
Online and Offline Operation of

J2EE Enterprise Applications

Diploma Thesis in Computer Science

submitted by

Christian Stettler

from Dietikon, Switzerland

Register No. 99-710-048

Supervisor

Prof. Dr. Helmut Schauer
Software Engineering Group

Department of Information Technology
University of Zurich, Switzerland

Advisor

Dr. Thomas Ernst
Canoo Engineering AG

Basel, Switzerland

November 5, 2003

ii

Abstract

Enterprise applications built on top of the Java 2 Enterprise Edition (J2EE) platform
require a permanent connection between the application client and the J2EE application
server. In scenarios where the enterprise application has to provide its services discon-
nected from the application server, because of missing connectivity or a server failure,
the enterprise application has to support an offline operation mode.

This thesis discusses issues arising from operating an enterprise application in offline
mode, such as data synchronization, offline security, and transitions between online and
offline operation, and proposes architectural solutions that enable both online and offline
operation for J2EE enterprise applications. In addition, this thesis provides a framework
for the development of offline-capable J2EE enterprise applications including reference
implementations for various design concepts discussed and solutions proposed. Both the
conceptual and programmatic solutions are integrated in and demonstrated by a business-
related ’proof of concept’ showcase application.

iii

iv

Acknowledgement

Numerous people supported the formation of this diploma thesis, in different ways: First
of all, I would like to thank Prof. Dr. Helmut Schauer and Dr. Bruno Schäffer for the
proposition of the topic. Secondly, my appreciation goes to Dr. Thomas Ernst at Canoo
Engineering AG, who guided me through the whole process of writing this thesis. In
addition, I would like to thank the following people for valuable discussions, contribu-
tion and proof-reading (in alphabetic order): Norman Cohen, Daniel Grob, Volker Jach,
Sibylle Peter, and especially Sandra Wendland.

Special thanks go to my parents Hans and Barbara and my brother Martin. It was
their boundless support that made my studies at the university possible, and that finally
brought it to success.

Dedicated to
Nora

with gratitude for her
patience, support and love.

v

vi

Disclaimer

Java, J2EE, J2SE, EJB, JavaBeans and JSP are trademarks or registered trademarks
of Sun Microsystems, Inc. in the U.S. or other countries. JBoss and JBoss Group are
registered trademarks and service marks of Marc Fleury under operation by The JBoss
Group, LLC. All other products or services mentioned herein are the trademarks or
service marks of their respective companies or organizations.

vii

viii

Contents

1 Introduction 1
1.1 Structure . 1
1.2 Objectives . 2
1.3 Fundamental Problems . 2

1.3.1 Offline Availability of Application Logic 3
1.3.2 Offline Availability of Application Data 3
1.3.3 Security of Offline Application Data 3
1.3.4 Data Synchronization . 3

2 J2EE Technologies 5
2.1 Introduction to J2EE . 5
2.2 Enterprise Application . 5
2.3 J2EE Platform . 6

2.3.1 Tiers . 7
2.3.2 Containers . 8
2.3.3 Application Components . 9

2.4 J2EE Security . 11
2.4.1 Security Concepts . 11
2.4.2 Authentication Model . 12
2.4.3 Role-based Authorization Model 12

2.5 J2EE Architectures . 13
2.5.1 Web-centric vs. EJB-centric Architectures 13
2.5.2 Architecture for Fat Client Applications 14
2.5.3 Architecture for Rich Client Applications 15
2.5.4 Architecture for Web Applications 16

2.6 Java Authentication and Authorization Service 17
2.7 Java Network and Launching Protocol . 18

3 Use Cases for Offline Operation 19
3.1 Company Information System . 19
3.2 Expense Management . 20
3.3 High Availability Solution for Front End Systems 20

4 Offline Operation 23
4.1 Operation Sequence . 23
4.2 Operation Mode Transition . 24

ix

4.2.1 Transition to Offline Operation . 25
4.2.2 Transition to Online Operation . 25

4.3 Application Configuration . 26
4.3.1 ’On-Demand’ Configuration . 26
4.3.2 ’Be-Prepared’ Configuration . 26

4.4 Local Data Management . 27
4.4.1 Local Data Store Implementation 27
4.4.2 Security Aspects of Local Data Management 27

4.5 Offline Data . 28
4.6 Data Synchronization . 29

4.6.1 General Requirements . 30
4.6.2 Basic Synchronization Process . 31
4.6.3 Object States . 32
4.6.4 Conflict Detection and Reconciliation 32
4.6.5 ’Out-Of-Collection’ Problem . 34

4.7 Application Logic for Offline Operation 35
4.7.1 The Trivial Approach . 35
4.7.2 The Reuse Approach . 36

4.8 Security . 41
4.8.1 Security for Offline Operation . 41
4.8.2 Offline Authentication and Authorization 43
4.8.3 Offline Authentication Approach 44
4.8.4 Authentication and Operation Mode Transition 47
4.8.5 Synchronization Security . 47

5 A Framework for Offline J2EE Applications 49
5.1 Responsibilities . 49
5.2 Framework Overview . 50
5.3 Framework Interfaces & Classes . 51
5.4 Data Modification Tracking . 51

5.4.1 Journal . 52
5.4.2 Update Information . 52
5.4.3 Object Versioning . 53

5.5 Data Synchronization . 55
5.5.1 Synchronization Model . 55
5.5.2 Selective Synchronization . 57

5.6 Operation Mode Transition . 58
5.7 Configuration . 59
5.8 Framework Integration . 60

6 Architectures for Offline J2EE Applications 63
6.1 Offline-Architecture for Fat Client Applications 63

6.1.1 Synchronization . 64
6.1.2 Operation Mode Transition . 65
6.1.3 Security . 65

6.2 Offline-Architecture for Rich Client Applications 65

x

6.2.1 Synchronization . 66
6.2.2 Operation Mode Transition . 67
6.2.3 Security . 67

6.3 Offline-Architecture for Web Applications 67
6.3.1 Synchronization . 69
6.3.2 Operation Mode Transition . 69
6.3.3 Security . 71

7 Demonstration Application 73
7.1 Application Use Case . 73
7.2 Architecture and Design . 74
7.3 Security . 76
7.4 Synchronization . 77
7.5 Application Configurations . 77

7.5.1 ’On-Demand’ Configuration . 77
7.5.2 ’Be-Prepared’ Configuration . 78

8 Conclusions 81
8.1 J2EE and Offline Operation . 81
8.2 Impact of the Enterprise Application Architecture 82
8.3 J2EE Offline Framework of Application Developers 84
8.4 Limitations concerning Application Functionality 84

9 Outlook 87

A Resource CD 89
A.1 Requirements . 89
A.2 CD Layout . 90

B AddressBook Application 91
B.1 J2EE Application Server Configuration . 91
B.2 Java Source Compilation & Building . 91
B.3 Deployment . 92
B.4 Starting the AddressBook Application . 92

B.4.1 Web Client . 92
B.4.2 Rich Client . 94
B.4.3 Fat Client . 94

C ExpenseTool Application 95
C.1 J2EE Application Server Configuration . 95
C.2 Java Source Compilation & Building . 96
C.3 Deployment . 96
C.4 Creating the Test Data Set . 96
C.5 Starting the Application Client . 97

C.5.1 Application User Logins . 97
C.5.2 Starting the ExpenseTool in ’On-Demand’ Configuration 97
C.5.3 Starting the ExpenseTool in ’Be-Prepared’ Configuration 99

xi

xii

Section 1

Introduction

Architectures of today’s enterprise applications have become increasingly server-centric.
Application functionality which used to be implemented within a fat client application
running on the client’s machine now resides on a central server instance. The respon-
sibilities of the client application are scaled down to presenting the user interface and
acquisition of user inputs, making it a thin client. Thus, a permanent and reliable con-
nection between the client and the server is required to operate an application that
is based on this server-centric approach. However, not even the current network and
Internet-dominated era offers ubiquitous connectivity. As a result, there is an increas-
ing need for architectures that allow enterprise applications to operate in a disconnected
offline mode.

This thesis analyzes the requirements and possibilities of offline-capable applications with
respect to the Java 2 Enterprise Edition (J2EE), a Java-based realization of a server-
centric application architecture approach. In addition, this work discusses the implica-
tions on the conceptual solution resulting from the different partitioning of application
logic between client and server and highlights the key aspects of operating applications
in both online and offline mode. A programmatic framework for the development of
offline-capable J2EE enterprise applications is presented and verified using a prototypi-
cal demonstration application that implements a prevalent use case for offline operation.
While most existing J2EE-oriented literature covers the online-specific aspects of J2EE
enterprise applications, this thesis focuses on issues, concepts and solutions concerning
offline operation of enterprise applications.

1.1 Structure

This section describes the objectives of the thesis and introduces the fundamental prob-
lems of providing offline operation support for J2EE enterprise applications. Section
2 introduces the J2EE platform and related Java-based technologies required for fur-
ther understanding of the discussion. Section 3 portrays three enterprise application use
cases, each highlighting specific characteristics of offline-capable enterprise applications.

1

While section 4 discusses detailed core issues related to offline operation and provides
conceptual solutions for these issues, a programmatic framework supporting the develop-
ment of offline-capable J2EE enterprise applications is proposed and explained in section
5. Section 6 proposes several architectural solutions that enable both online and of-
fline operation for J2EE enterprise applications based on the framework mentioned. A
demonstration application, implementing an enterprise application scenario with support
for offline operation that builds on and integrates the concepts described in earlier sec-
tions, is presented in section 7. Section 8 summarizes and concludes the essential aspects
and results of this work, while section 9 discusses unsolved issues, solution drawbacks
and potential future developments.

Appendix A outlines the contents of the resource CD that accompanies the thesis with
Java source code, JavaDoc documentation and additional electronic resources. Appen-
dices B and C provide additional information on running and exploring the demonstration
applications developed during the thesis work.

1.2 Objectives

The goal of this thesis is to examine the requirements, possibilities and consequences of
developing offline-capable, J2EE-based enterprise applications. The arising issues will
be addressed both conceptually and programmatically within J2EE context. Thereby,
the aspects of different J2EE enterprise application architectures have to be taken into
account in order to adapt the delivered solutions to the most relevant architectural vari-
ants. This thesis aims to provide a solid background on offline-related problems and to
deliver concepts for the design and development of offline-capable enterprise applications
with J2EE. Additionally, programmatic assistance for application developers in the form
of a prototypic J2EE online-offline application framework that implements the concep-
tual solutions proposed and facilitates the development of offline-capable J2EE enterprise
applications will be provided.

1.3 Fundamental Problems

Since J2EE enterprise applications are typically based on one or multiple servers pro-
viding most parts of the application logic1 and hosting the application data2, operating
such applications disconnected from the server in offline operation3 is not trivial. When
running enterprise applications in offline operation, services and data residing on the
server are not accessible due to the lack of connectivity to the server environment. This
section provides an overview of the basic problems of operating an enterprise application
in offline mode. These problems are discussed in detail in the course of this paper.

1Application logic is the part of an enterprise application that implements the business rules and pro-
cesses the application-relevant data. Application logic is the active part of an enterprise application.

2Application data is the passive part of an enterprise application that represents business entities
processed by the application logic. The terms ’business data’ and ’business objects’ are considered
as being synonyms for application data.

3The terms ’offline operation’ and ’online operation’ are described in section 4.

2

1.3.1 Offline Availability of Application Logic

Application logic implemented in the server components of an enterprise application
and accessed by connecting application clients4 in online operation is not available to
application clients that are running in offline operation. Thus, application logic required
for offline operation has to be transferred to, installed on or simulated locally by the
client machine hosting the application client.

1.3.2 Offline Availability of Application Data

In an enterprise application scenario, application data is centrally held in data stores on
one or more servers. The amount of application data residing on the server is potentially
large. Specific parts of this data need to be available on the client side when running
the enterprise application in offline operation. Thus, this data has to be downloaded and
stored locally on the client machine that runs the application client in offline operation.

1.3.3 Security of Offline Application Data

As enterprise applications often include sensitive application data, access to this data
is typically restricted to users, roles or other privileges which are set and controlled by
the server part of the application. In offline operation, where application data is stored
locally on the client machine, similar access control mechanisms may be required to
protect access to the locally stored data. Besides protecting data confidentiality, the
issue of unauthorized modification of offline application data by a malicious user has to
be tracked in order to avoid unwanted effects to the server-side data.

1.3.4 Data Synchronization

During offline operation, the local enterprise application on the client machine is com-
pletely disconnected from the server. Instances of the same application may be running
on other client machines at the same time, either connected to or disconnected from the
server. Data stored locally on the client machine running in offline mode may be mod-
ified or deleted or new data may be created. Potentially, the same data entity may be
modified by multiple application clients concurrently, running either in online or offline
operation, with potential effects on the server data store5. These modifications, which
may be in conflict with others, have to be synchronized with the data on the server when
an application client is switching back to online operation. During this process, conflicts
need to be reconciled and updates have to be made available to other application clients
connected.

4Unless specified further, an application client is considered as the part of an enterprise application
which is presented to the user.

5The server data store is a persistent data store for application data objects that resides on a server
machine. This data store is used for storing data objects when running the enterprise application in
online mode. Server data store and central data store are considered to be synonyms.

3

4

Section 2

J2EE Technologies

This section intends to provide fundamental information on the Java 2 Enterprise Edition
(J2EE) and its related technologies where required for further discussion of the topic.
Additional information may be found in [Sha01], [Bod+02] and [Sin+02].

2.1 Introduction to J2EE

The Java 2 Enterprise Edition (J2EE) is a platform for developing distributed, server-
centric enterprise applications. Sun Microsystems Inc. (Sun), the provider of J2EE,
defines J2EE as

’a set of coordinated specifications and practices that together enable solutions
for developing, deploying, and managing multi-tier server-centric applications.
Building on the Java 2 Platform, Standard Edition (J2SE), J2EE adds the
capabilities necessary to provide a complete, stable, secure, and fast Java
platform to the enterprise level.’ [Sun03a]

Under the auspices of the Java Community Process (JCP), Sun and other software in-
dustry leaders unified existing and upcoming enterprise-related standards and application
programming interfaces (API) into the J2EE platform. This collection of specifications is
implemented by Sun and other product vendors in the form of J2EE application servers.
Vendor specific products completely satisfying the J2EE specification are referred to as
J2EE-compliant application servers. Enterprise applications respecting the J2EE spec-
ification and relying on the J2EE technologies specified therein are considered to be
portable across different J2EE-compliant application servers.

2.2 Enterprise Application

The term ’Enterprise Application’ is used to describe business-related applications that
consist of a server and a client part, also referred to as client-server application [Orf97]. As

5

the client part of the enterprise application has to be connected to the application server
using an appropriate communication infrastructure, enterprise applications are inherently
considered to run in online operation. In contrast, an offline enterprise application is
considered to be an enterprise application that is extended by an offline operation mode
and therefore may either run in online or offline operation. According to [Fow02], an
enterprise application generally has the following characteristics:

Multi-Tier Architecture An enterprise application is separated across multiple tiers,
where each tier manages one or more specific aspects of the application. The
architecture and design of an enterprise application is server-centric, therefore most
of the tiers reside on a server machine. Each tier may be located on a separate
physical machine or multiple tiers may be hosted on the same physical machine.

Multiple Users and Roles An enterprise application is accessed by multiple users that
may act in different application user roles. Each role has a set of privileges asso-
ciated that allows a user owning that role to perform certain operations based on
application-defined security constraints. The behaviour and appearance of the ap-
plication may differ depending on a particular user and the roles associated with
it. Additionally, multiple users collaborate in order to fulfill a business process
represented by the enterprise application.

Confidential Information An enterprise application manages and works on confiden-
tial information not intended to be accessible for the public, for example customer
data, financial information or internal company knowledge. Disclosure of this in-
formation rapidly leads to high cost and loss of reputation.

Security Constraints An enterprise application typically has strong requirements con-
cerning security. This may include the need for authentication, authorization and
data integrity1. Access to enterprise applications is often not public but restricted
to well-defined groups of users like employees, business partners or customers.

High Availability Requirements An enterprise application is often business-critical
and therefore has to be continuously up and running. In addition, an enterprise
application has to endure heavy loads of requests. Typically, already a short outage
of the application results in significant financial and/or reputational loss.

Within this document, ’enterprise application’ and ’business application’ are considered
to be synonyms. Also, when referring to ’application’, an application having multiple or
all of the characteristics of an enterprise application is meant.

