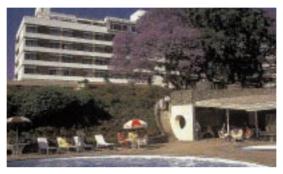
Sustainable Business

Economic development and environmentally sound technologies



The Malaŵi Development Corporation (MDC) was established in 1964 – its mission to stimulate development in the agricultural, commercial and industrial sectors and in the country's mineral resources.

Acting as the engine for growth by identifying, promoting and implementing projects either through expanding businesses within its existing portfolio or in the establishment of new ventures, MDC participates through direct investment, equity or loans and in partnership with domestic and foreign private investors. But whilst economic growth is essential to Malaŵi, protecting the environment is equally important to the future of the country.

EXISTING INVESTMENTS

- The Corporation requires companies to provide goods and services whilst at the same time taking into account the need for the protection of health and the environment.
- It encourages industries that produce hazardous wastes – including damaging gases – to develop corporate strategies to manage them properly and to adopt new environmentally sound technologies.

Better hospitality at Mount Soche Hotel, owned by Tourism Development and Investment Company (TDIC). MDC holds a major interest in TDIC.

covering the protection and/or replanting of trees and the contamination of water resources are rigorously applied.

In both existing and new investments, MDC encourages the use of renewable resources – water, soils and forests – in a sustainable manner, offering support to ensure that those resources that have become degraded can be made usable once more.

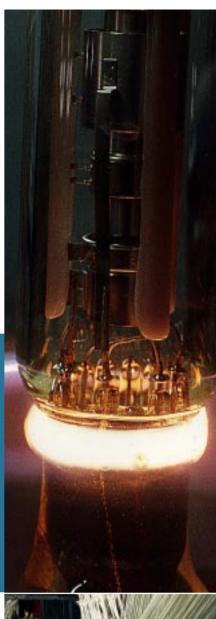
- MDC works closely with companies researching ways of reducing the amounts of toxic pollution and by encouraging recycling and safe treatment and disposal.
- As part of the monitoring process conducted by the Ministry of Research and Environmental Affairs, MDC also ensures that environmental impact assessment studies are undertaken in all projects involving rehabilitation, diversification, restructuring and expansion.

NEW PROJECTS

- In line with World Bank regulations, MDC undertakes environmental impact assessment studies of each new project, working closely with the environmental regulatory authorities in addressing industrial waste management problems.
- The Corporation is the lead agency in the building of industrial estates and factory shells in urban and semi-urban areas, thereby encouraging industrial development, supporting the government's export processing zone scheme and attracting foreign investment. It also ensures that the regulations

Whilst it is not possible to eliminate environmental damage from pollution, MDC aims at prevention and control measures which achieve an optimum level of pollution – that is, the level where the costs are balanced by the benefits. These measures include: waste minimization through recycling processes and selfappraisal systems to assess compliance with environmental regulations, as well as environmental impact assessments of all new projects and better management of hazardous wastes.

A LEADERSHIP ROLE


MDC is playing a leadership role in protecting Malaŵi's environment in other ways: by supporting the work of environmental organizations, as a member of a government-coordinated Task Force on industry dealing with environmental protection; and by providing information to the public through the relevant organizations on the effects of environmental damage.

The future development of Malaŵi must be sustainable and MDC is playing its part to encourage both economic growth and the protection of the environment.

Malaŵi Development Corporation MDC House, Glyn Jones Road, P.O. Box 566, Blantyre, Malaŵi Tel: + 265 620 100 Fax: + 265 620 584

Sustainable Business

Economic development and environmentally sound technologies

The Regency Corporation Limited in association with the United Nations Environment Programme

The Regency Corporation Limited, Gordon House, 6 Lissenden Gardens, London NW5 1LX, UK Tel: 44 (171) 284 4858. Fax: 44 (171) 267 5505 E-mail: info@regencycorp.com. Internet: www.regencycorp.com

Project Director Jane Gee

Editor Trevor Russel

Project Consultants Khalid Amin Philip Charles Tunji Obasa Brian Parrish Brian Rollason Richard Verden

Editing and design Banson, London, UK

Reproduction Lydia Litho, London, UK

Print

BPC Dunstable Ltd., Bedfordshire, UK

BPC obey both the letter and the spirit of all environmental laws and regulations, pursuing development projects to prevent pollution by reducing process emissions and materials usage and by cutting energy consumption.

