
1

Guidelines for Teaching Object Orientation with Java
Michael Kölling

School of Network Computing
Monash University

mik@monash.edu.au

John Rosenberg
Faculty of Information Technology

Monash University

johnr@infotech.monash.edu.au

ABSTRACT
How to best teach object orientation to first year students is
currently a topic of much debate. One of the tools suggested to
aid in this task is BlueJ, an integrated development environment
specifically designed for teaching. BlueJ supports a unique style
of introduction of OO concepts. In this paper we discuss a set
of problems with OO teaching, present some guidelines for
better course design and show how BlueJ can be used to make
significant improvements to introductory OO courses. We end
by presenting a description of a possible project sequence using
this teaching approach.

1. INTRODUCTION
Teaching object orientation in first year courses, especially in
Java, is becoming more and more common. There is, however,
still a lack of experience with teaching OO to beginning
students. Software tools, teaching support material and teachers'
experience all are less mature than the equivalent for structured
programming. As a result of this, teachers perceive the teaching
of object orientation as being difficult.

One tool to support introductory OO teaching is BlueJ, an
integrated software development environment specifically
designed for education [2]. BlueJ has some capabilities that are
not commonly available in other Java development
environments which lead to a different approach to software
development. The environment and its functionality have been
described in previous papers [3, 4].

Monash University and a few dozen other universities around
the world have been using BlueJ in their introductory teaching
for a few semesters now. It was always expected, and is now
apparent from experience, that teaching with BlueJ
fundamentally changes the didactic approach to teaching object
orientation to beginning students.

Because the tools available to students and teachers differ from
those available in other environments, a different approach to
introducing important concepts can be taken. In fact, to make
most of the environment, a different approach should be taken
when using BlueJ.

In this paper we will first summarise the functionality of BlueJ.
This section is really only a summary – interested readers are
referred to earlier papers. The main part of this

_____

Published in The Proceedings of the 6th conference on
Information Technology in Computer Science Education
(ITiCSE 2001), Canterbury, 2001.

paper will then present guidelines for the development of a
sequence of programming assignments specifically designed to
exploit the possibilities of BlueJ. These guidelines have been
used very successfully to develop the assignments used in our
own course in the past two years.

2. THE BLUEJ ENVIRONMENT
BlueJ is an integrated Java development environment
specifically designed for introductory teaching that presents a
development front-end which offers a unique interaction style.

The strengths of the BlueJ system are built around three design
goals: interactivity, visualisation and simplicity.

BlueJ presents on screen a graphical overview of a project
structure in the form of a UML-like class diagram. It then
allows the interactive creation of objects from any given class
in a software project. Once an object has been created, it
becomes visible to the user and any of its public methods can
be interactively invoked by selecting it from a pop-up menu.
Parameters and method results are entered and presented
through dialogue windows.

The environment is carefully designed to be very simple to use.
The goal is that students do not need to spend significant time
struggling with the environment, but instead concentrate on the
programming task.

This was achieved by a conscious trade-off: Much functionality
present in other environments, but not needed in first year
courses, is not included in BlueJ. This makes BlueJ less suitable
for professional development, but represents a great win for
introductory teaching. More detailed information about BlueJ is
available in [2, 4].

3. BLUEJ ASSIGNMENT
DEVELOPMENT GUIDELINES
BlueJ, through its unique functionality and interface, allows
teachers to teach introductory courses differently than can be
done without it. Standard programming examples from existing
courses and textbooks can be used, and students will benefit
from the greater possibility of interaction and the simplicity of
the interface. To exploit the full potential of BlueJ, however, a
course should be specifically designed for the functionality of
BlueJ.

We will start by discussing a set of guidelines for teaching
object-oriented programming. Most of the guidelines them-
selves are independent of BlueJ, but some are very difficult to
follow without it. BlueJ’s tools support activities conforming to
these ideas.



2

Guideline 1: Objects first.
It is now almost consensus among OO teachers that object
orientation is best taught by teaching about objects from the
start, rather than starting with a small scale, structured
programming approach and adding objects later. While there is
very little scientific evidence to support this, the anecdotal
evidence is so strong that the great majority of teachers and
textbooks now follow this approach.

While the idea sounds good, it is not easy with traditional
environments to get to objects very quickly. To properly
interact with an object, a student typically has to write a main
method (code that makes mention of a static method and array
parameters besides other concepts!), use a typed variable, create
an object and write a method call. These are not trivial concepts
and, as a result, it typically takes several hours of instruction (or
several chapters in a textbook) to reach the point where object
calls can be made.