2.3 J2EE Platform

The J2EE specification [Sha01] defines the architecture of the J2EE platform supporting
distributed, multi-tiered enterprise applications. A distributed, multi-tiered enterprise

1Authentication, authorization and data integrity are further described in section 2.4.1.

6

application is an application whose application logic is divided into components according
to function. The various application components are installed on different machines
depending on the tier in the multi-tiered environment to which the application component
belongs. [Bod+02]. Figure 2.1 shows the overview architecture diagram of the J2EE
platform. A description of the participating components is provided in the following
sections.

J2SE

Applet Container

Applet

J2SE

Application Client Container

Java Application

Client

J
A

A
S

J
D

B
C

Additional

Services

J2SE

Web Container

JSP

J
A

A
S

J
D

B
C

Additional

Services

Servlet

C
o
n
n

e
c
to

r

J
T

A

J2SE

EJB Container

EJB

J
A

A
S

J
D

B
C

Additional

Services

C
o
n
n

e
c
to

r

J
T

A

Database

HTTP

SSL

HTTP

SSL

RMI/IIOP

JDBC

JDBC

JDBC
RMI/IIOP

JNLP-enabled

Rich Client

Web Browser

Browser Window

HTTP

SSL

Figure 2.1: Overview of the J2EE platform architecture diagram according to [Sha01].

2.3.1 Tiers

A multi-tiered enterprise application may consist of a combination of the following tiers:

Client Tier The client tier contains components to present the graphical user interface
of the enterprise application and to manage user interaction and event handling.
The client tier resides on the client machine.

Web Tier The web tier contains web components responsible to handle parts of the pre-
sentation logic and to provide central application services like user authentication.
The web tier resides on a server machine running a J2EE-compliant application
server.

Business Tier The business tier contains components implementing the business logic
and representing business data. The business tier also resides on a server machine
running a J2EE-compliant application server. Depending on performance require-
ments, the business tier may or may not reside on the same physical server machine
as the web tier.

7

Enterprise Information System Tier (EIS Tier) The enterprise information sys-
tem tier is responsible for integrating an enterprise application with existing legacy
back-end systems and databases. This tier often resides on one or multiple server
machines distinct from the one hosting the web and business tier.

Depending on the actual enterprise application architecture, several tiers may not be
included. Figure 2.2 illustrates a possible combination of tiers and their typical allocation
on physical machines, and highlights J2EE application components residing in each tier.

Client Machine
 J2EE Server Machine
 EIS / Database Server

Machine

Client Tier
 Web Tier
 Business Tier
 EIS Tier

DB

Applet

Application

Client

JSP

Servlet

EJB

Legacy

Application

Figure 2.2: Tiers of a multi-tiered enterprise application according to [Bod+02].

Besides the concept of tiers, the J2EE platform architecture consists of multiple contain-
ers and application components. Inter alia, containers and application components are
described in [Sin+02].

2.3.2 Containers

A container is a J2EE runtime environment, supporting a subset of the specified J2EE-
related APIs for application components hosted within the container. Each container only
hosts one or several specific application components and provides standard and container-
specific J2EE services to contained application components. The following containers are
part of J2EE:

Enterprise JavaBean Container An Enterprise JavaBean (EJB) container hosts EJB
components and manages their execution and life cycle. An EJB container also
provides additional services like transaction control, persistence management and
security services to EJBs. An EJB container is server-side, running on a J2EE-
enabled server machine.

Web Container A web container provides network services for request-response based
interaction based on the HTTP(S) protocol. A web container manages the life
cycle of contained web components and dispatches service requests from connecting
clients to the requested web component. It also provides standard interfaces to
context data like session state or request properties and additional security services
like authentication and authorization. Web containers are server-side containers,
running on a J2EE-enabled server machine.

8

Application Client Container An application client container manages the execution
of Java application clients, a specific client component, and consists of a Java run-
time environment. Application client containers are client-side containers running
on the client machine.

Applet Container An applet container manages the execution of Java applets, a spe-
cific client component, and consists of a Java applet plug-in integrated into a web
browser. Applet containers are client-side containers.

Besides the container-specific services, each container provides access to other J2EE ser-
vices and communication APIs, including access to databases, custom transaction man-
agement, messaging services and legacy system connectors. A comprehensive list of
services and APIs can be found in [Sha01] and its related specifications.

As enterprise applications does not need to use every container defined by the spec-
ification, a combination of client-side and server-side containers leads to the different
architectures described in section 2.5.

2.3.3 Application Components

An application component is a single building block of an enterprise application that lives
in a specific container. Each component may only exist in one specific container. The
following application components are defined by the J2EE specification:

2.3.3.1 Client Components

Client components run on the client machine in a J2EE-capable runtime environment2

that is either an application client container or an applet container.

Java Application Client A Java application client is a user interface program that
may directly interact with an EJB component using RMI-IIOP3 or a server vendor-
specific protocol and has access to a number of J2EE services including JNDI4

or JDBC5. Java application clients may also communicate with a web component
using the HTTP(S) protocol or with a JDBC-aware database management system
using JDBC.

2A J2EE-capable runtime environment may either be realized using the Java 2 Enterprise Edition en-
vironment or the Java 2 Standard Edition environment provided by Sun Microsystems Inc. extended
by J2EE-specific libraries that implement a subset of the J2EE specification.

3RMI-IIOP is the default communication protocol for accessing EJB components within an EJB con-
tainer. All J2EE-compliant application servers must support RMI-IIOP but may also offer vendor-
specific communication protocols.

4Java Naming and Directory Interface (JNDI) is a standard extension to the Java platform, provid-
ing Java technology-enabled applications with a unified interface to multiple naming and directory
services in the enterprise [Sun99].

5Java Database Connectivity (JDBC) provides programmatic access to relational data from the Java
programming language [Ell+01].

9

Applet An applet is a Java-based client component with, by default, restricted access to
system resources on the client machine, such as the file system or the network com-
munication infrastructure. Although it may get executed locally, an applet is often
downloaded from the network and executed in a restricted runtime environment
referred to as a sandbox. An applet is typically included in a web browser with
a Java plug-in installed. Applets can communicate with web components on the
server side using the HTTP(S) protocol. By signing the applet code with a digital
certificate, the applet may leave its sandbox and may be granted access to sys-
tem resources. A signed applet may also communicate with server-side components
using RMI-IIOP or JDBC.

JNLP-enabled Rich Client A JNLP6-enabled rich client is a standalone client com-
ponent based on a full-featured, rich graphical user interface that is made available
through JNLP for download from a J2EE server and runs directly in a Java runtime
environment on the client. Similar to an applet, a JNLP-featured rich client is per
default executed in a restricted environment, but may get access to system resources
by signing the client code using a digital certificate. Thereon, a JNLP-featured rich
client may use different communication protocols besides HTTP(S).

Web browsers displaying a J2EE web application with a HTML front end are not consid-
ered to be a J2EE application component in the narrower sense, since no Java runtime
environment is required on the client machine and no J2EE client component is involved.
Nevertheless, browsers are widely used together with J2EE web applications on the client
side.

2.3.3.2 Web Components

Web components run inside a web container and provide responses to client HTTP re-
quests. Within the J2EE context, web components are typically used to manage the
presentation logic, to generate a web browser-based user interface and to provide security
related services for web-based applications. The J2EE platform includes specifications
for the following web component technologies:

Servlet A Servlet is a Java-based web component that runs within a web container
and generates dynamic content. Servlets may also implement parts of the business
logic. Servlets are able to communication over HTTP(S) with a client component.
[Cow01]

JavaServer Page A JavaServer Page (JSP) is a text-based web component to create
dynamic content. In contrast to Servlets, the JSP technology provides a more
natural approach to creating static content and allows the proper detachment of
application logic from the presentation-related code. JSPs are built on the Servlet
technology. [Pel53]

6The Java Network Launching Protocol (JNLP) is specified in [Sch01] and summarized in section 2.7.

10

2.3.3.3 Enterprise JavaBean Components

Enterprise JavaBeans, also referred to as EJBs or Enterprise Beans, are server-side com-
ponents implementing application business logic or representing business data objects.
EJBs run within an EJB container and thus provide, in cooperation with the container,
additional services like transaction control, concurrency control, multi-user security, and
persistence. The EJB specification [Dem+01], part of the J2EE specification, describes
three types of EJBs:

Session Bean A Session Bean typically contains business logic and is executed on behalf
of a single client. Session Beans do not directly represent application data, but may
access and manipulate such data. Session Beans exist in two variants: stateless and
stateful. Stateless Session Beans are used for relatively short-lived operations where
no session state is required. In contrast, stateful Session Beans are able to retain
session state between subsequent calls of Session Bean methods.

Entity Bean An Entity Bean represents one or multiple business objects that are re-
quired to be held in a persistent manner. Persistence can be realized using the per-
sistence mechanism of the EJB container (Container Managed Persistence, CMP)
or using an object-specific mechanism implemented by the Entity Bean (Bean Man-
aged Persistence, BMP). Entity Beans are shared between multiple users and are
long-lived, surviving an EJB container crash.

Message-Driven Bean A Message-drive Bean is conceptually similar to a Session Bean,
but is only executed upon receipt of a single client message. Message-driven Beans
are stateless and are invoked asynchronously.

Enterprise Beans may offer their functionality to remote clients (either other EJB com-
ponents, web components or client components) using remote interfaces. This technology
allows the remote caller to use the same API as for local calls.

2.4 J2EE Security

The J2EE specification describes the J2EE security architecture in respect to the security
requirements of enterprise applications. In its fullest details, this security architecture is
specified and discussed in [Sha01]. This section limits itself to the vital aspects regarding
security requirements for offline operation.

2.4.1 Security Concepts

Inter alia, [Sha01] mentions the following security concepts relevant in the context of
enterprise applications:

11

Authentication is the process of verifying an identity claimed by or for a system entity
[Shi00]. This entity may be a user, an internal application component or an external
application. Authentication is achieved by requesting a credential that proves the
identity of the entity. A credential may, for example, consist of a username and a
password, a fingerprint or a digital certificate.

Authorization is the process of granting privileges to access particular protected re-
sources [Shi00]. Authorization is typically based on authentication since, during
authorization, an authenticated entity is associated with a set of privileges based
on the identity provided that are later on compared to a set of required privileges in
order to access a particular resource. The appropriate use of authorization within
an enterprise application is crucial to ensure data confidentiality.

Data Integrity is the property that information has not been modified or destroyed in
an unauthorized manner [Shi00]. Data integrity may be achieved by accompanying
a data object with a checksum representing a snapshot of the current state of the
data object. This checksum has to be fragile in a manner that changes in the state
of a data object result in different checksum. An example is a digital signature that
signs an object using a digital certificate. Data integrity becomes important when
transferring data across networks and when reading data from a persistent store.

In enterprise applications, these security aspects are typically covered by the combina-
tion of infrastructure features, application-specific security implementations and organi-
zational measures.

2.4.2 Authentication Model

Depending on the security level configured for a particular enterprise application and its
components, a connecting client requesting access to a particular protected resource may
be urged to authenticate itself with the resource or its enclosing container, respectively.
A client may either be a human user, a J2EE component within the same or a different
container or an external application. Authentication of a caller is a condition precedent to
authentication. As J2EE containers only request authentication when it is first required,
the concept of authentication is referred to as lazy authentication.

Since its specification version 1.3, J2EE includes support for the Java Authentication and
Authorization Service (JAAS)7 that, inter alia, specifies a common, flexible mechanism
for authenticating and authorizing users. Based on JAAS, an enterprise application may
individually configure a specific authentication procedure and the authentication data
source using pluggable authentication modules.

2.4.3 Role-based Authorization Model

As the fundamental security model for authorization, J2EE specifies a role-based autho-
rization model. A security role is a logical grouping of users indicating that the users in

7JAAS is further described in section 2.6 and in [Lai+99].

12

that specific security role have a particular attribute in common. The assignment of users
to specific security roles is done by an administrative instance, either a security system
or an application administrator. A single user may participate in multiple security roles.
Security services implemented by the web and EJB container use the concept of security
roles in order to authorize a user requesting access to a specific resource. Each resource
to be protected has one or multiple security roles specified that a requesting user must
be assigned to in order to get access to this resource.

J2EE provides two mechanisms for the declaration of security requirements for resources:

Declarative Security The approach for declarative security allows the configuration of
security requirements to access data objects or call methods in an artefact separated
from the enterprise application code, referred to as deployment descriptor. Therein,
the security requirements for each entity, for example an EJB or a web component,
may be described using a J2EE-defined syntax. The respective container hosting
the protected resource enforces the security constraints defined in the deployment
descriptor.

Programmatic Security Security requirements may also be directly programmed into
a particular entity to be protected. For this purpose, J2EE defines constructs
to get information about the request initiator and the security roles assigned to it.
Whereas hard-coded security requirements are not as easy to maintain as separately
declared security requirements, programmatic security allows finer grained access
control based on application-specific rules and object states.

These two approaches for declaring security requirements are not mutually exclusive
but may be combined in order to achieve the level of security required for a particular
enterprise application scenario.

2.5 J2EE Architectures

The various characteristics of enterprise applications related to functionality and design
result in different architectural requirements. As a general platform for enterprise appli-
cations, J2EE does not offer a single standard architecture but a variety of components
and containers able to integrate with each other. These components can be combined
into several application architectures depending on the needs of a particular enterprise
application.

2.5.1 Web-centric vs. EJB-centric Architectures

In most architectural scenarios, the server side may contain both a web container and an
EJB container. Two different approaches exist regarding the allocation of business logic
and data between the two containers [Sin+02]:

13

Web-centric Approach In a web-centric scenario, the web container is responsible for
the complete application logic and data management. The web container handles
content generation, presentation and user request handling. It also implements the
core application logic, enforces business rules and manages business objects. The
web container must also manage transactional requirements and connection pooling
for persistent data access. A web-centric approach may be useful for small-sized
applications with few transactional requirements but may easily lead to complex,
monolithic applications. Whereas a strict web-centric architecture abandons an
EJB container, a lesser web-centric approach may use EJB components for encap-
sulating persistent data objects as Entity Beans.

EJB-centric Approach In an EJB-centric application scenario, the core application
logic and business object management are implemented in the EJB container. Busi-
ness logic is implemented using Session Beans and persistent data is encapsulated
in Entity Beans. Web components communicate with EJB components instead of
directly accessing data resources in the database management system. Since the
EJB container offers multiple container-specific services such as transaction control
and security enforcement, the enterprise application itself is not required to attend
to these points. An EJB-centric architecture also eases the reuse of application
logic and data from multiple client components, for example a Java application
client communicating directly with the EJB container and a web application client
sending requests to the web container. Within an EJB-centric approach, a web
container may be used to delegate HTTP(S) client requests to EJB components
implementing the required business logic and thus integrates the HTTP(S) proto-
col with the EJB technology.

2.5.2 Architecture for Fat Client Applications

Client Machine
 Database Server

Machine

Fat Client

Business Logic
 Business Objects
Presentation Logic

JDBC

Persistent Data

Data

Figure 2.3: Architecture overview for a fat client application.

A fat client application consists of a heavyweight application client, completely handling
presentation, event handling, application logic and business object management. The
client component is either realized as a Java application client, a JNLP-enabled appli-
cation client or, differing from the J2EE architecture blueprint8, as an applet client.
The server part of a fat client application typically consists of a JDBC-aware database

8The J2EE architecture blueprint does not explicitly mention JDBC and other service support for
applet clients. Nevertheless, if an applet client is signed by a digital certificate, it may gain access
to JDBC and other services.

14

management system, but does not offer a J2EE runtime environment. The fat client
communicates with the data store on the server machine using the JDBC protocol and
is responsible for reading persisted object states from and writing them to the database.
This type of architecture is the most client-centric one, since the complete functionality
except data persistence is situated on the client machine, but still represents a client-
server based architecture.

Figure 2.3 highlights the building blocks of a fat client application and their allocation
on the client and server machine. Although this enterprise application architecture does
not rely on and does not benefit from the J2EE server-side components and containers,
it represents a legitimate architecture variant within the J2EE architecture blueprint.

2.5.3 Architecture for Rich Client Applications

A rich client application is an enterprise application using either a Java application client,
a JNLP-enabled rich client or an applet client as J2EE client component on the client
machine. Figure 2.4 shows the schematic architecture of a rich client application.

