xn)λi(x), (8)

or

µi(x) =
i−1∏
j=0

(x− xj)
n∏

k=i+d+1

(xk − x). (9)

Here, we understand an empty product to have value 1. Equation (7) shows that the degrees of the
numerator and denominator of r are at most n and n− d, respectively. Since neither degree is greater
than n, r can be put in barycentric form. We will treat this later in Section 4. Using the form of r
in (7) we now show that it is free of poles. For d = 0 this was shown by Berrut [3].

Theorem 1. For all d, 0 ≤ d ≤ n, the rational function r in (7) has no poles in R.

Proof. We will show that the denominator of r in (7),

s(x) =
n−d∑
i=0

µi(x), (10)

is positive for all x ∈ R. Here and later in the paper it helps to define the index set

I := {0, 1, . . . , n− d}.

We first consider the case that x = xα for some α, 0 ≤ α ≤ n, and we set

Jα := {i ∈ I : α− d ≤ i ≤ α}. (11)

Then it follows from (9) that µi(xα) > 0 for all i ∈ Jα and µi(xα) = 0 for i ∈ I \ Jα. Hence, since Jα is
non-empty,

s(xα) =
∑
i∈I

µi(xα) =
∑
i∈Jα

µi(xα) > 0.
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Next suppose that x ∈ (xα, xα+1) for some α, 0 ≤ α ≤ n− 1. Then let

I1 := {i ∈ I : i ≤ α− d}, I2 := {i ∈ I : α− d + 1 ≤ i ≤ α}, I3 := {i ∈ I : α + 1 ≤ i}. (12)

We then split the sum s(x) into three parts,

s(x) = s1(x) + s2(x) + s3(x), with sk(x) =
∑
i∈Ik

µi(x). (13)

For each k = 1, 2, 3, we will show that sk(x) > 0 if Ik is non-empty. Since by definition sk(x) = 0 if Ik

is empty, and since at least one of I1, I2, I3 is non-empty (since their union is I), it will then follow
that s(x) > 0.

To this end, consider first s2. If d = 0 then I2 is empty. If d ≥ 1 then I2 is non-empty and from (9)
we see that µi(x) > 0 for all i ∈ I2 and therefore s2(x) > 0.

Next, consider s3. If α ≥ n− d then I3 is empty. Otherwise, α ≤ n− d− 1 and I3 is non-empty and

s3(x) = µα+1(x) + µα+2(x) + µα+3(x) + · · ·+ µn−d(x).

Using (9) we see that µα+1(x) > 0, µα+2(x) < 0, µα+3(x) > 0, and so on, i.e., the first term in s3(x)
is positive and after that the terms oscillate in sign. Moreover, one can further show from (9) that the
terms in s3(x) decrease in absolute value, i.e.,

|µα+1(x)| > |µα+2(x)| > |µα+3(x)| > · · · .

To see this suppose i ≥ α + 1 and compare the expression for µi+1,

µi+1(x) =
i∏

j=0

(x− xj)
n∏

k=i+d+2

(xk − x),

with that of µi in (9). Since
xi+d+1 − x > xi+1 − x,

it follows that |µi(x)| > |µi+1(x)|. Hence, by expressing s3(x) in the form

s3(x) =
(
µα+1(x) + µα+2(x)

)
+

(
µα+3(x) + µα+4(x)

)
+ · · · ,

it follows that s3(x) > 0.
A similar argument shows that s1(x) > 0 if I1 is non-empty, for then we can express s1 as

s1(x) =
(
µα−d(x) + µα−d−1(x)

)
+

(
µα−d−2(x) + µα−d−3(x)

)
+ · · · .

We have now shown that s(x) > 0 for all x ∈ [x0, xn]. Finally, using similar reasoning, the positivity
of s for x < x0 follows from writing it as

s(x) =
(
µ0(x) + µ1(x)

)
+

(
µ2(x) + µ3(x)

)
+ · · · ,

and for x > xn by writing it as

s(x) =
(
µn−d(x) + µn−d−1(x)

)
+

(
µn−d−2(x) + µn−d−3(x)

)
+ · · · .