With BlueJ we can really interact with objects as the very first
thing we do. Since objects can be created interactively, the first
activity for students should be to open an existing project,
create a few objects, make method calls on these objects and
inspect the objects’ state. Here, we really interact with objects
before introducing any other concept. Objects come truly first.

This activity illustrates some very important concepts:

� A Java program has classes representing the program's
components.

� Objects are created from classes.
� Many objects can be created from a single class.
� All objects of the same class have the same structure;

objects of other classes have different structure.
� The state (variable values) of each object is different.
� Objects have operations (methods) which can be invoked.
� Methods may have parameters and results.

These concepts are illustrated through demonstration or tutorial
activity before a student writes any code. Students can
experience these concepts through direct interaction.

Guideline 2: Don't start with a blank screen.
One of the most common mistakes in teaching object-oriented
programming is to let students start from scratch.

Starting with a blank screen is a very difficult exercise. Writing
a new class involves design. One has to decide what class(es)
should exist, and what the methods should be. Even if students
are initially told what classes and methods to write, they still do
an activity that they at this stage cannot fully comprehend. They
cannot recognise why the design decisions have been made as
they are.

Instead, a student should start by making small changes to
existing code. This way, they can go through a sequence of
exercises of which they can understand each step.

If they are expected to write some new code, they can do so as
part of an existing class. This has been described as an
educational pattern under the name “Fill in the blanks” [1].

BlueJ facilitates this by making it easy to provide and execute
projects that students can extend. The class diagram provides
students with an overview of what is there, and students quickly

become accustomed to the idea that some classes are provided
and don’t need to be changed.

Guideline 3: Read code.
One of the most puzzling aspects of the way programming is
commonly taught is that students start writing code without
ever reading any code.

Programming must be one of very few disciplines (the only
one?) where this is done. Imagine a course in essay writing. We
would be very surprised to see someone expecting students to
start writing essays without ever having read one. Without, in
fact, knowing what an essay really is.

But often it is even worse than that: Students not only write
code before reading, but often don't read code at all. There are
many courses where all the programs that students ever see are
those that they have written themselves. This really misses a
great opportunity. Students can learn a lot from studying well
written programs and copying styles and idioms. It is important,
though, that all examples students read are well written and are
worth being copied.

Guideline 4: Use “large” projects.
A serious problem with teaching object orientation to beginners
is that object-oriented programs have some syntactic overhead.
The overhead is roughly proportional to the number of classes
(or constant for each class).

This is a problem only because the reason for having this
overhead is not immediately apparent to beginners. This
problem seems worse the shorter the program is. If the intention
is to execute a single line of code, then the syntactical overhead
is, relatively speaking, large. It appears more acceptable in
longer programs.

Some of the benefits of object orientation only become apparent
in larger programs. Object-oriented constructs in a program of
one class with one method simply do not make sense. This
means that showing students programs that consist of a single
method is showing them bad examples (and thus contradicts our
guideline 3).

Students should see sensible examples from the start. In
particular they should see that a Java application consists of a
set of cooperating classes. Thus, we should show them “large”
(in student terms) examples, which consist of several classes
with a sensible number of methods. Using large projects can
have a variety of other related benefits for students, such as
practising the reading of code, understanding the need for
clarity of code and clear documentation, learning to read class
interfaces, possibly team work, and more [6].

Guideline 5: Don't start with “main”.
Java's “main” method has nothing to do with object orientation.
Its only reason for being is to connect the application to the
operating system. It contains code that does not logically
belong to any class or object. It certainly does not implement an
operation on an object.

Thus starting to teach about object orientation by showing the
“main” method is starting with an exception to the rule, rather
than starting with a typical example.

Unfortunately, most Java environments force users to start by
studying the main method. This is not true for BlueJ. Since any



3

method can be invoked, there is no need to use a “main”
method at all.

This does not mean that we do not teach about “main” at all.
The goal still is that students can, at the end, write programs in
any standard environment. It means, however, that a teacher can
now choose when to introduce the “main” method instead of
being forced to do it as the very first thing. One would not
normally choose to introduce concepts such as static methods
or arrays in the first lecture.

In our course, we have a week towards the end of the first
semester where we cover how to write and execute Java outside
of BlueJ. This is done with a lecture and tutorial exercises. At
this stage, students know static methods, access modifiers,
parameters and arrays, and so they can really understand all
necessary details in order to properly understand the “main”
method.