Client Machine
 J2EE Server Machine
 Database Server

Machine

Application Client
 EJB Container

RMI/IIOP

Business Logic
 Business Objects
Presentation Logic

JDBC

Persistent Data

Data

Figure 2.4: Architecture for a rich client application.

The client component contains the presentation logic used to display a rich graphical
user interface and to manage user interaction on the client side. The server part of the
enterprise application consists of the business logic and the business object management
in the form of Enterprise JavaBean components. These EJB components are hosted
within an EJB container on the server machine running a J2EE-compliant application
server. The business logic part is typically implemented as a collection of Session Beans,
either stateful or stateless, that works on the business objects implemented as Entity
Beans. Message-driven Beans may be part of the business logic as well. The Entity
Beans are made persistent using a database management system that may or may not
reside on the same physical machine as the J2EE application server.

The application client communicates with the EJB components on the server side using
RMI-IIOP or a vendor-specific communication protocol. If the application client has to
use HTTP(S) as communication protocol, the server side of the enterprise application
has to be extended with an appropriate Servlet component residing in a web container,
that is able, at least, to listen to application client HTTP(S) requests and to propagate
them to the corresponding Session Bean implementing the part of the business logic to
be activated. Communication over HTTP(S) may, for example, be required because of
firewall-related issues. Most firewall configurations allow communication using HTTP(S)

15

between the client and the server machine. Introducing a web container may also be useful
if the enterprise application has to support multiple client platforms and devices, such as
notebooks, personal digital assistants or mobile phones, as the HTTP(S) protocol is often
an established common denominator. The actual allocation of business logic between the
web and EJB tier is application-specific and depends on whether a more web-centric or
more EJB-centric approach is used.

For rich client architectures, authentication data is requested from the user by the ap-
plication client, either on application startup or on-demand using lazy authentication.
The authentication data gathered is typically transferred to the server in order to verify
the credentials. Authorization occurs on the server side, at every access request to a
protected resource.

2.5.4 Architecture for Web Applications

A web application consists mainly of server-side parts and uses a generic presentation
engine, referred to as web browser, to display the graphical user interface on the client
machine. The server part of the enterprise application contains all the presentation logic,
the business logic implementing the business services, the business objects and their per-
sistence system. As defined by J2EE, a web application architecture requires a web con-
tainer, an EJB container and a database management system. The web container hosts
multiple JSP and Servlet components that implement the presentation logic. Addition-
ally, web components may be used to implement global services such as request filtering
or authentication. Behind the web components, several EJB components implement the
business logic and represent business objects. Figure 2.5 illustrates the architecture for
web applications with the participating J2EE containers and components on the server
side. A completely web-centric architecture for web applications does not include an EJB
container and manages business logic and objects within the web container. Additionally,
the database server machine may be replaced by an alternative mechanism for persisting
business objects.

Client Machine
 J2EE Server Machine
 Database Server

Machine

Web Browser
 EJB Container

Business Logic
 Business Objects

JDBC

Persistent Data

Data

Web Container

Presentation Logic
Presentation

Engine

HTTP / SSL

Figure 2.5: Architecture for web applications.

A web application uses a request-response-model for communication between the client
and the server side. The web browser requests services on the server side using the
HTTP(S) protocol and receives an appropriate response in form of HTML9, XML10 or

9The Hypertext Markup Language (HTML) is the standard technology for publishing hypertext on
the World Wide Web [HWG03].

10The Extensible Markup Language (XML) is a markup language for structuring and exchanging
arbitrary data [Bra+00].

16

in another markup language. The web browser parses the response and renders, based
on the response information, the graphical user interface. The web browser also captures
user inputs and interaction events and transfers them, by creating a new request, to the
server machine.

2.6 Java Authentication and Authorization Service

The Java Authentication and Authorization Service (JAAS) described in [Lai+99] extends
the standard Java 2 security architecture specified in [Gon98] by a pluggable authenti-
cation mechanism and subject-based authorization. JAAS is an integrated part of the
J2EE specification since version 1.3 and must be supported by J2EE-compliant applica-
tion servers. While the authorization extension provides the possibility to control access
to protected resources based on the caller’s identity and its privileges, the pluggable au-
thentication mechanisms allows applications to remain independent from the underlying
authentication technologies actually used to authenticate a specific user. Each application
relies on a JAAS configuration file describing which login modules have to be called in
order to authenticate a user. During the authentication process, the JAAS login context
subsequently requests each login module specified to authenticate the user, for example
based on username and password combinations or by reading the users fingerprint from a
biometric device. The authentication method is completely encapsulated within the par-
ticular login module. The JAAS configuration also determines the rules for evaluating the
overall success or failure of the authentication attempt based on the individual results of
each login module. Each login module may associate the authenticating user, represented
by the JAAS Subject class, with one or multiple principals. A principal is similar to a
security role described in section 2.4.3. The associated set of principals may be used for
further authorization. Figure 2.6 illustrates the core elements of JAAS participating in
the processing of an authentication request.

Login Context

JAAS Configuration

 Module A

 Module B

 Module C

Login Module A

Login Module C

Login Module B

Subject

Principal 1

...

Principal N

add principal

add principal

add principal

read context configuration

Data

Data

Data

authenticate

authenticate

authenticate

Success
 Failure

Authentication

Request

User Credentials

create

Figure 2.6: Schematic processing of an authentication request using JAAS.

17

2.7 Java Network and Launching Protocol

The Java Network and Launching Protocol (JNLP) specified in [Sch01] is a network
deployment and launching protocol conceptually allowing the local execution of an ap-
plication whose code base resides on the network. JNLP specifies a restricted execution
environment for running applications downloaded from the network. A configuration file,
referred to as JNLP file, contains the location of all application components packed as
JAR11 files and made available on a web server accessible through the HTTP(S) proto-
col. Before executing a JNLP-featured application, the JAR files specified in the JNLP
file are downloaded and cached locally. Thereon, the application is started within the
JNLP runtime environment. JNLP also supports the incremental download of updated
application components and offers several services to access the surrounding environ-
ment, such as storing data and libraries locally or launching the web browser. JNLP
specifies offline support for downloaded applications, meaning that already downloaded
applications may get executed relying on the locally cached application components if no
network connection to the location of the code base specified in the JNLP file is avail-
able. The JNLP-specified offline support is not equal to offline operation of an enterprise
application as no application-specific, offline-related issues are respected.

11The Java Archive format is a platform-independent format that aggregates multiple files into one
and that supports file compression. In addition, a JAR file can be digitally signed using a certificate
in order to authenticate its origin.

18

Section 3

Use Cases for Offline Operation

This section shows a number of use cases where offline operation of an enterprise appli-
cation may be reasonable. Each use case highlights different aspects of offline operation
that are, besides others, discussed in the upcoming sections.

3.1 Company Information System

Consider an information system in a company’s intranet containing internal information
such as employee’s guide, internal phone book or expense regulations. This information
system is accessible for each employee logged into the intranet. Furthermore, employees
are able to download information they regularly access onto their notebook for offline
access when disconnected from the intranet, for example when travelling or for work at
home. Since the amount of data in a company-wide information system can potentially
be huge, an adequate mechanism for specifying which parts of the information system
should be made available in offline operation is required.

Most employees have read-only access to data. This means that these employees are not
allowed to add, modify or remove data that is part of the information system. Other
employees in the role of content editors may be responsible for updating specific parts of
the information system. Since the data stored locally on the employee’s notebook may
become out-of-date, a regularly refresh of this data is required. When an employee logs
into the company’s intranet, the locally stored version is compared to the information
system server’s content and modifications are synchronized between the two data stores.
In this use case, conflicts will rarely occur under the presumption that for a specific
content, only one content editor is defined at a time. As each element of data is associated
with one specific author able to modify it, data is herein referred to as partitioned.

Offline-related aspects covered by this use case scenario are:

� local storage of selective application data

� refreshing locally stored data with updated data from the server storage

� transition to offline mode on demand

19

3.2 Expense Management

Companies often use an electronic tool to manage an employee’s expenses like customer
calls, seminars or business trips in order to refund the correct amount with the next wage
payment. Basically, employees add new expense records to the expense management tool
whereon their manager has to revise and approve the expense claim. Managers may also
have access to summaries, reports and charts on the expenses of their subordinates. It
may be interesting for travelling employees to be able to record expenses as they accrue
during the journey, for example back in the hotel in the evening. Managers may want to
use their time between customer meetings or during flights to revise and approve expense
records created by their subordinates. At this time, a connection to the company’s
network may not be possible. Therefore such an application needs to be offline-capable
and provide selective application features even when disconnected from the network.

While connected to the company’s network, an employee or manager may decide to take
expense records and employee data offline in order to work on that data when discon-
nected. During the offline work, existing data is modified and new expense records are
expected to be created. On the next reconnect to the network, the modifications are
propagated to the server’s data store whereon potential conflicts are reconciled. Con-
flicts are possible since both an employee and its manager are able to modify the same
expense record, for example if the employee increases the expense amount and the man-
ager approves the previous stored expense record with the lower amount. Also, certain
functionalities may not be useful in offline operation such as generating reports where a
large amount of data is required.

Additionally to the aspects already mentioned, this scenario highlights the following
aspects concerning offline operation of an enterprise application:

� synchronization of locally stored data with the application data on the central server

� potential synchronization conflicts resulting from concurrent modifications

� reduced set of application functionality in offline operation due to performance
reasons

3.3 High Availability Solution for Front End Systems

Ticket agencies often use front end systems to sell tickets for stage performances, cinema
shows and concerts. Customers may call the ticket agency and order several tickets for
one of the events advertised by the agency. The ticket agency books, prints and ships
the tickets to the requesting customer. Customers may pay their tickets by credit card
or invoice. The front end system for ticket ordering relies on a central application server
that persists events, ticket bookings, and customer addresses and manages credit card
transactions. The application server must be dimensioned for high loads since newly
advertised events may result in a run on tickets. A service interruption caused by a

20

server failure or a communication problem between the server and the front end system
potentially leads to a blackout of the ticket ordering system, to unpleased customers and
financial loss.

Providing the front end system with an offline-capable application may bypass or ease
such critical situations resulting from system failures. Each client machine that runs
the front end system holds information on advertised events, parts of the customer data
and a particular contingent of free tickets for each event in a local storage. If the server
fails or is not available because of communication problems, the front end system uses
the locally stored data to satisfy customer requests. As soon as the application server
is available again, the transactions completed in offline operation are propagated to the
server and reflected in the central data storage on the server machine. Since such service
interruptions are not predictable in most instances, the front end system always has to
be prepared for a transition to offline operation and thus, regularly has to synchronize
modified data between the client and the server machine. In addition, the offline-capable
application has to make sure that no ticket is sold twice and therefore, each client machine
may store an exclusive set of tickets that are up for sale during offline operation. Due to
the lack of coordination between multiple client machines in offline operation, a particular
client may run out of tickets while others still may have free tickets for sale. Security
constraints may prohibit to sell tickets by credit card in offline operation since the server
is required to check the credit card validity. Application functionality that is less critical
regarding calling customers, such as adding new events to the ticket ordering system or
creating statistics on ticket sales, may be provided in online operation only.

Additional offline-related aspects resulting from this scenario are:

� transparent management of the operation mode

� switch to offline operation based on unexpected events and failures

� reduced set of application functionality in offline operation due to security and
business constraints

� offline operation for a limited period of time during server problems

21

22

Section 4

Offline Operation

After specifying the term ’offline operation’, this section discusses the key aspects of
operating an enterprise application both in online and offline mode.

Offline operation describes the operation of an enterprise application disconnected from
one or more application servers running on other physical machines. This thesis assumes
that an application in offline mode runs completely on one physical machine, referred
to as the client machine, and without usage of the networking infrastructure outside the
client machine. Additionally, this work presumes that an enterprise application capable of
running in offline mode also supports an online operation mode. Online operation is the
operation mode of an enterprise application where the application client is permanently
connected to one or more central server machines. These servers are typically responsible
for implementing the largest part of the application logic and data while the application
client may manage presentation logic and user input control. The term ’offline mode’
describes the execution mode of an enterprise application that runs in offline operation.
Equivalently, ’online mode’ describes the mode an enterprise application runs in during
online operation.

4.1 Operation Sequence

Enterprise applications capable of offline operation typically do not run permanently
in offline mode. In fact, an enterprise application runs largely in online mode when a
connection to the application server and the application server itself is available, and
switches to offline mode only if either the server or the connection is unavailable. This
leads to the typical sequence of operation that contains phases of online operation, phases
of offline operation and phases of switching between both modes, as shown in figure 4.1.

Consider an employee working in the office with the company-wide calendar application
running in online mode, where modifications to appointments are immediately applied to
the calendar data store on the server. Before leaving the office, the employee decides to
synchronize parts of the calendar application and appointment data onto the notebook

23

Online Operation
 Offline Operation

working in

online mode

switch to offline operation

working in

offline mode

switch to online operation

working in

online mode

online

session

online

session

offline

session

Figure 4.1: A typical operation sequence for online and offline operation.

in order to continue working at home where no connectivity to the company network is
available. At home, working in offline operation, the employee creates new appointments,
and moves and deletes others. The next morning, back at the office and connected to
the network, the employee synchronizes the changes done to the local calendar on the
notebook in offline operation with the calendar data on the application server before
continuing working in online mode.

The term ’offline session’ describes the time an enterprise application is running in offline
operation. An offline session starts, when the enterprise application switches from online
to offline operation or when it is initially started in offline operation, and ends when
the enterprise application switches back to online operation the next time. During an
offline session, the offline application client may be terminated and later restarted again.
Similarly, ’online session’ denotes the time an application runs in online operation.

4.2 Operation Mode Transition

An operation mode transition describes a switch from online operation to offline operation
or vice versa. During this action, several tasks have to be accomplished in order to
prepare the enterprise application for the new operation mode. These tasks depend on
the direction of the transition.

During the operation mode transition, user interaction may be required in order to specify
which data has to be downloaded for offline operation or to resolve conflicting data
modifications. This is highly application-specific. It is possible to design an enterprise
application where either no user interaction is required at all and the current operation
mode is completely transparent to the user, or the follow a scenario where all decisions
related to the operation mode transition are delegated to the user. Also, the point of
time, at which the transition to a different operation mode is initiated, may differ from
one scenario to another.

24

4.2.1 Transition to Offline Operation

When switching from online operation to offline operation, the following general tasks
must at least be included in the procedure:

� download and install application functionality and potential infrastructure prereq-
uisites for offline operation, as needed

� download the required application data to a local data store1 on the client machine

� disconnect from the server and start the offline application client, either by putting
the running application client into its offline mode or by starting a dedicated offline
application client

� authenticate the user for offline operation, if required

Depending on the enterprise application design and architecture, several steps may be
simplified since the offline application client may not differ from the online application
client and therefore already resides on the client machine. But at least the source for
application data has to be switched to a local data store since the server as host for
central application data will not be available in offline operation. After changing to
offline operation, the application needs to be able to run autarkic on the client machine.

4.2.2 Transition to Online Operation

When switching from offline operation back to online operation, following steps have do
be performed:

� start the online application client, either by putting the running application client
into its online mode or by starting a dedicated online application client, and recon-
nect to the server

� authenticate the user for online operation

� synchronize data modified or created in offline operation with the data on the server
and reconcile potential conflicts resulting from concurrent data modifications

In turn, if the application client is identical for both online and offline operation and is not
required to be terminated and restarted again during the operation mode transition, the
sequence of switching back to online operation may happen more silently from the user’s
point of view. Generally, it may be useful to initiate a synchronization process when
switching from offline to online operation in order to ensure data consistency between
the local and server data store.

1A local data store is a persistent store for application data objects that resides on the client machine.
The local data store contains application data objects required for offline operation.

25

4.3 Application Configuration

Besides the typical operation sequence described in 4.1, an enterprise application may run
in different application configurations regarding its offline operation handling. Comparing
two of the use cases described in section 3, use case ’Company Information System’ and
use case ’High Availability Solution for Front End Systems’, the requirements for the
offline operation are different: in the information system scenario, there is a predefined,
predictable transition between the offline and the online mode that allows the system
to undertake the necessary steps to prepare the offline operation on demand, whereas in
the failover scenario, the system has to be prepared for an unforseen switch caused by a
system or network failure. Within this thesis, the following two application configurations
are distinguished:

4.3.1 ’On-Demand’ Configuration

The on-demand configuration describes a mode where an enterprise application changes
to offline operation only on clearly specified actions typically triggered by the user. If
one of these actions is triggered, the application undertakes the necessary steps to switch
to offline operation. It is assumed that there is enough time to perform these tasks just
after initiation of the operation mode switch and that the server machine is available
for synchronization during the transition sequence. During the actual transition to the
offline mode, the application may be blocked, disallowing the user to perform other tasks
or the transition tasks may be performed transparently in the background. It is also
possible to start a dedicated offline application client when switching to offline operation.