Having established that r has no poles, and in particular no poles at the interpolation points x0, . . . , xn,
it is now quite easy to check that r does in fact interpolate f at these points. Indeed, if x = xα in (7)
for some α with 0 ≤ α ≤ n, let Jα be as in (11). Then pi(xα) = f(xα) for all i ∈ Jα, and recalling that
µi(xα) > 0 for all i ∈ Jα and µi(xα) = 0 otherwise, and that Jα is non-empty,

r(xα) =

∑
i∈Jα

µi(xα)pi(xα)∑
i∈Jα

µi(xα)
= f(xα)

∑
i∈Jα

µi(xα)∑
i∈Jα

µi(xα)
= f(xα).
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We also note that r reproduces polynomials of degree at most d. For if f is such a polynomial then
pi = f for all i = 0, . . . , n− d, and so

r(x) = f(x)
∑n−d

i=0 µi(x)∑n−d
i=0 µi(x)

= f(x).

However, r does not reproduce rational functions. Runge’s function f(x) = 1/(1 + x2) is rational but
its interpolant is clearly different, as can be seen in the section on numerical examples.

3 Approximation error

Next we deal with the approximation power of the rational interpolants. Here we treat the two distinct
cases d = 0 and d ≥ 1 separately. The advantage in the case d ≥ 1 is that the index set I2 in (12) is
non-empty and then we can use the partial sum s2(x) from (13) to get an error bound. Let ‖f‖ :=
maxa≤x≤b |f(x)|.

Theorem 2. Suppose d ≥ 1 and f ∈ Cd+2[a, b], and let h be as in (6). If n− d is odd then

‖r − f‖ ≤ hd+1(b− a)
‖f (d+2)‖

d + 2
.

If n− d is even then

‖r − f‖ ≤ hd+1

(
(b− a)

‖f (d+2)‖
d + 2

+
‖f (d+1)‖

d + 1

)
.

Proof. Since the error f(x) − r(x) is zero whenever x is an interpolation point, it is enough to treat
x ∈ [a, b] \ {x0, x1, . . . , xn}. For such x, the function λi(x) in (5) is well-defined and we can express the
error as

f(x)− r(x) =
∑n−d

i=0 λi(x)(f(x)− pi(x))∑n−d
i=0 λi(x)

.

Using the Newton error formula [16, Chap. 6],

f(x)− pi(x) = (x− xi) · · · (x− xi+d)f [xi, . . . , xi+d, x],

where f [xi, . . . , xi+d, x] denotes the divided difference of f at the points xi, . . . , xi+d, x, we thus arrive
at

f(x)− r(x) =
∑n−d

i=0 (−1)if [xi, . . . , xi+d, x]∑n−d
i=0 λi(x)

. (14)

We will derive an upper bound on the numerator and a lower bound on the denominator of this quotient.
Consider first the numerator,

n−d∑
i=0

(−1)if [xi, . . . , xi+d, x].

This is a sum of n − d + 1 terms and to avoid a bound which depends on n and therefore also h, we
exploit the oscillating signs and go to divided differences of higher order. By combining the first and
second terms, and the third and fourth and so on, we can express the sum as

−
n−d−1∑

i=0, i even

(xi+d+1 − xi)f [xi, . . . , xi+d+1, x]

if n− d is odd and

−
n−d−2∑

i=0, i even

(xi+d+1 − xi)f [xi, . . . , xi+d+1, x] + f [xn−d, . . . , xn, x]
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if n− d is even. Then, because

n−d−1∑
i=0

(xi+d+1 − xi) =
n−d−1∑

i=0

i+d∑
k=i

(xk+1 − xk) ≤ (d + 1)
n−1∑
k=0

(xk+1 − xk) = (d + 1)(b− a),

it follows that ∣∣∣∣∣
n−d∑
i=0

(−1)if [xi, xi+1, . . . , xi+d, x]

∣∣∣∣∣ ≤ (d + 1)(b− a)
‖f (d+2)‖
(d + 2)!

, n− d odd, (15)

∣∣∣∣∣
n−d∑
i=0

(−1)if [xi, xi+1, . . . , xi+d, x]

∣∣∣∣∣ ≤ (d + 1)(b− a)
‖f (d+2)‖
(d + 2)!

+
‖f (d+1)‖
(d + 1)!