Guideline 6: Don't use “Hello world”.
This guideline really follows from the ones above. Using “Hello
world” (or an equivalent) as the first example is, however, so
common that we have chosen to highlight this point separately.

Since a typical “Hello world” program breaches,
simultaneously, all of the guidelines above, it is clear that we
view it as an extremely bad example.

Lewis argues that “Hello world” is a perfectly good OO
example [5], because it makes calls to an object. This, however,
does not change the fact that the code that students write is not
object-oriented. They write a class of which no object is ever
created, and they write a method that does not implement an
object operation.

Guideline 7: Show program structure.
In discussing object-oriented programming, the classes and
their relationships are a central issue. The structure of the
application is crucial to the quality of a solution. Yet in most
development environments, the internal program structure is
not visible.

It is very hard to discuss issues in a completely abstract way.
Visualising the class structure is crucial for students to develop
an understanding of the important concepts.

If programming environments do not provide functionality to
display that structure, teachers must take great care to present
visual representations by other means as a basis for discussion.
BlueJ facilitates this discussion by automatically computing and
displaying the class diagram.

Guideline 8: Be careful with the user
interface.
This guideline is concerned with the interface of early student
code. How should the results of the student work become
visible, and how are parameters entered?

There are three commonly used alternatives: text I/O, graphical
user interfaces (GUIs) or applets. All three have their own
associated problems.

Text output is unproblematic. It is simple and easy to
understand. The problem with text I/O is text input. Reading
text from the terminal requires use of non-trivial library classes
and methods. It also requires a good understanding of data
types and type casting. It is clearly not possible for students to

get a good understanding of these issues by the time we want
them to produce their first section of code. Expecting beginning
students to write text input methods invariably leads to a lot of
hand-waving, telling students to just type in a given code
pattern without them fully understanding what they are doing.

GUIs provide a serious distraction from the real issues
underlying general programming concepts and do not serve
well to illustrate general principles. GUI code is a very specific
example of an object structure that has very idiosyncratic
characteristics that are not common to OO in general.

Building GUIs also distracts from thinking about important
issues. Students tend to regard as most important those things
they spend most time doing. Building graphical interfaces is
very time intensive. Students frequently end up spending a lot
of time moving buttons around on the screen instead of working
on the functionality or structure of an implementation. They
often do not develop an appreciation of program structure and
implementation design.

Applets, sometimes used as a quick way to build an interface,
also do not help much to simplify things. Applets only remove
the top level frame of GUI building. This is provided by the
applet viewer or web browser. Other than that, applet
construction has the same problems as GUI interfaces (after all,
an applet is a GUI interface).

In addition to the above, understanding program execution with
applets is not trivial. The student only implements a number of
seemingly unrelated methods. To understand control flow, a
student must develop an understanding of the applet execution
framework provided in the viewer or browser. This also is a
distraction from fundamental early programming principles.

This, now, leaves the question: What shall we do instead?

4. DEALING WITH I/O
To avoid the problems associated with these three kinds of
interfacing, we can use one of two possible solutions.

The first is BlueJ specific: since BlueJ allows the execution of
arbitrary methods and the interactive passing of parameters, this
invocation mechanism can be used to execute student code and
provide input. Results are also available via the environment
(method results displayed in dialogues). This is the best user
interaction style for early examples. All code that students write
are standard Java methods – one of the most central concepts of
object orientation.

The second solution is related to guideline 4 (“use large
projects”). The problem lies not with students (indirectly) using
text I/O or GUIs, but only with students being required to write
or understand the code doing this. Students can be given
partially implemented projects that already provides a user
interface, textual or graphical. The student task can then be to
work on parts of the project not related to I/O. Thus, the student
code again communicates with its environment exclusively
through method calls.

This solution is most suitable once students have a good grasp
of some of the important concepts.

5. A PROJECT SEQUENCE
A sequence of activities or assignments conforming to these
guidelines may be structured as follows:



4

1. Students start by creating objects and executing methods of
existing classes. They gain an understanding of classes,
objects, methods, parameters and data types. Objects may
be composed by passing one object as a parameter to a
method of another. No code is written.

2. Students make small modifications to existing code. These
modifications can initially be trivial (changes of string
literals) and get increasingly more challenging. Ideally, the
code they edit is very similar to statements executed
interactively in (1). Students experience the edit/
compile/execute cycle, compiler errors and gain a first
insight into Java code. In our course, we use an example
where the code being modified corresponds very closely to
statements which have been invoked interactively before.
Students manage to modify and extend the given code
without any prior instruction about Java syntax.