The on-demand configuration maximally divides the online operation from the offline
operation since during online operation, no special offline-related considerations are re-
quired. As all offline- and transition-related tasks are performed at user request, no
preparation concerning offline availability of application logic and data during online op-
eration is necessary. On the other hand, the on-demand configuration does not allow the
enterprise application to handle unexpected interruptions of the server-side application
services or communication infrastructure.

4.3.2 ’Be-Prepared’ Configuration

The be-prepared configuration is used in a scenario where the transition between online
and offline operation is triggered by an action of which both the user and the application
are unaware or which is not predictable, for example an underlying system failure or com-
munication problem. Therefore, the application has to be permanently in a state where
a transition to offline operation is possible without major interruption to the service.
In order to achieve this, an enterprise application has to take appropriate preparations
during normal online operation. All data required for offline operation must be syn-
chronized periodically with the local data store on the client machine. Additionally, the

26

be-prepared configuration requires the application to perform these preparations trans-
parently for the user, without significant impact on the normal operation. Enterprise
applications running with the be-prepared configuration may not offer the possibility to
switch to offline operation on demand since this configuration may be used to hide all
operation mode specific issues from the application user. If the transition between online
and offline operation has to be totally transparent to the user, the application client has
to be reused for online and offline operation. This prohibits the start of a dedicated
offline application client for offline operation.

The be-prepared configuration requires the online operation to be engaged in offline-
related issues like offline data availability or synchronization in order to enable a trans-
parent, unexpected transition to offline operation. This interlocks the online and offline
operation and complicates a clear isolation of the two operation modes.

4.4 Local Data Management

Since an enterprise application running in offline operation has no access to the data
store residing on the server machine, a data store on the client machine is required. This
local data store contains all persistent application data accessed, created or modified by
the enterprise application during offline operation. Besides data synchronization issues
described in section 4.6, the following two aspects are important when storing data locally
on a client machine.

4.4.1 Local Data Store Implementation

The implementation of the local data store defines how data is actually stored and held
persistent on the client machine. In comparison to server environments where enterprise
application data is almost solely made persistent in large database systems built for
scalability and performance, the realization of local data stores on a client machine may be
simplified. Since the amount of data stored locally should be minimized and is potentially
small related to the amount of application data stored on the server and the number of
concurrent accesses is potentially low, the local data store may be implemented based on
files or using a lightweight database system. In specialized scenarios, an offline operation
without local data persistence is conceivable, if all data is transiently held in memory
while working in offline operation and not persisted until the application switches back
to online operation. Although this prohibits the offline application client from being
terminated and restarted during an offline session, a number of security-related issues
with locally stored data may be avoided.

4.4.2 Security Aspects of Local Data Management

As described in section 2.2, data of enterprise applications is often confidential and re-
quires special protection against unauthorized access and modification. This is especially

27

critical when storing data locally on a client machine in order to enable offline operation.
Data stored on the client machine is no longer controlled by a potentially well-secured
server machine that ruthlessly enforces company- and application-specific security con-
straints. Not only may it be possible for users with corresponding system privileges to
access or modify data outside of the application, the client machine may also get compro-
mised by an internal or external attacker. The relevance of securing the local data store
is increased by the fact that offline operation is typically used to run an application when
the user is travelling around and thus, the client machine is mostly a portable device such
as a notebook or personal digital assistant, that may get physically lost.

The security level claimed for a specific enterprise application may require the application
data to be encrypted prior to be persisted in the local data store. In addition, assuring
integrity of locally stored application data may require the use of digital signatures.
Both approaches, encryption and digital signatures, require an appropriate certificate and
key management infrastructure2 and may lead to further issues related to distribution
and storage of private keys. In other scenarios, the only acceptable solution may be
to completely avoid persisting data on the client machine using a transient data store.
Security of locally stored application data may depend on security measures that are
beyond the scope of a particular offline-capable enterprise application, such as restricting
access to the client machine for authorized users only. The level of security required
significantly influences the complexity and measures of storing data locally and may
restrict or even prohibit offline operation.

4.5 Offline Data

The actual amount of application data required to be available in offline mode is highly
application-specific and may also be user-specific. Depending on the application func-
tionality provided in offline operation, more or less application data has to be stored
locally. One may also consider a scenario where a user is able to configure which data
has to be accessible in offline operation, for example in a calendar application where each
user may choose which appointments within which time interval have to be downloaded
to and stored in the local data store. Additionally, a particular user may only have access
to a subset of data stored in the server data store, based on the privileges associated with
that user. Also, the amount of data within the server data store may be huge and may
exceed the client machine’s storage space. This leads to the insight that a local data store
is, in general, not a simple mirror copy of the central server data store but includes only
selective parts of it. An appropriate mechanism to specify collections of offline-available
data is required. The following two approaches are possible:

Explicit Collection The data to be made available for offline operation may be ex-
plicitly enumerated in a list containing the unique identifiers of the specific data
objects. This collection may be specified globally for all users or may be stored

2[Ken+03] describes a public key infrastructure (PKI) that supports certificates for encryption and
digital signatures.

28

together with the users profile. A combination of both is possible. The explicit
collection approach seems reasonable if a relatively small number of data objects
are required to be available offline and if this collection is highly static. Explicit
collections maintain an explicit reference to each object contained and thus are
aware of their content.

Implicit Collection If the number of offline-required data objects is potentially large
or the collection is highly dynamic, an implicit collection may be more adequate.
Implicit collection denotes the description of objects to be stored offline by means
of specific attributes or conditions. Each data object in the server data store having
these attributes or fulfilling the conditions specified belongs to the implicit collec-
tion. The contents of a specific implicit collection depends on the current state of
the server data store. Some data objects included in the collection at one moment
of time may be excluded from the collection after they have been modified and
thus, no longer have all required attributes or fulfill the conditions. Others may
satisfy the conditions or get the required attributes after being modified. Implicit
collections may not mandatorily maintain a reference to each object possessing an
attribute or fulfilling the conditions, but may only define these restrictions. The
contents of the explicit collection may be calculated lazily by checking the declared
conditions against each object within the data store. This is similar to a filtering
concept.

Application Server
Application Client

Offline Data Store

Server Data Store

Collection B

Collection C

Collection A

Figure 4.2: Accumulation of data objects in collections.

Figure 4.2 illustrates the concept of data collections specifying a subset of data stored
on the server machine. Each collection ’Collection A’, ’Collection B’ and ’Collection C’
contains multiple data objects from the server data store that have to be stored in the
local data store on the client machine. The content of each collection may either be
defined implicitly or explicitly. The content of two collections are not mutually exclusive.

4.6 Data Synchronization

In general, locally stored data may be modified by the enterprise application running in
offline mode, even though in specific scenarios, locally stored data may be accessible read-
only. During a single offline session, modifications of existing data objects and creation

29

of new objects are only reflected on the local data store. Since only one application
client instance accesses this local data store, conflicts are not expected to occur, whereas
conflicts are possible when synchronizing the changes in the local data store with the
central data store on the server. The process of harmonizing data residing on the client
machine with the one stored on the server machine and merging data modifications into
existing data is referred to as data synchronization or synchronization in short.

4.6.1 General Requirements

Regarding the usage of synchronization for reconciling application data between local
data stores and the server data store, the following requirements may be postulated:

� The synchronization has to synchronize a local data store on a client machine with
a central data store on the server machine. The central server data store is always
one of the participating data stores in a synchronization process. There is no need
for peer-to-peer synchronization between two local data stores on different client
machines.

� The synchronization process must be able to detect conflicting modifications and
must have a mechanism to reconcile these conflicts in order to get the two data
stores in a consistent state.

� Potential conflicts that arise during the synchronization have to be resolved applica-
tion-specific, and not based on a general reconciliation strategy. Each type of object
may require an individual reconciliation strategy in order to maintain consistency
and integrity.

� The synchronization process has to be efficient and optimized for short synchro-
nization times and small data transfer amounts. Only required changes have to be
exchanged between the two stores. This may inter alia be required to support the
’be-prepared’-configuration described in 4.3.2 where the synchronization process
may be initiated frequently and in parallel to the normal application operation.

� The synchronization process has to allow the synchronization of only a subset of
data objects, a specific data collection. This is referred to as selective synchroniza-
tion.

� A failure occurring during the synchronization process should not corrupt the data
consistency of one of the participating stores. A failed attempt of synchronization
that is later restarted and completes successfully has to lead to the same state as
if it had never failed.

� The synchronization mechanism has to be independent from a specific enterprise
application architecture or communication protocol. It must be adaptable to a
specific application scenario and to the communication infrastructure used.

30

� The synchronization of data must not conflict with a potentially existing application
security policy3. Data synchronization between two stores should not allow a user
to modify an object in a way that is prohibited by the application security policy.

� Creations of and modifications to business objects synchronized between two data
stores have to be propagated to the corresponding synchronization partner in the
exact same order as they occur on the local machine.

Depending on the specific enterprise application scenario, new requirements may arise as
well as some of the requirements described above may become obsolete.

4.6.2 Basic Synchronization Process

Data Store A
 Data Store B

create list

of updated objects

send updates

merge updates to

local content and

reconcile conflicts

create list

of updated objects

send updates

apply updates

to local content

Figure 4.3: Protocol of a basic synchronization process.

Among the wide range of existing synchronization protocols [Syn02], [Coh03], a sequence
of process steps are commonly used. Figure 4.3 illustrates the protocol of basic synchro-
nization process. During the synchronization of two data stores, store A and store B,
store A sends all updates made to its content4 to store B in order to merge these mod-
ifications with existing data and to apply them to the contents of store B. Conflicts are
reconciled on the machine hosting store B. Thereon, store B sends all updates including
the one resulting from the applied updates received from store A back to store A. From
the point of view of store A, store B is referred to as replica data store and vice versa.
A replica data store is the corresponding data store for a local data store on another
machine, either a client or a server machine, with whom that local data store is synchro-
nized. After a complete synchronization process, both store A and store B have the same
state and are considered to be consistent or ’in sync’.

3A security policy is a set of rules and practices that specify or regulate how a system or organization
provides security services to protect sensitive and critical system resources [Shi00]. An application
security policy is a security policy valid for a specific application.

4The content of a data store is the sum of all currently contained data objects.

31

4.6.3 Object States

In order to be able to generate a list of created, modified or deleted objects that need to be
synchronized with the synchronization replica, each data store has to keep track of data
modifications and to maintain state information for each contained object. Independently
from specific state tracking mechanisms, an object existing in a data store may be in one
of the following states:

CLEAR The state ’CLEAR’ describes an object that has not changed since the last
synchronization with the replica data store.

ADDED The state ’ADDED’ describes an object that has been newly added to the
local data store and does not yet exist in the replica data store.

MODIFIED The state ’MODIFIED’ describes an object that has been modified in the
local data store since the last synchronization with the replica data store.

DELETED The state ’DELETED’ describes an object that has been deleted in the
local data store since the last synchronization with the replica data store.

Depending on the particular implementation of the tracking and synchronization mecha-
nism, the state ’ADDED’ may be reflected by the ’MODIFIED’ state in order to reduce
the number of distinct states and state combinations. Additionally, the specific mech-
anism used by a data store to track the state of each object may differ from one data
store implementation to another. While one implementation may flag each object directly
with the appropriate state whenever an action on an object is applied, another may use a
history of actions applied to each object and derives the current state of a specific object
from the update history. Also, the state information may be included directly in the data
object or may be held externally using a separate mechanism.

4.6.4 Conflict Detection and Reconciliation

During the process of synchronizing two data stores, conflicts may occur if the same data
object has been modified in both participating stores independently. Conflicts may be
detected by comparison of the state information of the two objects. The resolution of
a conflict is called reconciliation and is always performed on the data store receiving
updates from another data store.

Figure 4.4 illustrates possible combinations of the states of two object versions originating
from two different data stores that participate in a synchronization process. Figure 4.4
also describes the actions required on the replica data store depending on the object state
combination during the phase of merging updates into the store content and highlights
the state combinations resulting a conflict. Combinations shaded in gray may not occur
under the presumption that the state of an objects is set to CLEAR after a successful
synchronization with the equivalent version in the replica data store. Combinations

32

Object State in Replica Data Store

O
b

je
c
t

S
ta

te
 i
n

 L
o

c
a
l
D

a
ta

 S
to

re

CLEAR
 ADDED
 MODIFIED
 DELETED
 (not existing)

C
L
E

A
R

A

D
D

E
D

M

O
D

IF
IE

D

D
E

L
E

T
E

D

(n
o
t
e
x
is

ti
n
g
)

ignored

(may not yet exist

in local data

store)

update in local

data store

delete in local

data store

(may not be

CLEAR in local

data store)

(may not yet exist

in replica data

store)

(same object may

not be added in

both stores)

add to replica

data store

update in replica

data store

add to local

data store

CONFLICT

update in local

data store /

update in replica

data store

CONFLICT

delete in local

data store /

update in replica

data store

add to replica

data store

delete in replica

data store

CONFLICT

update in local

data store /

delete in replica

data store

ignored

delete in local

data store

add to local

data store

delete in replica

data store

(impossible)

(may not be clear

in replica data

store)

(may not yet exist

in replica data

store)

(may not yet exist

in replica data

store)

(may not yet exist

in local data

store)

(may not yet exist

in local data

store)

Figure 4.4: Potential state combinations of two object versions and the actions required
during the merging phase.

marked with ’CONFLICT’ are those resulting in a synchronization conflict. The actions
denoted for conflicting combinations are the possible outcome of the reconciliation.

The state combinations possible in a specific scenario depend on the implementation of
the synchronization process. If the state of a successful synchronized object is set to
’CLEAR’ in both data stores, the combination ’MODIFIED’ - ’ADDED’, for example,
may not occur since the object is first added in one data store, marked as ’ADDED’ and
later synchronized with the replica data store. After synchronization, both data stores
set the state of their corresponding object version to ’CLEAR’. If the object is now
modified in one data store, the state changes to ’MODIFIED’, resulting in a combination
of ’MODIFIED’ - ’CLEAR’ during the next synchronization. But if the actual object
state is preserved after synchronization, which might be required in order to synchronize
with another replica data store later on, some of the combinations shaded in gray in
figure 4.4 become possible. In addition, depending on the mechanism used to uniquely
identify data objects, conflicts may arise if a particular object is added on multiple clients
independently and provided with the identical identifier. This scenario is often possible
if the unique identifier is derived from a specific object property, such as the username
for a user object.

33

Delegating the actual reconciliation process to the affected objects allows the use of
specific reconciliation strategies depending on the object type and application-specific
business rules. Since the actual object has the most information on the semantics of the
conflict and the different object attributes, the reconciliation is expected to produce the
most adequate results.

The object resulting after reconciliation depends on the strategy used to resolve conflicts.
Besides others, the following strategies are conceivable:

Client Wins The object in the local data store on the client machine and sent to the
server machine during synchronization dominates and is the result of conflict rec-
onciliation.

Server Wins The object already residing in the server data store dominates and is the
result of the reconciliation.

Last Changed Wins The posterior changed object is the result of the reconciliation.
This strategy may require a synchronized timing instance for both data stores.

First Changed Wins The primarily changed object is the result of the reconciliation.
This strategy may require a synchronized timing instance for both data stores.

4.6.5 ’Out-Of-Collection’ Problem

If the amount of data to be stored locally on the client machine is restricted using the
concept of data collections, a problem herein referred to as ’out-of-collection’ problem
may occur. The concrete data collections representing the set of data to be synchronized
with the replica data store typically depends on the privileges of a particular user and on
application-specific configuration settings. Since the privileges associated with a partic-
ular user may be modified over time, the amount data available for offline operation also
changes. This is reflected by a modified list of data collections. The ’out-of-collection’
problem occurs if the privileges are constrained for a particular user. This potentially
results in a smaller set of accessible objects. If the user has previously synchronized with
the server, the client machine may store objects that are no longer included in one of the
data collections. Such objects are no longer synchronized and may therefore become out-
of-date. When the application switches to offline operation, these out-of-date objects are
accessible for the application as they reside in the local data store and may be displayed
to the user. Depending on the enterprise application functionality, such ’out-of-collection’
data may get modified in offline operation. Although this is not a security issue as the
user potentially already knows the contents of these objects from the time before the
privileges were cut down, modifications to these objects may be refused by the server
machine according to the application security policy and thus, may get lost. Objects no
longer included in the synchronization process should be removed from the data store on
the client machine in order to avoid confusion.