, n− d even. (16)

Next we consider the denominator in (14) and suppose that x ∈ (xα, xα+1) for some α with 0 ≤ α ≤ n−1.
Because d ≥ 1, the set I2 in (13) is non-empty, so let j be any member of I2. Then

s(x) ≥ s2(x) ≥ µj(x) > 0,

and so, by the definition of µi in (8),∣∣∣∣∣
n−d∑
i=0

λi(x)

∣∣∣∣∣ =
s(x)∏n

i=0 |x− xi|
≥ µj(x)∏n

i=0 |x− xi|
= |λj(x)| = 1

|x− xj | · · · |x− xj+d|
.

Since xj ≤ xα < x < xα+1 ≤ xj+d, one has

|x− xj | · · · |x− xj+d| ≤
α∏

i=j

(xα+1 − xi)
j+d∏

i=α+1

(xi − xα)

≤ (α− j + 1)!(d− α + j)!hd+1

≤ d!hd+1,

hence ∣∣∣∣∣
n−d∑
i=0

λi(x)

∣∣∣∣∣ ≥ 1
d!hd+1

.

The result now follows from this estimate combined with (15) and (16).

Thus for d ≥ 1, r converges to f at the rate of O(hd+1) as h → 0, independently of how the points are
distributed, as long as f is smooth enough.

In the remaining case d = 0 we establish a convergence rate of O(h) but only under the condition
that the local mesh ratio

β := max
1≤i≤n−2

min
{

xi+1 − xi

xi − xi−1
,

xi+1 − xi

xi+2 − xi+1

}
remains bounded as h → 0. This agrees with what we have observed in our numerical tests: for d = 0
the interpolant behaves rather unpredictably when pairs of points are close together relative to the
others. However, when the points are evenly spaced, β reduces to 1, and we get the unconditional
convergence order O(h) (or O(1/n)) that Berrut conjectured in [3].

Theorem 3. Suppose d = 0 and f ∈ C2[a, b]. If n is odd then

‖r − f‖ ≤ h(1 + β)(b− a)
‖f ′′‖

2
.

If n is even then

‖r − f‖ ≤ h(1 + β)
(

(b− a)
‖f ′′‖

2
+ ‖f ′‖

)
.
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Proof. We again employ the error formula (14). The estimates for the numerator remain valid for d = 0
and reduce to ∣∣∣∣∣

n∑
i=0

(−1)if [xi, x]

∣∣∣∣∣ ≤ (b− a)
‖f ′′‖

2
, n odd,

∣∣∣∣∣
n∑

i=0

(−1)if [xi, x]

∣∣∣∣∣ ≤ (b− a)
‖f ′′‖

2
+ ‖f ′‖, n even.

Thus it remains to show that the denominator in (14) satisfies the lower bound∣∣∣∣∣
n∑

i=0

λi(x)

∣∣∣∣∣ ≥ 1
h(1 + β)

. (17)

To this end, suppose x ∈ (xα, xα+1) for some α with 0 ≤ α ≤ n− 1. Since d = 0, the partial sum s2(x)
in (13) is zero and we turn to s1(x) and s3(x). Suppose first that α = n− 1. Then

s(x) ≥ s3(x) = µn(x),

and so ∣∣∣∣∣
n∑

i=0

λi(x)

∣∣∣∣∣ ≥ |λn(x)| = 1
xn − x

≥ 1
h

,

which proves (17). Similarly, if α = 0, we have

s(x) ≥ s1(x) = µ0(x),

and so ∣∣∣∣∣
n∑

i=0

λi(x)

∣∣∣∣∣ ≥ |λ0(x)| = 1
x− x0

≥ 1
h

,

which again proves (17). Otherwise, 1 ≤ α ≤ n− 2 and we get a bound both from s1 and s3. Using s3,
we have

s(x) ≥ s3(x) ≥ µα+1(x) + µα+2(x),

and then∣∣∣∣∣
n∑

i=0

λi(x)

∣∣∣∣∣ ≥ |λα+1(x) + λα+2(x)| = 1
xα+1 − x

− 1
xα+2 − x

=
xα+2 − xα+1

(xα+1 − x)(xα+2 − x)
,

implying ∣∣∣∣∣
n∑

i=0

λi(x)

∣∣∣∣∣ ≥ xα+2 − xα+1

h(xα+2 − xα)
=

1
h(1 + (xα+1 − xα)/(xα+2 − xα+1))

.