Paper and board

Robert Horne Paper Co. Ltd., Buckinghamshire, UK Cover printed on Reprise Matt Board, manufactured from a minimum of 80 per cent recycled fibre, the balance being totally chlorine free. The text is printed on Quattro Recycled Matt, manufactured from 75 per cent reclaimed fibre, 20 per cent elemental chlorine free fibre and 5 per cent mill broke. Both are National Association of Paper Merchants (N.A.P.M.) Recycled approved.

Inks

Coates Lorilleux Ltd., Buckinghamshire, UK

The inks are formulated using organic pigments chosen because of their minimal heavy metal content bound with a resin system based on a combination of naturally occurring and man-made materials. The liquid phase of the system is a carefully selected blend of vegetable oils with a minimal presence of petroleum distillate.

Laminate

Celloglas Ltd., Berkshire, UK

The cover is laminated with Clarifoil cellulose diacetate film manufactured primarily from wood pulp sourced only from managed forestry. When used with suitable adhesives it assists recycling by helping to de-ink the board without the need for chemical treatments.

Pictures

Cover/title page: main picture (cover only): Richard Jalo/UNEP; top right: Hulon K. Forrester/UNEP; below right: UNEP. Pages: p5: UNEP; p10: Topham Picturepoint; p20: Jean Dessaints/UNEP; p36: Eva Barrett/UNEP; p45: UNEP; p51: Shihua Zhao/UNEP; p60: UNEP; p76: Johannes Gedenk/UNEP; p81: T. Porananent/UNEP; p100: Vladimir Akimov/UNEP; p111: Hulon K. Forrester/UNEP; p120: Topham Picturepoint; p125: Messmer/UNEP; p131: Richard F. Smith/UNEP; p142: Paulus Suwito/UNEP; p154: Yorinobu Nawata/UNEP; p184: Sanjay Acharya/UNEP; p192: Chen-Hsian Su/UNEP; p203: UNEP; p208: Jim T. Smith/UNEP; p219: Topham Picturepoint; p226: Ufuk Iskender/UNEP; p236: Rongrudee Vongpracharaporn/UNEP; p246: Richard Jalo/UNEP; p251: Dirk Buwalda/UNEP; p256: Rudolf Rupprecht/UNEP. Acknowledgments Cartermill International Limited CRU Publishing Ltd. Dawson UK Ltd. Europa Publications Financial Times Information Frost & Sullivan Inc. Graham & Whiteside Limited International Water Supply Association Marconi International Register Marquis Who's Who Tele-Gulf Directory Publications WLL Utility Data Institute – The McGraw Hill Companies, Inc.

Special thanks

Regency would like to thank Jacqueline Aloisi de Larderel, Director, UNEP IE for her assistance and support of this initiative. Regency, in association with UNEP, would also like to thank the sponsors for their contribution to *Sustainable Business*.

Display quotations in this book are taken from the United Nations General Assembly Special Session (UNGASS) held in June 1997 to review and to appraise the implementation of Agenda 21.

The contents of this publication do not necessarily reflect the views or policies of UNEP. The presentation of sponsoring companies, their activities and technologies listed in this publication do not imply any endorsement on the part of UNEP.

No part of this publication may be used, reproduced, stored in an information retrieval system or transmitted in any manner whatsoever without the express written permission of The Regency Corporation Limited. This publication has been prepared wholly upon information supplied by the contributors and whilst the publisher trusts that its content will be of interest to readers, its accuracy cannot be guaranteed. The publisher is unable to accept, and hereby expressly disclaims, any liability for the consequences of any inaccuracies, errors or omissions in such information whether occurring during the processing of such information for publication or otherwise. No representations whether within the meaning of the Misrepresentation Act 1967 or otherwise, warranties or endorsements of any information contained herein, are given or intended and full verification of all information appearing in this publication of the articles contained herein does not necessarily imply that any opinions therein are necessarily those of the publisher. The publisher cannot accept responsibility or liability for material provided by the corporate participants.

ISBN

09520469-7-0 Softback 09520469-8-9 Hardback Also available in French and Spanish

© The Regency Corporation Limited 1998 All rights reserved

In view of limited global resources, an increase in the world's population, and the need for development as well as the need to protect the ecosystems that sustain the world's productive capacity, the importance of achieving environmentally sustainable forms of development is inescapable. Resource-efficient and cost-effective technologies are crucial in the quest for sustainable development. The United Nations Conference on Environment and Development (UNCED), held in Rio de Janeiro in 1992, was the first major event to highlight the fact that business and industry play a crucial role in bringing about sustainable development.