34

4.7 Application Logic for Offline Operation

Application logic denotes the part of an enterprise application that implements the core
application functionality and processes the application data. Application logic is the
active part of an enterprise application and may be further split up into presentation
logic and business logic.

Presentation Logic is the part of the enterprise application that manages the presen-
tation and event handling of the graphical user interface (GUI). The presentation
logic is also responsible for gathering user input and calling the appropriate action
in the business logic. The location of the presentation logic components highly
depends on the application client technology used on the client machine. In tradi-
tional rich client architectures, the presentation logic resides on the client machine,
whereas in web client architectures, the presentation logic is implemented on the
server machine.

Business Logic is the part of the enterprise application that implements the actual
business services and processes and manipulates application data. In architectures
for enterprise applications, the business logic is mostly implemented on the server
machine. Additionally, the business logic is considered to be independent from the
application client technology used for realizing the presentation logic

The term ’application logic’ is often only used for the business logic part.

In order to run an enterprise application in offline mode, all application logic required
for offline operation has to reside on the client machine. The parts of the application
logic that not yet reside on the client machine in online operation have to be transferred
to the client machine before changing to offline operation. Depending on the underlying
enterprise application architecture, this may affect the presentation logic and/or the
business logic.

For offline operation, it may be appropriate to offer only a subset of the application
functionality provided in online operation. Application features relying on an extensive
amount of application data may be restricted to online operation only in order to avoid
downloading this data to the local data store on the client machine. Security considera-
tions may restrict several application features, where highly confidential application data
is involved, from being supported in offline operation.

4.7.1 The Trivial Approach

Consider the following trivial approach to run an enterprise application in offline mode:
install the complete enterprise application including the parts running on the server
machine directly on the client machine and only regularly synchronize the persistent
database using a vendor-specific replication system included in the database management
system. This approach profits from the following advantages:

35

� The complete enterprise application functionality is available in offline operation.

� Only minor adaptations to the application code base are required in order to respect
offline-specific requirements.

� No effort for an application-specific synchronization mechanism is required since
most of the established database systems offer database replication mechanisms
out of the box.

Although this approach may work for certain simple, specialized scenarios, it is expected
to fail in general because of the following reasons:

� Each client machine is required to have all the server software installed, including a
J2EE-compliant application server and a database server. The system resources of
the client machine may not be powerful enough to run these servers with acceptable
performance.

� Since an enterprise application may rely on other enterprise information systems
running on different servers, these systems are also required to be installed locally on
the client machine in order to have the complete application functionality available
in offline operation.

� Several security issues may arise since not only is the complete application data held
locally on the client machine, but also server configuration data, security policies
and authentication and authorization information.

Instead, the selective reuse of application logic and data independent from the enclosing
J2EE-compliant application server leads to a lightweight offline solution.

4.7.2 The Reuse Approach

For cost and complexity reasons, it may be useful to share the largest possible part of ap-
plication logic between the online and offline operation mode. This requires the enterprise
application design to be highly modular in order to reuse several application logic compo-
nents both in the server environment for online operation and in the client environment
for offline operation. Since the infrastructure available on a client machine may signifi-
cantly differ from the one on the server machine, reusable application logic components
have to abstract from any environment-specific technology feature. In online operation,
large parts of the business logic reside on the server machine. In offline operation, parts
of this business logic are reused within the client environment in order to provide the
requested application functionality. In addition, the representation of business objects
to be reused have to be identical both for online and offline operation. Since persistence
of business data is expected to be environment-specific, the common representation of
business objects have to be adapted to the environment-specific needs. The presentation
logic may be reused in the form of a shared application client for both online and offline

36

mode. Nonetheless, depending on the specific enterprise application scenario, the appli-
cation functionality and thus the graphical representation of the application client may
differ between online and offline operation.

Service Factory

Offline Service
 Online Service

Controller Factory

Offline Controller
 Online Controller

Offline

Data

Online

Data

get service

in online operation
in offline operation

reuse
 reuse

access business objects

in online operation
in offline operation

persist

Business Entity

persist

persist

Presentation Logic

Business Objects

Business Logic

P
re

s
e
n
ta

ti
o
n
 L

o
g
ic

B

u
s
in

e
s
s
 L

o
g
ic

B

u
s
in

e
s
s
 O

b
je

c
ts

Figure 4.5: Reuse of application logic between online and offline operation for an offline-
capable architecture model for enterprise applications.

The reuse approach results in the abandonment of J2EE technologies for offline operation,
that are exclusively supported in the server environment, in order to exempt the client
machine from running a J2EE-compliant application server. Rather than re-implementing
the enterprise application for offline operation independently from any J2EE techniques
like Session Bean support for application logic or the use of Entity Beans for persistent
business objects, separation of the core application functionality from J2EE-specific tech-
nologies may be an appropriate approach for supporting both online and offline operation
by the same code base. Figure 4.5 illustrates this approach in overview. The contained
elements are discussed in the following sections.

4.7.2.1 Presentation Logic

The implementation of the presentation logic depends on the client component technology
used. Using either a Java application client, a JNLP-featured rich client or an applet
client, the presentation logic is implemented using a standard Java GUI library, for

37

example the JFC/Swing library5. Additionally, the code for the presentation logic already
resides and is executed on the client machine and may therefore be reused, at least
partly, for offline operation. If using the client of a web application, a web browser, the
presentation logic resides completely on the server machine, implemented either as JSP
components or Servlet components. Since these components are required to run within
a J2EE web container, a client machine running a web application in offline mode is also
required to have a web container installed locally. Section 6.3 shows a solution for that
issue.

4.7.2.2 Business Logic

Instead of implementing the application logic directly into a Session Bean, each applica-
tion feature has to be implemented as a component only using standard Java program-
ming language constructs that are supported both in the client and server environment.
Thereon, each application feature component is encapsulated in either a service imple-
mentation based on a Session Bean for online operation or an implementation based on
standard Java constructs supported on the client machine for offline operation. Several
infrastructure services normally provided by the J2EE application server in online opera-
tion has to be implemented by the enterprise application for offline operation as needed,
for example transaction or security services.

An abstract factory pattern6 is applied to decide which service implementing the re-
quested part of the application logic is to be used in a particular operation mode. Figure
4.6 illustrates the concept of a service factory that determines and creates the appropriate
service implementation depending on the current operation mode. Using this pattern,
the part of the business logic represented by the application feature component may be
reused both for online and offline operation.

«Abstract Factory»

Service Factory

«Interface»

Service

«Service A»

Offline Service A

«Service A»

Online Service A

«Application Feature»

Feature A

«Session Bean»

encapsulate

creates

for use in offline

operation

for use in online

operation

encapsulate

«Interface»

Service A

Figure 4.6: Abstract factory pattern used to determine the appropriate service implemen-
tation for a particular operation mode.

5The Java Foundation Classes Swing library supports development of cross-platform graphical user
interfaces and graphical functionality for rich clients [Sun03c].

6The abstract factory pattern is described in [Gam+95].

38

The modularization of the business logic in services is crucial both for the adaptation
of a single application feature to a particular infrastructure and for the configuration
of the application features supported in each operation mode. Specific services may be
available in online operation but not in offline operation and vice versa. Additionally, the
implementation of single services may differ from online operation to offline operation, for
example by only supporting parts of the application feature encapsulated by the service.

4.7.2.3 Business Objects

While in an enterprise application that runs in online operation, business objects are
typically implemented as Entity Beans, this technology is not supported on the client
machine not running a J2EE-compliant application server. Similar to the approach for
sharing business logic between online and offline operation, the business object imple-
mentations have to be separated from J2EE-specific technologies in order to reuse the
same business object implementation for offline operation. Since business objects are
typically shared between EJB components, web components and client components, they
often support a representation referred to as value object7. A value object represents the
state of a business object at one moment in time and may easily be exchanged between
and used by different components. Value objects may either be immutable or mutable,
depending on the business object represented. Traditionally, value objects are used to
reduce chattiness between the calling and the called component, for example between the
application client and a Session Bean. The caller retrieves a value object representing
a business object with its complete state in one remote call instead of requesting each
object field with a separate remote call. Herein, the concept of value objects is used
to provide a business object representation independent from J2EE-specific technologies
and to adapt the value object to technologies available in specific environments.

«Abstract Factory»

Controller Factory

«Interface»

Controller

«Controller A»

Offline Controller A

«Controller A»

Online Controller A

«BusinessObject»

ValueObjectA

«Session Bean»

controls

creates

controls

«Interface»

Controller A

«EntityBean»

Business Entity A

encapsulates

«Entity Bean»

«Storage»

Server Database

persist

«Storage»

Local Data Store

persist

persist

controls

Figure 4.7: Value objects representing business objects and controllers managing persis-
tence of business objects.

7The design pattern ’Value Object’ is further described in [Alu01].

39

Figure 4.7 illustrates the concept of value objects representing business objects and con-
trollers managing the persistence of business objects. For online operation, the server part
of an enterprise application typically encapsulates value objects within Entity Beans, of-
fering methods to get a value object from the current state of the Entity Bean and to set
the state of the Entity Bean to the state of the value object. Again, an abstract factory
pattern may be used to determine the current mechanism for persisting business objects
represented by value objects. For each type of business object, an appropriate controller
instance is defined that is aware of persistently adding, modifying and deleting business
objects of this type. In online operation, controllers are realized as Session Beans and
work on business object instances implemented as Entity Beans. The persistence of En-
tity Beans is managed according to the persistence mechanism specified by J2EE and
implemented by the EJB container. In offline operation, business objects are made per-
sistent directly by the appropriate controller component. A particular controller instance
encapsulates the knowledge to persist a specific type of business object. Each type may
have its own controller instance or multiple types may be managed by a common con-
troller instance. The controller factory component is used to determine and to retrieve
the appropriate controller instance for a particular type of business object.

Controller Factory
Client

Controller

Business Entity

get controller

create controller

add value object

create BusinessEntity

set value object

persist

Database

Controller Factory
Client

Controller

get controller

create controller

add value object

persist value object

File System

Figure 4.8: Sequence of persisting business objects in online and offline operation.

Figure 4.8 compares the sequence of persisting a business object represented by a value
object when running an enterprise application either in online or in offline operation.
In both operation modes, the controller instance retrieved using the controller factory
component is called to persist a particular new business object represented as value
object. In online operation (top), the controller instance creates a new business entity
object, which is in fact an Entity Bean instance, and sets the state of the newly created
business entity object to the state of the value object. The business entity object itself
is responsible for persisting its state to the database. In offline operation (bottom),
the controller instance stores the value object persistently, for example, to the local file
system.

40

4.8 Security

As enterprise applications often work on and contain confidential company and customer
data, security is a core issue. Appropriate measures have to be taken in order to protect
data from unauthorized access and illegal modification. Whereas security is a general
issue within the context of enterprise applications rather than an offline-specific one,
security in offline operation requires additional considerations.

4.8.1 Security for Offline Operation

In online operation, security measures such as authentication and authorization take place
preferably on the server side of the enterprise application since the server environment
may be considered as more concise, better protected and supervised. Additionally, the
server environment typically offers more sophisticated features for implementing security-
related functionality and is often closely coupled with security-specific information system
such as a user account database or a security policy system.

In offline operation, the relevance of security changes. The environment on the client ma-
chine has to be considered as fundamentally insecure since the client machine is not under
the same control and surveillance as a server machine. It may not always be predictable
which entities have which privileges on the client machine and may therefore gain access
to locally stored data that is protected. This may be a potential risk both for confiden-
tiality and data integrity since protected data may be read and/or modified. Generally,
two approaches for dealing with the insecure client environment are conceivable:

The ’try-to-secure’ approach undertakes a wide range of security-related measures
to increase the client-side security to a similar level as on the server environment.
Measures may include restrictive privileges for system users logging into the client
machine, data encryption and digital signatures for persisted data and a mecha-
nism for offline authentication and authorization8 within enterprise applications.
The ’try-to-secure’ approach aims to create a trusted environment that spans both
the client and server machine. Because of the countless number of security-related
influencing factors and potential risks and attackers, reaching an appropriate secu-
rity level may result in an exorbitant effort. This approach seems only feasible if the
client machine and its operating system are well-secured regarding to system user
authentication, file system protection and system privileges. The enterprise appli-
cation itself must not be expected to be able to secure the client machine without
support from the underlying system. In addition, it is not recommended to shift
security mechanisms from the central server to the decentralized client machines.

The ’accept-as-insecure’ approach leaves the client environment in the potential in-
secure state but controls and secures the transition points between the client and
the server environment. Applied to an enterprise application running in offline op-
eration, this means that no security-related actions are undertaken during offline

8Offline authentication and authorization are further described in section 4.8.2.

41

operation, but the underlying application security policy is enforced when accessing
data stored on the server machine and during synchronization. All modifications
made during offline operation that do not comply with the application security pol-
icy are discarded. Depending on the enterprise application design, this approach
may allow the user to perform actions during offline operation that are not allowed
in the online mode and therefore are discarded during synchronization. This may
lead to a displeasing user experience.

Client Environment

Application

Data

Applications

Server Environment

Synchronization

Users

Application

Data

Client Environment

Application

Data

Applications

Server Environment

Synchronization

Users

Application

Data

Figure 4.9: Two security approaches for offline operation.

Figure 4.9 illustrates the two approaches described. The bold dotted line surrounds ar-
eas where the application security policy is enforced. Arrows mark potential situations
where the application security policy may be violated. The ’try-to-secure’ approach (top)
secures the access to the locally stored data on the client environment. The ’accept-as-
insecure’ approach (bottom) enforces the application security policy during synchroniza-
tion.

The two approaches described are not mutually exclusive but may be combined in order
to optimize the security level, costs and complexity and the user experience during of-
fline operation. By combining the second approach with offline authentication and basic
authorization in offline mode, a misleading user experience may be avoided in advance
since the application functionality and appearance may be customized based on the privi-
leges associated with the authenticated user. In addition, by relying on operating system
security mechanisms such as system user authentication or file system privileges, the
’accept-as-insecure’ approach may protect sensitive application data from being read by
unauthorized users.

The following guidelines may be proposed concerning security for offline operation:

� Only store the minimum amount of data required for providing the desired offline
application functionality within the local data store on the client machine. Without
special protection such as encryption, data stored on the client machine must be
considered as being readable for every user able to login to the client machine and
may even be arbitrarily modified by privileged system users.

42

� Restrict the application functionality that is provided in offline operation to the
minimum. Each additional application feature provided tends to require additional
data to be stored in the local data store and that is potentially exposed to unau-
thorized access. Additionally, avoid providing security-critical features such as user
privileges administration.

� Perform offline user authentication if possible. Offline authentication allows the
application to know which user is currently using the application and may therefore
adapt the appearance and behaviour accordingly.

� Enforce the application security policy not later than on the transition from of-
fline operation back to online operation. If adequate, enforce parts of the security
constraints also during offline operation.

� If especially critical data modifications such as user privilege manipulations are
required to be possible in offline operation, ask for a confirmation before synchro-
nizing these modifications with the server data store. A malicious attacker may try
to modify data stored locally on a client machine without the knowledge of the ap-
plication user. If the application user is associated with extended privileges for the
particular offline-capable enterprise application, the modifications appearing to be
made by the legitimated application user are synchronized with and applied to the
server data store the next time the application user runs the enterprise application
in online operation.

4.8.2 Offline Authentication and Authorization

Consider a scenario for an enterprise application where authentication and authorization
is required in offline operation, for example to restrict access to an enterprise application
running in offline mode. In online operation, the verification of the credentials provided
for authentication typically takes place on the server side with the reference credentials
in an account database and the assignment of privileges to the authenticated user is
based on security-related information residing on the server side. In offline operation, the
verification of user-provided credentials has to be performed on the client machine, where
the reference credentials and privileges to be assigned to the user after authentication
must also be stored locally on the client machine. Figure 4.10 shows the difference between
the authentication process in online and offline operation. When running an enterprise
application in online mode (Figure 4.10, top), the user credentials are gathered by the
application client on the client machine and are sent to the server machine in order
to verify them against an authentication database. In offline operation (Figure 4.10,
bottom), the credentials gathered by the application client are checked with locally stored
authentication data objects.