On the other hand, using s1 we have

s(x) ≥ s1(x) ≥ µα(x) + µα−1(x),

and a similar argument to the above yields∣∣∣∣∣
n∑

i=0

λi(x)

∣∣∣∣∣ ≥ 1
h(1 + (xα+1 − xα)/(xα − xα−1))

.

Taking the maximum of these two lower bounds gives (17).
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4 The barycentric form

Since the degrees of the numerator and denominator of r in (7) are both at most n, we know from [5]
that r can be put in the barycentric form (1). To derive this, we first write the polynomial pi in (4) in
the Lagrange form

pi(x) =
i+d∑
k=i

i+d∏
j=i,j 6=k

x− xj

xk − xj
f(xk).

Substituting this into the numerator of (4) gives

n−d∑
i=0

λi(x)pi(x) =
n−d∑
i=0

(−1)i
i+d∑
k=i

1
x− xk

i+d∏
j=i,j 6=k

1
xk − xj

f(xk)

=
n∑

k=0

wk

x− xk
f(xk),

where

wk =
∑
i∈Jk

(−1)i
i+d∏

j=i,j 6=k

1
xk − xj

, (18)

with Jk as in (11). This is already the form we want for the numerator of r. Similarly, for the
denominator, the fact that

1 =
i+d∑
k=i

i+d∏
j=i,j 6=k

x− xj

xk − xj
,

leads to
n−d∑
i=0

λi(x) =
n∑

k=0

wk

x− xk
.

This shows that r has the barycentric form (1) with the weights w0, w1, . . . , wn given by (18). This
form provides an extremely simple and fast method of evaluating r. Moreover, this form can be used
to evaluate derivatives of r using the derivative formulas of Schneider and Werner [20]. Since we know
by Theorem 1 that r has no poles in R, another result of Schneider and Werner [20] shows that the
weights wk must oscillate in sign. This we can now verify by observing that wk can be written as

wk = (−1)k−d
∑
i∈Jk

i+d∏
j=i,j 6=k

1
|xk − xj |

.

Now we look at some examples. The case d = 1 gives

wk = (−1)k−1

(
1

xk − xk−1
+

1
xk+1 − xk

)
, for 1 ≤ k ≤ n− 1,

and

w0 =
−1

x1 − x0
, wn =

(−1)n−1

xn − xn−1
.

For general d, when the points xi are uniformly spaced with spacing h, we get

wk =
(−1)k−d

hd

∑
i∈Jk

1
(k − i)!(i + d− k)!

.

Since a uniform scaling of these weights does not change the interpolant r, we can multiply them by
hdd! to give integer weights

wk = (−1)k−d
∑
i∈Jk

(
d

k − i

)
.
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Figure 1: Interpolating Runge’s example with d = 3 and n = 10, 20, 40, 80.

By further writing δk = (−1)k−dwk = |wk|, the first few sets of values δ0, . . . , δn are

1, 1, . . . , 1, 1, d = 0,
1, 2, 2, . . . , 2, 2, 1, d = 1,

1, 3, 4, 4, . . . , 4, 4, 3, 1, d = 2,

1, 4, 7, 8, 8, . . . , 8, 8, 7, 4, 1, d = 3,

1, 5, 11, 15, 16, 16, . . . , 16, 16, 15, 11, 5, 1, d = 4.

Thus in the uniform case, most of the weights have the same absolute value; the only change occurs
near the ends of the sequence. Yet as we have shown, this “small” change increases the approximation
order of the method. A similar concept is known in numerical quadrature in the form of “end-point
corrections” for the composite trapezoidal rule [8, Secs. 2.8–2.9]. Note that the weights for the uniform
case with d = 1 have also been advocated in [3] as an improvement of the case d = 0.

5 Numerical examples

We have tested the rational interpolants using the Matlab code for barycentric interpolation proposed by
Berrut and Trefethen in [6, Sec. 7]. The basic approach to evaluating r at a given x is to check whether
x is close to some xk, within machine precision. If it is then the routine returns f(xk). Otherwise the
quotient expression for r(x) in (1) with (18) is evaluated. This method seems to be perfectly stable in
practice. We also note that Higham [14] has shown that if the Lebesgue constant is small, Lagrange
polynomial interpolation using the barycentric formula is forward stable in the sense that small errors in
the data values f(xk) lead to a small relative error in the interpolant. In view of the good approximation
properties of the rational interpolants r, it seems likely that they too are stable in the same sense, but
this has yet to be verified.