3. The next project requires students to implement or change
method bodies. All required methods exist as methods
skeletons with empty bodies. Students concentrate on how
to implement methods, after having become familiar with
using them..

4. Next, students are required to add methods to existing
classes. Students must decide what methods are needed and
what the signature should be.

5. After this, a project may require students to add not only
statements and complete methods, but also new classes. The
classes to be added to the project are fairly obvious and easy
to understand.

6. As a last, advanced exercise, students develop a project
from scratch. They start with an empty screen and a vague
problem description. They go through the whole design
process of deciding what the classes and their interfaces
should be, as well as the implementation.

For our course, we have developed a sequence of assignments
that spans two full semesters, following this outline.

Step number 1 (interactive execution) is done with a project
called “shapes” – an application that allows the interactive
creation of squares, circles and triangles. These shapes can then
be moved around on the screen via interactive method calls,
their size and colour may be modified. Students are encouraged
to create a simple picture.

The second project is named “picture”. Here, a class contains
code to created, modify and display shapes to present a simple
picture. Students modify this code.

For step number 3, a calculator project is used. Students are
given a calculator implementation where the implementation of
several methods in a class called “CalcEngine” is missing. They
need to add method bodies and instance variables.

Step 4, adding methods to existing classes, is done via two
projects, a game called “blocks” and an image viewer project.
In the “blocks” game, students implement the game control
loop; in the image viewer, students write several image
modification operations, such as smoothing, thresholding and
image overlay functions.

Following this, a text based adventure game is used to let
students add classes. Again, a framework is given to students
with the expectation that they extend the given code.

Lastly, a large discrete event simulation is designed and
implemented by student groups. They are not given any code
for this last assignment.

Space does not allow us to discuss these projects here in more
detail. However, and extended version of this paper describing
these projects, as well as the code for the projects themselves,
can be downloaded from the author’s web site (see below).

6. CONCLUSION
We have argued that BlueJ allows and benefits from the use of
a different approach to introducing object-oriented program-
ming concepts. We have discussed a list of eight guidelines for
developing an introductory course and given a description of a
sequence of programming tasks following the ideas described in
the guidelines.

The guidelines and the assignment sequence are general and
may be put to beneficial use in any course, using BlueJ or not.
The use of BlueJ, however, supports this line of introduction
well and makes the implementation of some of the suggested
guidelines much easier.

7. DOWNLOADS
The BlueJ system and its documentation is freely available at
http://bluej.monash.edu.

The  code for the projects described here as well as an extended
version of this paper with a more detailed description of the
projects  is available from the author’s web site at
http://www.netcomp.monash.edu.au/~mik.

8. REFERENCES
[1] J. Bergin, Fourteen Pedagogical Patterns for

Teaching Computer Science, in Proceedings of the
Fifth European Conference on Pattern Languages of
Programs (EuroPLop 2000), Irsee, Germany, July
2000.

[2] M. Kölling, BlueJ - Teaching Java, web site at
http://bluej.monash.edu, Monash University.

[3] M. Kölling, Teaching Object Orientation with the
Blue Environment, Journal of Object-Oriented
Programming, Vol. 12 No. 2, 14-23, May 1999.

[4] M. Kölling and J. Rosenberg, BlueJ - The Hitch-
Hikers Guide to Object Orientation, to appear in
Journal of Object-Oriented Programming, June 2001.

[5] J. Lewis, Myths about Object-Orientation and Its
Pedagogy, in SIGCSE 2000 Proceedings, ACM,
Austin, Texas, 245-249, March 2000.

[6] K. T. Stevens, et al., Using Large Projects in a
Computer Science Curriculum (Panel), in SIGCSE
2000 Proceedings, ACM, Austin, Texas, 399-400,
March 2000.


	INTRODUCTION
	THE BLUEJ ENVIRONMENT
	BLUEJ ASSIGNMENT DEVELOPMENT GUIDELINES
	Guideline 1: Objects first.
	Guideline 2: Don't start with a blank screen.
	Guideline 3: Read code.
	Guideline 4: Use “large” projects.
	Guideline 5: Don't start with “main”.
	Guideline 6: Don't use “Hello world”.
	Guideline 7: Show program structure.
	Guideline 8: Be careful with the user interface.

	DEALING WITH I/O
	A PROJECT SEQUENCE
	CONCLUSION
	DOWNLOADS
	REFERENCES