When storing authentication and authorization data locally on the client and relying
on offline authentication and authorization, the following points have to be taken into
account:

43

Client Machine
 Server Machine

Gather User

Credentials

Transfer

Credentials

Check

Credentials

Authentication

Data

Client Machine

Gather User

Credentials

Check Credentials against locally stored

Reference Credentials

Figure 4.10: Authentication process for online and offline operation.

� Only credentials for specific users that actually need to authenticate in offline oper-
ation on that particular client machine should be stored locally. Ideally, each client
machine is only used by one application user and not shared with other users, thus
there is no need to locally store other credentials than the ones for that particular
user.

� Confidential information such as passwords should not be stored in plain text, but
only as one-way secure hash values. Private and public keys used for encryption
and digital signatures should reside in protected key stores.

� Authentication and authorization data stored locally on the client machine repre-
sent the state at one specific moment in time and may not always reflect the current
version residing on the server. Several privileges may have been added to or re-
moved from the users privilege collection on the server side in the meantime. Thus,
locally stored credentials must also be updated regularly with the ones residing in
the server data store.

� When relying on credentials stored locally on the client machine for offline oper-
ation, verifying the integrity of the credentials before authenticating a user may
be important in order to avoid and/or detect malicious modification of privileges
assigned to that particular user.

� Never rely only and completely on offline authentication or authorization. Use of-
fline authentication and authorization in offline mode only. Rely on standard online
authentication and authorization mechanism in online operation, when switching
back from offline to online operation and during synchronization. Nonetheless, of-
fline authentication and authorization may be useful to customize the appearance
and behaviour of the enterprise application during offline operation.

4.8.3 Offline Authentication Approach

As described in section 4.8.2, performing authentication in offline operation requires spe-
cial consideration regarding malicious modification of authentication and authorization
data stored locally on the client machine. This section describes an approach for offline
authentication satisfying the requirements listed above.

44

The approach is based on the Java Authentication and Authorization Service (JAAS)
framework and assumes that authentication is performed using a distinct username for
each user, accompanied by a secret password. After successful authentication, the user
owns a number of privileges based on security roles associated with the user, that are
used by the enterprise application in order to authorize access to protected resources.
As base for offline authentication, username, password and the list of security roles have
to be stored locally on the client machine. Whereas the password is critical regarding
confidentiality, the username and especially the list of security roles are critical regarding
integrity. By guessing other security roles currently not owning and adding them to the
list of associated security roles, a malicious user may get unauthorized access to protected
resources9.

Client Machine

Signed

Credential

Key

Store

Server Machine

Key

Store

Credential

Database

Signed

Credential

Username

Password

Security Roles

Sign with

Private Key

Transfer

Authentication

Module

Verify with

Public Key

Figure 4.11: Offline authentication approach with digitally signed credential object.

Figure 4.11 illustrates the offline authentication approach. When switching to offline
operation, the server part of the enterprise application creates a credential object con-
taining the username, the password and the list of currently associated security roles and
digitally signs this object using the enterprise application’s private key. Thereon, the
server sends the signed credential object to the client machine where it is persisted for
future use. The application client has the corresponding public key, that is associated
with the private key used for creating the digital signature, stored in the local key store
and may therefore verify the digital signature of the signed credential object.

Figure 4.12 illustrates the sequence of offline authentication based on the offline authenti-
cation approach proposed. Whenever the client attempts to authenticate locally in offline
operation, the authentication service component is called. This service reads the JAAS
login configuration, creates a login context and requests the offline login module specified
in the JAAS configuration file to authenticate the credentials provided by the authenti-
cating user. Since the offline login module performs the actual offline authentication, it
first look for an existing signed credential object and verifies the integrity of the signed
credential object by checking its digital signature using the enterprise application’s public
key from the key store. If the credentials received from the user matches the ones stored
in the signed credential, the offline login module adds the security roles retrieved from the
signed credential object to the JAAS Subject. The user is now authenticated and owns

9By respecting the security guidelines mentioned in section 4.8.1, this is rather a convenience issue
than a security issue since all actions and their effects performed in offline operation have to be
checked based on the server-controlled privileges when switching back to online operation.

45

Client
 AuthenticationService

login

JAASConfig

set

LoginContext

create

read

OfflineLoginModule

SignedCedentials

verify signature

verify credentials

get security roles

set security principals

return subject

return subject

Subject

create

login

initialize

Figure 4.12: Login sequence during offline authentication.

the privileges listed in the credential object and may use them for further authorization.
The object representing the currently authenticated user may be retained transiently in a
static security context if other instances are required to have access to the authenticated
user object, for example to query for a specific security role association.

In order to protect the secret password from being read by unauthorized parties, the
credential object should contain only a secure one-way hash of the actual password and
not the password itself in plain text. Upon authentication, the identical hash function is
applied to the password provided by the user and checked with the hashed password in the
credential object. Figure 4.13 shows the state of a signed credential object, consisting
of the username, the one-way-hashed password, a list of security roles and the digital
signature. The gray shaded area is reflected by the digital signature.

Username
 TestUser

7a95dec218ffaaf8992bb48b4bd94367
Password

Roles
 User

Manager

Administrator

Signature
 495b26791ec1e834f20c403a23079f157

324650b0ada81f0efda3bafafa8919be16

71797c52e15f763380b45e841ec32 ...

Algorithm
 SHA/DSA

Figure 4.13: A signed credential object.

This approach relies on the fact that the signature of the signed credential object may
only be verified using the corresponding public key associated with the private key that
was used to generate the signature, resulting from the concept of asymmetric encryption
systems. Therefore, it must be assured that the public key may not be replaced on the
client machine. Otherwise, an attacker may modify the credential object, re-generate the
digital signature using an alternative private key and force the application client to use

46

the replaced public key to verify the signature.

Whereas this approach facilitates offline authorization because the enterprise application
may trustfully rely on the security roles associated with the authenticated user in offline
mode, it prohibits the user from changing the password in offline operation. The locally
stored credentials may only be modified with knowledge of the private key used for
signing the credentials object, since changes to the object state requires the creation of
an updated digital signature. Otherwise, the integrity of the credential object is broken.
The application client is not in possession of the enterprise application’s private key since
the private key resides in the key store on the server machine and is not intended to be
distributed.

4.8.4 Authentication and Operation Mode Transition

Special consideration is required regarding authentication when switching between online
and offline operation. In online operation, the user is authenticated with the server using
an appropriate authentication scheme, such as JAAS. Typically with lazy authentication
used by J2EE, the user is asked for authentication when attempting to access a protected
resource. The client component must be able to satisfy this request by either presenting
an input dialog to the user or by propagating previously fetched credentials to the server.

When changing to offline operation, the user authenticated for online operation may
either be propagated to the enterprise application running in offline mode or users may
be urged to re-authenticate with the local authentication service. Depending on the
authentication mechanism used, propagation may be implemented by transferring the
authenticated user object to the client machine and setting this object in the static
security context, if required. Re-authentication may either be solved by presenting the
input dialog asking for the user credentials again or by silently authenticating with the
same credentials used for server-side authentication. This requires the user credentials to
be stored transiently in the application client context.

When switching back to online operation, propagation of the authenticated user back to
the server is not recommended, since, depending on the offline authentication approach
used, the authenticated user may not be absolutely trustful. A malicious user may have
found a way to gain additional security roles associated with it. Propagating the poten-
tially compromised user object to the server may result in a security harm. Therefore,
only re-authentication using the online authentication service guarantees unbroken secu-
rity privileges in online operation. The user credentials used for offline authentication,
username and password for example, may be reused to silently authenticate the user.

4.8.5 Synchronization Security

As a solution for synchronization should be application-independent and reusable for mul-
tiple enterprise applications, the synchronization itself may not provide any application-
specific, security-related mechanisms. It is in the responsibility of the enterprise applica-

47

tion to enforce the application security policy during synchronization. Thus, synchroniza-
tion has to be performed within the same security context used for normal application
operation. This may be achieved by running the actual synchronization process, or at
least the phase of sending updates from the client to the server machine, with the priv-
ileges of the particular user currently logged in. If the synchronization process uses the
same data access mechanisms as the enterprise application itself when creating, modify-
ing or deleting objects, it may reuse the security constraints defined within the particular
data access instances. This ensures that the synchronization process does not perform
unallowed modifications.

However, the synchronization mechanism may be required to perform modifications on
objects on the client machine exceeding the user’s privileges. For example, a standard
user may not be allowed to modify a specific object state, but an administrator may. On
the server side, an administrator updates this particular field. During synchronization,
the locally stored object has to be updated with the modified object state from the server.
This is not a priori possible when running the synchronization process under the user’s
privileges. Depending on the chosen approach regarding offline authorization described
in section 4.8.1, two solutions are conceivable:

Solution for the ’try-to-secure’ Approach By following the ’try-to-secure’ approach
specified in section 4.8.1, the client machine has to perform authentication and au-
thorization in offline mode. This requires the synchronization process to provide
adequate credentials when updating a protected object on the client machine. Up-
dates that require extended privileges in order to be applied to the local data store
on the client machine can only originate from modifications to the data store on
the server machine and thus, are always sent from the server to the client side, not
vice versa. Applying updates received from the server machine to the local data
store on the client machine may be performed using the privileges of a dedicated
synchronization user that owns extended privileges. Running all synchronization
phases under the synchronization user’s privileges is not recommended since this
may allow a malicious user to unauthorized modify locally stored objects and to
synchronize them to the server machine.

Solution for the ’accept-as-insecure’ Approach Alternatively, if using the ’accept-
as-insecure’ approach, no authorization is performed on the client machine in offline
operation and therefore, arbitrary modifications on locally stored objects are poten-
tially possible by the user currently logged in. This also enables the synchronization
process, which runs with the privileges of the current user, to arbitrarily update
objects within the local data store on the client machine where the user effectively
has no privileges regarding the application security policy enforced on the server
machine. In this scenario, it is not necessary to execute the synchronization pro-
cess with different privileges than the ones of the user currently logged in. Data
modifications are not checked with the application security policy until they are
propagated and applied to the server data store during synchronization.

48

Section 5

A Framework for
Offline J2EE Applications

This section discusses a programmatic framework that enables the development of offline-
capable J2EE enterprise applications. This framework is aimed to conceal offline-specific
issues such as the internals of data modification tracking, data synchronization and man-
agement of transitions between online and offline operation mode from the application de-
veloper by providing reasonable standard implementations for these tasks. Nevertheless,
these standard solutions have to be flexible and customizable to meet the requirements
of a wide range of offline enterprise application scenarios. The prototypic framework
described here is, for simplicity, referred to as J2OO framework, a J2EE online-offline
framework.

5.1 Responsibilities

The J2OO framework accepts the following responsibilities regarding the offline-capability
of enterprise applications:

Data Modification Tracking The J2OO framework provides a mechanism to track
additions, modifications and deletions of application data objects. Each of these
actions are logged by the framework and assigned with a distinct version indicating
a specific state of the affected business object.

Data Synchronization Based on the mechanism for data modification tracking, the
J2OO framework implements a data synchronization concept that is able to syn-
chronize and reconcile modified business objects between a local data store on the
client machine and the central data store on the server machine. The solution
provided respects the requirements listed in section 4.6.1.

Transition between Operation Modes The J2OO framework provides components
that manage the transitions between different operation modes and perform the
required steps during the transition. Specific parts of the transition procedure are

49

configurable for a concrete enterprise application scenario. In addition, a watchdog
component that observes the server part of the enterprise application may change
the operation mode if the application server fails or restores after an outage.

Framework Configuration As different enterprise application scenarios have also dif-
ferent requirements concerning offline operation, the J2OO framework provides a
variety of configuration parameters allowing the customization of the framework.
Consequently, the J2OO framework is usable for a wide range of application sce-
narios based on different architecture variants. Especially, the application configu-
rations described in section 4.3 are supported by the framework.

5.2 Framework Overview

Server Machine
 Client Machine

ServiceFactory

ControllerFactory

«Business Object»

manage

request / use

controllers

Journal

request / apply

updates

SyncClient

request / use

controllers

notify on

modifications

SyncManager

OperationModeManager

initialize

synchronization

WatchDog

notify server

failure / restore

create /

start

Application Client

switch

operation mode

request / use

offline service

ServiceFactory

ControllerFactory

«Business Object»

manage

request / use

controllers

Journal

request / apply

updates

SyncServer

request / use

controllers

notify on

modifications

synchronize

request / use

online service

Server

Data Store

Client

Data Store

ClientSettings
ServerSettings

configure

configure
 configure
 configure
configure

configure

configure

configure

Figure 5.1: Main components of the J2OO framework.

Figure 5.1 illustrates the main components of the J2OO framework applied to a rich client
architecture scenario1. Depending on the current operation mode, the application client
uses either the service factory on the server machine (for online operation) or the one on
the client machine (for offline operation). The service factory creates service instances

1While the rich client architecture is well-suited for illustrating the concepts, the J2OO framework is
applicable also to fat client and web application architectures.

50

that implement parts of the business logic and uses the controller factory to retrieve an
appropriate controller instance that is able to manage a specific type of business object
required by the service. The controller instance notifies the journal about each data
creation, modification or deletion. For each enterprise application, exactly one journal
instance exists on the client and one on the server side. The journal maintains version
information for each business object in the data store and is able to generate a list of
updates that need to be sent to the remote side during synchronization. A synchronization
server component on the server machine listens to synchronization requests made by the
synchronization client on each client machine.

On the client machine, the operation mode manager implements the functionality to
switch between different operation modes. The synchronization manager controls the
initiation of synchronization processes and may either be used directly by the application
client on demand or by the operation mode manager for synchronization during operation
mode switches. A watchdog component is able to observe the server part of the enterprise
application and to initiate an operation mode transition if the server fails or restores again.

Both the client and the server part of the enterprise application are configured using
application-specific settings. On the server machine, the concrete implementation of
the service factory, the controller factory and the journal are configured by the server
settings. On the client machine, additional settings for the operation mode manager and
the synchronization manager are defined by the client settings.

5.3 Framework Interfaces & Classes

The J2OO framework defines a number of interfaces and classes to be implemented,
extended or simply used by an enterprise application that provides offline operation based
on the J2OO framework. A description of all framework interfaces, classes and methods
including the Java source code with JavaDoc [Sun03b] documentation is available on the
resource CD outlined in appendix A.

5.4 Data Modification Tracking

The J2OO framework uses a mechanism referred to as the journal to track object modifi-
cations, both on the server machine for online operation and on the client machine during
offline operation. Each type of business object, that has to be synchronized between the
client and the server data store, must implement the ISynchronizable interface and is
herein referred to as a synchronizable object. Whenever the enterprise application creates
a new synchronizable object, it registers the object with the corresponding local jour-
nal. The journal maintains version information for each synchronizable object registered.
Whenever the application subsequently modifies or deletes an existing synchronizable ob-
ject, the controller instance that actually modified the business object informs the local
journal about the change. Thereon, the journal updates the version information for this
object accordingly.

51

5.4.1 Journal

The default implementation for the IJournal interface contains a logical clock realized
as an incrementing number, a journal identifier (also referred to as the replica identifier)
and a list of UpdateInfo objects for currently registered synchronizable objects. The
update list acts as a modification history, holding all updates in the exact order they
were applied to the data store. Additionally, the journal creates a forward index map
that maps ISyncId instances to the corresponding UpdateInfo object and a reverse
index map that holds the latest UpdateInfo object for each ISynchronizable object
registered. These maps are stored transiently and are recreated when the journal is read
from the persistent store. Figure 5.2 illustrates the internal structure of the Journal
implementation.

Journal

Forward Map

ISyncId 1
 UpdateInfo A

Reverse Map

ISynchronizable 1
 UpdateInfo A

UpdateInfo List

UpdateInfo B

UpdateInfo C

UpdateInfo D

UpdateInfoE

UpdateInfo A

Logical Clock

Replica Id

A26FB4904C

ISyncId 2
 UpdateInfo D

ISynchronizable 2
 UpdateInfo D
 UpdateInfo F

Figure 5.2: The internal structure of the Journal implementation.