We applied the method first to Runge’s example f(x) = 1/(1 + x2) for x ∈ [−5, 5], which we sam-
pled at the uniformly spaced points xi = −5 + 10i/n, for various choices of n. Figure 1 shows plots of
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Figure 2: Interpolating the sine function with d = 4 and n = 10, 20, 40, 80.

n Runge, d = 3 order sine, d = 4 order
10 6.9e-02 1.7e-02
20 2.8e-03 4.6 3.9e-04 5.5
40 4.3e-06 9.4 7.1e-06 5.8
80 5.1e-08 6.4 1.3e-07 5.7
160 3.0e-09 4.1 2.7e-09 5.6
320 1.8e-10 4.0 6.0e-11 5.5
640 1.1e-11 4.0 1.5e-12 5.3

Table 1: Error in rational interpolant.

the rational interpolant with d = 3 for respectively n = 10, 20, 40, 80. The second column of Table 1
shows the numerically computed errors in this example, for n up to 640, and the third column the
estimated approximation orders, and they support the fourth order approximation predicted by Theo-
rem 2. Figure 2 shows plots of the rational interpolant of the function f(x) = sin(x) at the same equally
spaced points as in the previous example, but this time with d = 4. The fourth and fifth columns of
Table 1 show the computed errors and orders, which support the fifth order approximation predicted
by Theorem 2.

We also tested the method on the function f(x) = |x| which has a discontinuous first derivative
at x = 0. Figure 3 shows the rational interpolant with d = 3 using n = 21 evenly spaced points in
[−5, 5]. We found that for any fixed d, the interpolants converge numerically at the rate of O(h) as
h = 1/n → 0, which indicates that Theorem 2 really depends on f being smooth enough.

One advantage of the rational interpolants is the ease with which we can change the degree d of the
blended polynomials. We can exploit this by finding the value of d which minimizes the numerically
computed approximation error for a given set of points. Table 2 shows the errors in the Runge example,
where, for each n, the optimal d was used. As the table shows, for this function, it is beneficial to
increase d as n increases. When interpolating the sine function at the same equally spaced points it
was found that d = n gives the smallest error.
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Figure 3: Interpolating |x| over [−5, 5] with d = 3 and n = 21.

n best d value error
10 d = 0 3.6e-02
20 d = 1 1.5e-03
40 d = 3 4.3e-06
80 d = 7 2.0e-10
160 d = 10 1.3e-15

Table 2: Error in Runge’s example, varying d.

Finally, we make a comparison with C2 cubic spline interpolation using clamped end conditions
(i.e., taking the first derivative of the spline at the end-points equal to the corresponding derivative of
the given function f). The error is O(h4) for f ∈ C4[a, b] (see [9, Chap. V]), the same order as for the
rational interpolant with d = 3 (provided f ∈ C5[a, b]). Table 3 (left) shows the errors in the Runge
example, of the two methods. For large n, the error in the rational interpolant is smaller than that of
the spline interpolant, by a factor of more than 100, for this data set. On the other hand, when the two
methods are applied to the sine function, the error in the spline interpolant is about 10 times smaller
than that of the rational interpolant, as indicated in Table 3 (right).

n rational, d = 3 cubic spline
10 6.9e-02 2.2e-02
20 2.8e-03 3.2e-03
40 4.3e-06 2.8e-04
80 5.1e-08 1.6e-05
160 3.0e-09 9.5e-07
320 1.8e-10 5.9e-08
640 1.1e-11 3.7e-09

n rational, d = 3 cubic spline
10 1.3e-02 3.3e-03
20 1.2e-03 1.7e-04
40 8.4e-05 1.0e-05
80 5.4e-06 6.4e-07
160 3.4e-07 4.0e-08
320 2.1e-08 2.5e-09
640 1.3e-09 1.6e-10

Table 3: Error in rational and spline interpolation of Runge’s (left) and the sine function (right).
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