An important pathway towards sustainability for business and industry is the improvement of production systems through technologies and processes that utilize resources more efficiently and at the same time produce fewer wastes, in other words, achieving more with less. Environmentally sound technologies play a key role in improving productivity while protecting the environment. They are less polluting, use resources in a more sustainable manner, and recycle more of their wastes and products. Also important are the 'soft technologies' such as technical know-how, procedure, and organizational and managerial structure.

The central role of environmentally sound technologies in sustainable production means that governments, industry and business associations, and environmental organizations, as well as industry and business themselves, must actively promote their implementation if we are to realize the goal of sustainability. UNEP, through its Industry and Environment Centre (IE), has for many years promoted the use of environmentally sound technologies in industry to achieve ecoefficiency and to develop cleaner and safer processes, products and services. Through its International Environment Technology Centre (IETC), it promotes the use of environmentally sound technologies for urban and waste management. UNEP is therefore pleased to have been associated with this publication which highlights the efforts of many companies.

UNEP hopes that *Sustainable Business* will help guide business and industry to incorporate environmentally sound technologies into their daily business and production activities and encourage governments and local authorities to favour the use of such technologies. It is only by efficiently using and re-using the resources we have that we can even begin to hope for a sustainable future.

J. Abios de Carelor

Jacqueline Aloisi de Larderel, Director UNEP Industry and Environment Centre

John Whitelaw, Director

UNEP International Environmental Technology Centre

Table of contents

Preface

5

By Jacqueline Aloisi de Larderel, Director, UNEP Industry and Environment Centre, and John Whitelaw, Director, UNEP International Environmental Technology Centre

1

A bridge to sustainable development	11
A wide range	13
Growing use	13
Impressive results	14
Main needs	14
Barriers	15
Unfinished agenda	15

Box

DOX	
ISO 14001 – a major driving force?	17

2 Derive city

Bringing tangible, measurable benefits	21
A fivefold approach	21
Technology solutions exist	23
Three main categories	23
Four generations of ESTs	24
Cleaning up industry	25
Chemicals	25
Pulp and paper	27
Steel	30
Construction	30
Counting the costs of ESTs	31
Benefiting the bottom line	35
Sources	35

Boxes

Characteristics of sustainable technologies	24
Saving energy and raw materials in the	
chemical industry	26
Reducing pollution in pulp and paper production	27
Waste reduction: an urgent priority for metal plating	29
On-site 'green' building techniques in Japan	31

3

Transferring technologies	37
Success factors	37
Knowledge gap	39
Plugging the gap	40
Intermediaries crucial	41
Other issues	41
Reaching small and medium-sized enterprises	41
Skills management	44
Key role for private sector	46
Public sector approach	49
Montreal Protocol	50
Mixed private-public approaches	53
Capacity-building	55
Promoting exports	55
Is trade a barrier?	56
South-South transfers	57
"Start at home"	57
Sources	59

Boxes

Bottom-line benefits are persuasive	39
Barriers to technology transfer	40
Information systems surveyed	44
Asia and Pacific focus on small and medium-sized	ł
enterprises	46
Transferring ESTs to small and medium-sized	
enterprises in Morocco	47
The OzonAction Programme	52
Not one-time transactions	55
ESTs can overcome trade concerns	56

4

Financing ESTs	61
What is the cost?	61
Private sector financing	62
Public-private partnerships	63
Funding technology transfer	69
Supporting smaller enterprises	69
Other funding sources	70

The World Bank	70
International funding	74
Self-financing in Europe	75
The good news – and the bad	75
Sources	75

Boxes

Privatization as a catalyst	63
An innovative approach to financing	
ESTs	65
Funding renewable energy technologies	67
Implementing a national strategy	70
Pollution prevention in India	71
ESTs help Pakistan pulp and paper mill	73
Collaborating on the border	74

Th

5	
The role of government	77
Direct regulations	77
Command-and-control criticized	80
New thinking – new policies	82
Economic instruments	83
Ecotaxes	85
European Union broadens policies	87
Taxing energy	90
California and zero-emission vehicles	90
The voluntary approach	90
Incentive programmes	92
International agreements	93
In the developing world	93
Critical role	99
Sources	99