Each time the version information for a particular synchronizable object changes because
of an update of the object’s state, a new UpdateInfo object containing the updated
version information is added to the update list. The existing UpdateInfo object is not
deleted from the update list in order to preserve the original order of object modifications.
In addition, the new UpdateInfo instance is associated with the appropriate object in
the forward and reverse index map.

5.4.2 Update Information

Updates for synchronizable objects registered with the local journal are represented within
the journal and transferred during synchronization as UpdateInfo instances. An instance
of UpdateInfo contains a ISyncId object that uniquely identifies the synchronizable
object across multiple replicas on different machines, the identifier of the journal that
created the UpdateInfo object, information on the synchronizable object affected and
the current version associated with the synchronizable object. The J2OO framework
distinguish between two UpdateInfo subclasses:

ContentUpdateInfo The ContentUpdateInfo object represents the creation of a new
or the modification of an existing synchronizable object. A ContentUpdateInfo

52

instance contains a reference to the object itself and includes the affected object
when being transferred to the remote replica. ContentUpdateInfo objects are
created when a new object is added to the journal or an already registered object
is updated.

DeletionUpdateInfo An instance of DeletionUpdateInfo represents a deletion tomb-
stone for a previously registered, but actually deleted synchronizable object. A
DeletionUpdateInfo does not contain a reference to the object deleted, but con-
tains the type and the unique ISynchronizable identifier of the deleted object.
DeletionUpdateInfo objects are created when a registered object is deleted.

Depending on the UpdateInfo object in the local journal, the one received from the
remote replica and the version vector of each UpdateInfo object, the actions described
in figure 5.3 are taken.

Received UpdateInfo

ContentUpdateInfo
 DeletionUpdateInfo
Local UpdateInfo

n
o

n
e

C

o
n

te
n

tU
p

d
a

te
In

fo

D
e

le
ti

o
n

U
p

d
a

te
In

fo

local version later

than or equal to

remote version

local version

earlier than

remote version

local version

conflicting with

remote version

local version later

than or equal to

remote version

local version

earlier than

remote version

local version

conflicting with

remote version

add object locally

create ContentUpdateInfo with remote version

createDeletionUpdateInfo with remote version

ignore received update (old news)

ignore received update (old news)

update local object to state of remote object

create ContentUpdateInfo with remote version

reconcile confflict

update local object to state of resolved object

create ContentUpdateInfo with merged version

delete local object

create DeletionUpdateInfo with remote version

reconcile conflict

delete local object / keep merged object

create DeletionUpdateInfo / ContentUpdateInfo with merged version

re-introduce object locally

create ContentUpdateInfo with remote version

reconcile conflict

keep deletion / re-introduce object locally

create DeletionUpdateInfo / ContentUpdateInfo with merged version

create DeletaionUpdateInfo with remote version

create DeletionUpdateInfo with merged version

Figure 5.3: Actions to be taken when applying an update to the local data store, depending
on the type of received update, the type of the local update and the relation between the
two participating versions.

5.4.3 Object Versioning

Substantial to the journal is an appropriate mechanism to track and compare different
object versions. While section 4.6 describes a simple approach based on explicit object
states, the J2OO framework uses a vector-based approach offering sophisticated version
comparison and conflict detection. This approach enables the provisioning of fast syn-
chronization.

According to [Coh03], the J2OO framework provides a vector-based implementation of
the IVersion interface. Fundamental is the concept of version vectors [Sto83] to compare
two versions of the same object and to detect version conflicts. A version vector consists
of multiple vector components, one for each synchronization replica that is aware of the

53

particular object. A vector component on its part consists of the replica identifier and
the value of the logical clock on the corresponding replica at the time the version vector
is being created. Figure 5.4 shows several examples of version vectors as used by the
framework. The notation ’A:1’ describes a vector component for the replica A with the
logical clock value 1 on the replica A at the time the version vector has been created.
Dotted areas in figure 5.4 indicate vector components for replicas that are not aware
of the particular synchronizable object. Object O1, for example, is known by replica
S, A and B, but not by replica C and D. The version vector implementation used by
the framework does not contain vector components for replicas that are not aware of a
particular synchronizable object.

Object O1
 S:1
 A:1
 B:2

Object O2
 S:4
 A:3

C:2
Object O3
 S7
 B:8

Object O4
 S:2
 C:5

D:5

Figure 5.4: Version vector examples containing version components for each replica aware
of the particular synchronizable object.

When a particular object is created, updated or removed either on the server or on
a client, the logical clock of the corresponding journal is incremented and the version
for that object is updated to the new local clock value. Only the vector component
representing the local journal is modified. In addition, a version vector is only modified
if the associated object is being updated. This guarantees that objects having different
states are also tagged with different version vectors and objects with the same version
vector have an identical state. Based on that, version vectors of different versions of
the same object may be compared in order to determine the relation between the two
versions. One version vector may either be equal to, earlier than, later than or conflicting
with a second version vector. Let v be a version vector and v[i] the logical clock value
for replica i in version vector v. Two version vectors v1 and v2 are equal, if v1[i] = v2[i]
for every replica identifier i. One version vector v1 is earlier than a second version vector
v2, and v2 is later than v1, if v1 6= v2 and v1[i] ≤ v2[i] for every replica identifier i. Two
version vectors v1 and v2 are conflicting, if at least two replica identifiers i and j exist
such that v1[i] < v2[i] and v1[j] > v2[j].

Whenever a conflict between two version vectors is detected, a new version vector resulting
from merging the conflicting version vectors and incrementing the local journal’s logical
clock is created and assigned to the synchronizable object affected by the conflicting
updates. The merged version vector vm resulting from two conflicting version vectors v1

and v2 satisfies the conditions vm[i] = max(v1[i], v2[i]) for every replica identifier i not
equal to the local replica identifier and vm[j] = max(v1[j], v2[j]) + 1 for the local replica
identifier j.

Until a client connects to and synchronizes with the server for the first time, the server
does not contain a component for that particular client in the version vector since the

54

server is not aware of the client’s journal identifier. During synchronization, the server
adds a vector component for the connecting client to each version vector associated to an
object exchanged with the client. If an object has already been synchronized between n
clients and the server, the version vector for that object contains n+1 components.

Each replica maintains a summary version that indicates the earliest version the journal
is aware of. The summary version is represented by a version vector and is equal to or
later than the version of each object the replica is aware of. The summary version of
replica A is used by a remote replica B to determine the updates that have to be sent
to journal A. As updates are always sent and applied to journal A in the exact order
they occurred on the remote journal B, updates with a version earlier than the summary
version of journal A do not need to be transferred from journal B to journal A as they
would represent old news.

The vector-based version tracking approach allows to determine the set of updates, that
has to be sent to a remote replica, only using the summary version of the remote replica.
In contrast to other version tracking mechanisms, such as revision-based approaches that
use a replica-independent revision number as version information2, there is no need to
propagate the version of every object stored in the local data store to the remote replica.

5.5 Data Synchronization

While section 4.6 describes the relevance and requirements of data synchronization with
respect to online and offline operation of enterprise applications, this section illustrates
the synchronization solution integrated in the J2OO framework that satisfies these re-
quirements. The proposed solution is partly based on concepts described in [Coh03],
which have been adapted to meet the specific requirements for synchronization between
multiple clients and a central server.

The J2OO framework provides a solution to synchronize two data stores that are dis-
tributed across two interconnected machines. One machine acts as the central server
hosting the complete application data, whereas the other machine represents the client
machine that runs the application client and hosts the parts of the application data
required for offline operation.

5.5.1 Synchronization Model

Figure 5.5 illustrates the substantial building blocks of the synchronization solution and
highlights their collaboration. The synchronization manager handles the initiation of the
synchronization process. Triggered by the user or by another component of the J2OO
framework or the enterprise application, the synchronization manager creates a synchro-
nization client instance that is able to communicate with the synchronization part on

2The Concurrent Versions System (CVS) [Ced03] is an example for a system that uses a revision-based
tracking mechanism.

55

Client Machine

Application

Local Journal

Object

registered

create

modify

delete

Update

History

Object

Registry

Sync Client

get list

of updates

Server Machine

Server Journal

Object

registered

Update

History

Object

Registry

Sync Server

apply updates

Sync Manager

create

init

exchange

updates

Figure 5.5: Substantial parts of the synchronization solution provided by the J2OO frame-
work.

the server machine. The synchronization manager supports both synchronous and asyn-
chronous synchronization. While synchronous synchronization blocks the user interface
and may display a synchronization dialog until the synchronization process has finished,
asynchronous synchronization is accomplished in a background thread and therefore does
not block the user interface. Synchronous synchronization is useful when running the ap-
plication in the ’on-demand’ configuration, after logging in, before switching to offline
operation or after switching back to online operation. Asynchronous synchronization is
used to periodically synchronize data in the ’be-prepared’ configuration in order to avoid
interrupting the user by a blocked user interface.

The enterprise application may configure a list of synchronization events for which a
synchronization process has to be initiated, for example during a transition from offline
to online operation or on user demand. A synchronization process is started by the syn-
chronization client on the client machine and not by the synchronization server. This
results from the request-response-driven communication model implemented by the pro-
tocols supported by the J2EE platform. The client first requests a summary version from
the server indicating the current overall version of the server data store. The client uses
this information to create a list of pending and conflicting updates for locally created,
modified or deleted objects, that have to be sent to the server side. The synchronization
solution implemented by the J2OO framework only transfers new updates to the remote
machine, referred to as fast synchronization. After resolving potential conflicts and ap-
plying the updates to the central data store, the server returns a list of updates newer
than or conflicting with the summary version provided by the client. The client thereon
applies these updates to its local data store. During the actual synchronization, update
information objects containing the object version, an update identifier and optionally the
object itself are transferred between the two participating machines. Figure 5.6 illustrates
the synchronization protocol used between the client and the server. This protocol may
either be processed on top of HTTP(S), RMI-IIOP or a vendor-specific communication

56

protocol. The J2OO framework provides default implementations for both HTTP(S) and
RMI/IIOP-based synchronization.

Sync Client
 Local Journal
 Sync Server
 Remote Journal

request server summary version

generate updates

send updates

apply updates

resolve conflicts

and apply updates

request updates since client summary

generate updates

apply updates

resolve conflicts

and apply updates

Figure 5.6: Synchronization protocol used between the synchronization client and server.

5.5.2 Selective Synchronization

As described in section 4.6.1, a synchronization solution is required to support selective
synchronization in order to limit the amount of data stored locally on the client machine
and to prohibit unauthorized access to business objects in offline operation. The synchro-
nization solution of the J2OO framework supports the concept of implicit data collections
described in section 4.5. Both the server and the client part of the synchronization process
may be configured with a list of data collections that specify which updates for modified
objects have to be sent to the synchronization partner. While the client usually sends the
complete list of updates to the server side, the latter may define a list of data collections
depending on the connecting user and its privileges. The set of data collections has to be
coordinated with and respect the application security policy. Objects not included in at
least one data collection are not synchronized with the remote data store. On the server
side, an application-specific implementation of the IDataCollectionFactory interface is
used to determine the list of data collections configured for a particular user. Figure 5.7
illustrates the main J2OO framework classes that realize the synchronization solution.

The synchronization solution of the J2OO framework implements a mechanism to resolve
the out-of-collection problem mentioned in section 4.6.5. The client sends a list containing
the type and unique identifier for each object stored locally on the client machine to the
server side. Thereon, the server checks the contents of the list received against the data
collections currently configured for the particular user and creates a deletion command
for each object that is no longer included in any data collection. The server sends the
list of deletion commands back to the client machine where each deletion command is
applied to the local journal. Each deletion command triggers the journal to remove
a specific synchronizable object from the client’s local data store. Depending on the

57

IJournal
 IJournalPersistenceManager
persist state

UpdateInfo

IVersion
 ISynchronizable

contains
contains

manage

IController

get / add /

modify / remove

add / modify / remove

synchronizable

ISyncId

contains

ISyncClient
 ISyncServer
ICommunicationHandler
delegates
 communicates

get / apply updates
 get / apply updates

IDataCollection

references
 references

references

Figure 5.7: Classes and interfaces of the J2OO framework synchronization solution.

expected frequency of changes to the set of data collections configured for a particular
user, the mechanism to remove out-of-collection objects from the client data store must
be triggered more or less often, for example once after each login to the application client
for rarely changing data collections, or during each synchronization process for highly
dynamic data collection configurations

5.6 Operation Mode Transition

The operation mode manager component manages all transitions between different oper-
ation modes. The J2OO framework defines three distinct operation modes:

IDLE The operation mode IDLE refers to the initial phase after the enterprise appli-
cation has been started. In this operation mode, calls to the service factory, the
controller factory and the journal instance are not permitted. The operation mode
IDLE may be used to perform tasks that do not rely on application services and
where the the target operation mode is not yet defined, such as displaying a login
dialog or a dialog that lets the user choose whether to start the application client
in online or offline operation

ONLINE The operation mode ONLINE refers to the phase when the enterprise appli-
cation is connected to the J2EE application server. In this operation mode, the
online implementation for service factory and controller factory is used3. Object
modifications are tracked by the server-side journal.

3Depending on the enterprise application architecture, the service factory and/or the controller factory
implementation for online and offline operation may not differ.

58

OFFLINE The operation mode OFFLINE describes the mode of an enterprise appli-
cation running in offline operation, disconnected from the J2EE application server.
In this operation mode, the offline implementation for service factory and/or con-
troller factory is used. Additionally, the local instance of journal is used to track
object modifications.

An operation mode transition may either be initiated by the user on demand or by the
watchdog component on a server failure or restore. Figure 5.8 illustrates the possible
transitions between operation modes and their initiator actions. If the switch to a new
operation mode fails, the previous operation mode is first tried to be restored. If this
also fails, the operation mode IDLE is started.

IDLE

ONLINE

OFFLINE

on start up for

offline operation

on start up for

online operation

on demand /

on server restore

on demand /

on server failure

on exit

on exit

on exit

Figure 5.8: J2OO framework operation modes and transitions between operation modes.

During a transition to online or offline operation, the operation manager component
uses an operation mode-dependent implementation of the authentication service in order
to authenticate the user for the new operation mode. In addition, the synchronization
manager is called to initiate a synchronization process for specific synchronization events.

5.7 Configuration

The J2OO framework must be configured and customized to reflect the actual enterprise
application architecture and scenario in order to work properly. This is done by provid-
ing application-specific implementations for the ClientSettings and ServerSettings

framework classes. Both classes define methods to retrieve several factory implemen-
tations and the implementation of the local journal. In addition, both settings classes
define additional parameters to be used either on the client or on the server machine.

The concrete implementations of these settings classes have to be installed when the
enterprise application is deployed or started. As the J2OO framework is used both on
the client and the server side and reuses most of its classes in both environments, the
mechanism specifying the concrete settings implementations must also be supported in
both environments. The J2OO framework uses the Java Naming and Directory Interface
(JNDI) to register the full qualified name of the settings implementation class with a

59

JNDI context in each environment. JNDI is part of the J2EE specifications and is also
supported by newer versions of the Java 2 Standard Edition. The abstract Settings

class provides a static method that reads the settings implementation class name from
the JNDI context and creates an instance of that class. Other classes that need to read
configuration settings may retrieve the settings instance using this static method.

In addition to the actual configuration, an enterprise application may register itself as
listener to several framework components such as the OperationModeManager or the
SyncManager in order to get informed on events like operation mode switches, synchro-
nization process initiations or failures and data modifications.

5.8 Framework Integration

Most of the J2OO framework configuration parameters and integration points are covered
by the actual implementation of the ClientSettings and ServerSettings framework
classes. These settings classes have to provide several application-specific implementa-
tions for J2OO framework interfaces and classes:

Service Factory and Services Each service provided by the enterprise application
both for online and offline operation has to implement the IService interface. In
addition, a concrete implementation of the ServiceFactory class has to be spec-
ified in the settings implementation that is aware of creating application-specific
services. Depending on the enterprise application architecture used, a separate im-
plementation of ServiceFactory may be required for online and offline operation.