Boxes

79
82
83
85
91
92
95
96
97

-	
ESTs for pollution control	101
Air pollution	101
Water and wastewater treatment	103
Solid waste treatment	106
Landfill	106
Waste to energy	107
Recovery and recycling	109
Land remediation	116
Environmental monitoring	116
Sources	119
Boxes	
Emissions control at an incineration plant	102
New lithography technology	102
Zero wastewater emission in the wiredrawing	
process	103
Treating wastewater in the rubber industry	105
Solid and hazardous waste in Egypt	106
Waste-to-energy schemes work in Scandinavia	107
Recycling – an option for leather tanneries	112
An integrated approach in Madrid	113
Coping with scrapped cars	115
Air and water monitoring at a chemical plant	116
Reducing pollution and waste through improved	
process control	117

Cleaner production and eco-efficiency ESTs for cleaner production Improving technologies Barriers to cleaner production Funding constraints and needs Cleaner Production Programme Other United Nations activities Progress and problems Eco-efficiency Towards zero emissions Work in progress Off the drawing board The eco-factory Industrial ecology Valid and viable Sources

Boxes

Clear environmental and financial benefits	124
Tunisian initiative leads to cleaner technologies	126
Economic return in the Philippines	127
Gas phase heat treatment of metals	127
Saving costs and improving product quality	129
Reducing heat loss in lead oxide units	130
Conserving water, energy and chemicals	130
The price can be acceptable	132
Saving water and waste in food processing	133
Cleaner production initiatives in Thailand	135
Cleaner production at the grassroots	136
A fast response in Africa	137

8

0	
ESTs for energy	143
Coal	145
Advanced technologies	145
Efficiency in industry	147
Fundamental changes	149
Residential and commercial use	150
Co-generation	150
A key role for technologies	153
Sources	153

Boxes

Cleaner coal technology in China	146
Energy saving in the glass industry	147
Efficient office lighting in the United States	149
Co-generation in the United Kingdom	149
District heating schemes in Europe	150

9

Renewable energy technologies	155
Cost is the key	156
Solar power	157
Passive solar	157
Solar thermal systems	159
Photovoltaic cells	160
Growing activity	161
Enormous potential	164
Wind power	166
Micro-hydro power	169
Biomass	169

171
171
173
174
176
177
177
179
181
181
183
183

Boxes

Solar-powered telecommunications in	
Australia	157
Solar power in Freiburg	159
Affording solar electricity	160
Choosing the right projects	166
Denmark – a world leader	167
The Swedish experience with biomass	170
Heating homes from straw	171
From distillery wastes to biogas	173
A "definite sustainable option"	174

10

ESTs for water conservation	185
Agriculture	186
Technologies and systems	186
Chemical pollution	189
Sanitation	191
A key issue	191
Sources	191

Boxes	
Water conservation in China	186
Permaculture in Australia	187

11

ESTs for road transportation	193
Fuel efficiency technologies	193
Technologies to reduce emissions	197
Alternative carbon-based fuels	198
Gas-powered vehicles	199

Do they work?	201
Cheaper to use?	201
Zero-emission vehicles	202
Electric vehicles	202
Fuel cells	204
A promising future	204
Sources	207

Boxes

The biggest challenge	196
Better traffic management vital too	197
Transport challenges in developing countries	205

12

Biotechnology	209
Cleaning up pollution	209
An exciting future	214
Trends in agriculture	215
Further applications	217
Approach causes concern	220
Biotechnology transfer	221
Clear benefits	225
Sources	225

Boxes

Using micro-organisms against industrial pollution	210
New modular composting system	211
Viet Nam focuses on composting	213
Research projects produce results in the	
United States	214
Promoting biotechnology transfer	218
Developing environmentally sound	
biotechnologies in India	221
Biotechnology goes mobile	224

13

Environmental technology

assessment	227
Ten steps for EnTA	229
Following a successful EnTA	231
A systems approach	233
Growing interest and cooperation	235
"Fix it or scrap it now"	235
Sources	235

Boxes

Suppliers' claims felt unreliable	229
Using EnTA to choose the right technology in India	231
Assessing environmentally sound technologies in India	233

14

Asia: economic growth and	
environmental deterioration	237
Massive investments needed	237
What is happening?	240
The driving forces	241
Reluctance on cleaner production	242
Finding the finance	242
Other regions in brief	243
Sources	245
Boxes	
Progress on cleaner production in China	239

Progress on cleaner production in China239Japan provides lessons for the whole region241

15 ESTs and future challenges 247 An integrated approach 255 Sources 255 Boxes 250 New technologies needed: air, energy and waste New technologies needed: water and resources 253 Appendix: Sources of information 257 The UNEP Industry and Environment Centre (UNEP IE) 269 The UNEP International **Environmental Technology** Centre (IETC) 270

Selected publications from UNEP IE and IETC 271