Controller Factory, Controllers and Business Objects Each business object in an
enterprise application that needs to be synchronized between the client and the
server machine has to implement the ISynchronizable interface and thereon im-
plements the declared methods to update the object’s state and reconcile conflicts
between different versions of the same business object. In addition, associated with
each synchronizable object, a controller instance implementing the IController

interface must be provided. These controllers are both used by the journal dur-
ing synchronization and by the enterprise application in order to add, modify
and delete business objects. IController instances are responsible for notify-
ing the local journal instance on synchronizable object creations, modifications
and deletions. The J2OO framework provides an abstract controller implementa-
tion, AbstractController, that handles the notification of modifications to the
journal instance. Finally, an implementation of the abstract ControllerFactory

class that determines the concrete controller instance to be used for a specific
ISynchronizable type has to be provided and specified within the settings im-
plementations. Depending on the enterprise application architecture used, a sepa-
rate implementation of ControllerFactory may be required for online and offline
operation.

60

Journal The concrete IJournal implementation has to be defined in the settings im-
plementation. If the enterprise application uses the default implementation of
the IJournal interface, the Journal class, an environment-specific implementa-
tion of the IJournalPersistenceManager interface that is responsible for man-
aging the persistence of the internal journal state has to be configured for the
Journal instance. The J2OO framework provides two default implementations for
the IJournalPersistenceManager interface: one to be used within an EJB con-
tainer that persists the state of the journal as an Entity Bean and one that persists
the state of the journal to the file system intended to be used on the client machine.

Synchronization Within the ClientSettings implementation, the enterprise appli-
cation client has to specify an implementation of the ICommunicationHandler

interface that is responsible for communication with the synchronization server
on the server machine. The J2OO framework provides both SyncClient and
SyncServer classes and default implementations for the ICommunicationHandler

interface suitable for synchronization using the HTTP(S) and RMI/IIOP commu-
nication protocol. Additionally, the enterprise application client has to specify a
list of SyncTrigger instances that represents the synchronization triggers on which
a synchronization process has to be initiated. The J2OO framework defines a num-
ber of SyncTrigger instances that cover the most important situations where the
initiation of a synchronization process is reasonable, for example before switching
to offline operation, after switching to online operation, after login, or when a syn-
chronizable object has been modified. For the ServerSettings implementation,
the enterprise application needs to implement the IDataCollectionFactory inter-
face that is responsible for creating a list of IDataCollection instances used to
restrict the data to be synchronized with the client machine.

Authentication Authentication, both for online and offline operation, is initiated by the
OperationModeManager class during the transition to a new operation mode. The
OperationModeManager class relies on an implementation of the IAuthentication-
Service interface that is determined by the ServiceFactory implementation spec-
ified for a particular operation mode. The credentials required for authentica-
tion have to be stored in the SecurityContext class and must implement the
ICredentials interface. The OperationModeManager retrieves the current cre-
dentials from the SecurityContext and passes them to the login method of the
IAuthentication-Service implementation.

Watch Dog If the enterprise application uses the watchdog functionality of the J2OO
framework to observer server availability and to initiate the transition to offline op-
eration on server outages, an appropriate implementation of the IWatchDog inter-
face has to be provided. This implementation completely encapsulates the business
logic for server availability checks. The IWatchDog implementation may also rely
on server-side watchdog components.

Application Client Startup As the enterprise application client relies on the environ-
ment defined by the J2OO framework, this environment has to be prepared initially
and set up by the framework. This is done by the ApplicationLauncher class that

61

is configured with the name of the concrete ClientSettings implementation and
the enterprise application client main class. The application client main class must
implement the IApplication interface which specifies a start method. Before this
start method is called by the ApplicationLauncher class, no J2OO framework
classes and settings are allowed to be called because the environment is not yet
completely set up.

62

Section 6

Architectures for
Offline J2EE Applications

This section describes architectures for offline-capable enterprise applications based on
the J2EE platform and the Java programming language. The AddressBook enterprise
application provided on the resource CD (Appendix A) implements a simple address
book application based on the offline fat client, the offline rich client and the offline
web application architecture discussed in the following sections. The sample application
demonstrates the differences regarding infrastructure requirements on the client machine,
the procedure during operation mode transition and partitioning of application logic be-
tween the client and the server. The AddressBook application uses the J2OO framework
described in section 5. Additional information on starting and exploring the AddressBook
application may be found in appendix B.

6.1 Offline-Architecture for Fat Client Applications

Providing an offline-capable architecture1 for fat client applications as described in section
2.5.2 is strongly influenced by the fact that the complete application logic and data
already resides on the client side. This simplifies the reuse of application functionality
for offline operation since no further effort is required to transfer the application logic to
the client machine. Figure 6.1 shows the essential parts of the offline-capable architecture
for fat client enterprise applications. For offline operation, an additional mechanism for
storing data locally is required. The concept of an abstract controller factory may be
used to substitute the business object persistence mechanism when switching to a different
operation mode. While the controller instances for online operation access the server-
side database, instances for offline operation may either use a locally installed database
management system or store business objects to the file system.

1’Offline-capable architecture’ and ’offline architecture’ both denote a J2EE-supported architecture
for enterprise applications that may run both in online and offline operation.

63

Client Machine
 Database Server

Machine

Fat Client

B
u

s
in

e
s
s

L
o

g
ic

B
u

s
in

e
s
s

O
b

je
c
ts

P
re

s
e
n

ta
ti

o
n

L

o
g

ic

Persistent Data

Data

Controller

Factory

Online

Operation

Local Data Store

Data
 Database

Replication

Synchronization

Module

Offline Operation

Figure 6.1: Architecture for offline-capable fat client applications.

6.1.1 Synchronization

The synchronization process is required to reconcile the local data store with the database
on the server machine. Depending on the technology used to store data on the client, the
following approaches are conceivable.

Database Replication If the client uses a JDBC-aware database system as local data
store for offline operation, replication may be achieved using a vendor-specific repli-
cation tool either based on JDBC or on a proprietary communication protocol.
Integration of such a replication tool into the fat client application may be cru-
cial in order to support synchronization during application runtime. A completely
external replication tool may not allow the Java-based application to trigger a syn-
chronization process and therefore, synchronization has to be initiated outside of
the enterprise application. Using a replication tool delegates the responsibility of
tracking changes and reconciling conflicts to the tool and frees the enterprise appli-
cation from these tasks. Although, this may limit the flexibility concerning conflict
resolution and application-specific synchronization handling.

Synchronization Module If the local data store implementation is based on files or the
database management system used does not offer a replication mechanism, a sepa-
rate synchronization module is required. Since the server machine may offer neither
a J2EE-compliant application server nor a Java runtime environment, the server
machine is not able to play an active role during synchronization. All the processing
has to take place on the client machine. Therefore, the synchronization module run-
ning on the client machine has to compare the business objects from the local data
store and the ones from the server database, to merge the two versions and to apply
the resulting modifications either to the local data store, to the server database or
to both stores. The usage of the journal-based synchronization approach described
in section 5.5 has to be enhanced in a manner that the database is able to keep track
of the changes during application operation, since these changes must be managed
centrally and not distributed across multiple clients. One feasible approach is to

64

provide a JDBC-based journal implementation that runs in the runtime environ-
ment on the client machine, but propagates each modification notification directly
to the database on the server machine. If supported by the database management
system, a solution based on database-inherent trigger mechanisms that automat-
ically maintain update information on each modification applied to the business
objects stored in the database liberates the fat client from maintaining the server
journal. A degenerated journal implementation only responsible for generating and
applying updates may be used during synchronization.

Summarized, the fact that the server does not offer a Java runtime environment requires
additional effort and a specialized solution regarding the data synchronization mechanism.

6.1.2 Operation Mode Transition

The actions to be performed during the transition between online and offline operation
are limited to synchronization and to the replacement of the data store currently active
for the enterprise application. While the synchronization is described in section 6.1.1, the
replacement of the data store may be achieved by configuring the controller factory for
offline operation, so that subsequently calls to controller instances access the local data
store.

6.1.3 Security

The fat client application implements security-related features on the client machine and
therefore does not rely on J2EE technologies for enforcing the application security policy.
Besides the location of the authentication and authorization data, the application secu-
rity is operation mode-independent and does not differ from online to offline operation.
Authentication and authorization may be performed using JAAS or any other, potentially
application-specific mechanism. To access the server-side data storage, the fat client uses
the credentials of a database account. It may be useful to introduce a database account
on a per-user base rather than a global database user in order to provide the flexibility
for restricting access to the database depending on a particular user.

For authentication in offline operation, an offline authentication approach, similar to
the one described in section 4.8.3, is required. The fat client itself is responsible for
storing the authentication data in an appropriate manner in the local data store in order
to enable the offline login module to verify to user credentials provided during offline
authentication.

6.2 Offline-Architecture for Rich Client Applications

Figure 6.2 shows an overview of the offline architecture for rich client enterprise applica-
tions. Compared to a fat client architecture, the client part of a rich client application

65

Client Machine
 J2EE Server Machine
 Database Server

Machine

Application Client
 EJB Container

Application Data

Data

P
re

s
e
n

ta
ti

o
n

L

o
g

ic

B
u

s
in

e
s
s

L
o

g
ic

Entity Bean

Persistence

Service

Factory

Offline

Operation

Business Logic

Business

Objects

Controller

Factory

Local Data Store

Data

Synchronization

Module

Authentication

Data

Data

Offline

Authentication

Online

Authentication

Online

Operation

Online

Operation

Offline

Operation

Authentication

Data

Data

B
u

s
in

e
s
s

O
b

je
c
ts

C
o

n
tr

o
ll
e
r

F
a
c
to

ry

Figure 6.2: Architecture for offline-capable rich client enterprise applications.

only consists of the presentation logic located on the client machine, and excludes the
business logic and the persistence management for business objects. In order to run
the rich client application in offline operation, the missing application logic and business
object management have to be made available on the client machine. According to the
concepts described in section 4.7.2, the business logic and management of business objects
may be reused by implementing both a service and controller factory that determines the
correct service implementation for each service depending on the current operation mode.
If running in online operation, the enterprise application is configured with a service fac-
tory that delivers a service stub for services implemented as Session Beans in the business
logic layer on the server machine. The controller factory returns a controller implementa-
tion that handles business objects implemented as Entity Beans. In offline operation, the
service factory returns a local service implementation for each service that is available for
offline operation and the controller factory creates controllers aware of persisting business
objects to the local data store. Figure 6.2 does not show a potentially co-existing web
container on the server side. A web container may be integrated if the application client
is using the HTTP(S) protocol for communication. If a web container is part of the rich
client architecture, the client machine is also required to host a HTTP(S)-aware web
container. This leads to additional infrastructure requirements for the client machine.

6.2.1 Synchronization

Depending on the enterprise application design, the synchronization module communi-
cates either with an EJB component for EJB-centric designs or with a Servlet component
for web-centric components. It is useful to base the synchronization module on as much

66

existing application logic as possible in order to profit from existing functionality and
security-related features. For example, it is a reasonable approach to reuse the controller
factory when modifying business objects during synchronization and using the security
constraints implemented therein instead of directly manipulating the data in the corre-
sponding data store. The J2OO framework synchronization solution described in section
5.5 respects these requirements and offers a configurable synchronization solution for rich
client applications.

6.2.2 Operation Mode Transition

The application logic for offline operation may either already be included in the appli-
cation client used in online operation or may be downloaded when switching to offline
operation. The ’be-prepared’-configuration described in section 4.3.2 requires the former
method because no additional effort can be carried out when coincidentally switching
to offline operation triggered by a server failure. The ’on-demand’-configuration from
section 4.3.1 supports both manners. It is even conceivable to provide a dedicated offline
application client whose appearance and functionality is adapted to the requirements of
the offline mode of a particular enterprise application. In either case, both the online-
and offline-specific application client components may be pre-installed on the client ma-
chine or may be downloaded entirely on-demand using an appropriate network download
service such as JNLP. In addition, the service factory has to be replaced by the offline-
specific implementation that creates offline services using the offline controller factory for
accessing business data.

6.2.3 Security

Offline authentication may be performed by implementing a local authentication service
that uses locally stored credentials to verify the login data provided by the user. Because
of its wide support both in the standard Java and J2EE environment, a JAAS-based
authentication system as described in section 4.8.3 may be useful. Again, the service
factory may be used to determine whether the local or the server authentication service
has to be used. Since authorization is performed on the server machine in either way,
using offline authorization is optional, depending on the particular enterprise application
scenario. Offline authentication and authorization may be useful to enhance the user’s
experience by disabling application features that the user is not authorized to use, but
should not replace server-side authentication or authorization, as mentioned in the offline
security guidelines in section 4.8.1.

6.3 Offline-Architecture for Web Applications

The web application architecture is the most server-centric architecture within the J2EE-
proposed architectures. The enterprise application runs completely on the server machine,
using a generic presentation engine, a web browser, on the client machine. Whereas this

67

architecture simplifies development, operation and maintenance because of the central-
ized approach for online operation, running a web application in offline operation requires
intense preparation of the client machine. Not only the complete application logic and
parts of the data must be transferred to the client machine, but also additional infras-
tructure services may have to be installed first. Figure 6.3 shows the architecture for
offline-capable web applications.

Client Machine
 J2EE Server Machine
 Database Server

Machine

Application Data

Data

B
u

s
in

e
s
s

L
o

g
ic

Service

Factory

Business Logic

Business

Objects

Controller

Factory

Local Data Store

Data

Synchronization

Module

Authentication

Data

Data

Offline

Authentication

Online

Authentication

Offline

Operation

Authentication

Data

Data

B
u

s
in

e
s
s

O
b

je
c
ts

C
o

n
tr

o
ll
e
r

F
a
c
to

ry

Web Browser

Presentation

Engine

P
re

s
e
n

ta
ti

o
n

L

o
g

ic

S
e
rv

ic
e

F
a
c
to

ry

Web Container
 EJB Container

Local Web Container

Presentation

Logic

Offline

Operation

Online

Operation
Offline

Operation

Synchronization

Module

Figure 6.3: Offline architecture for offline-capable web applications.

A local web container that contains the presentation logic and responds to web browser
requests is required for offline operation, since a web browser only supports the HTTP(S)
protocol for communication. Business logic and business object management may be
solved similarly to the approach for offline-capable rich client applications if an EJB-
centric application design is presumed. Unlike the rich client application architecture,
not the client component, but the web component implementing the presentation logic
within the web container uses the service factory. In a web-centric application design,
parts of the business logic including the service factory may be moved directly in the web
container.

The local web container may either be pre-installed on the client machine or may be
downloaded and installed from the server machine on demand. Section 6.3.2 proposes a
JNLP-based procedure to install a complete offline web application including the required
infrastructure on demand. Whereas on the server machine, web components typically

68

consist both of Servlet components to process requests and JSP components to display
the user interface, JSP components used in offline operation may be pre-compiled to
Servlet components on the server machine in order to reduce the technology requirements
on the client machine. Thereon, the client machine may run a lightweight web container
only supporting the Servlet API, but not the constitutive JSP API. A lightweight web
container may differ significantly from a complete J2EE-compliant web container with
respect to size, download and installation time, but also regarding performance and
scalability.

6.3.1 Synchronization

Since the synchronization solution is influenced primarily by the design of the business
logic and business objects and not by the presentation logic, the synchronization for web
applications does not differ substantially from the one used for rich client applications.
The client part of the synchronization is implemented by a web component residing in
the local web container. Consequently, the user may initialize a synchronization process
by referring to an appropriate URL using the web browser or the application by calling
the synchronization client web component directly. Alternatively, a signed Java applet
component running in the web browser may be used for the client-side synchronization
component.

6.3.2 Operation Mode Transition

The extended infrastructure requirements for running a web application in offline opera-
tion may either be pre-installed on the client machine or may be downloaded and installed
on demand. In the latter approach, the infrastructure components do not exist on the
client machine until the first transition to offline operation is initialized. This requires an
appropriate procedure that prepares the client machine during the operation mode tran-
sition but leads to the advantage that only client machines actually required to run the
web application in offline operation are installed with the infrastructure prerequisites.
Additionally, newer versions of both the enterprise application and the infrastructure
services may be downloaded and installed using the same procedure.

Within the Java environment, JNLP offers services to download and install applications
and services on demand. Figure 6.4 illustrates the schematic sequence of installing infras-
tructure and enterprise application components locally on the client machine and starting
the web application in offline operation. While running the web application in online op-
eration, the user chooses to switch to offline operation and requests a JNLP configuration
file from the web container by referring to an appropriate HTTP URL link in the online
web application client. The web browser launches the Java Web Start [Sun03d] client,
the reference implementation of JNLP, referred to as the JNLP client. This JNLP client
parses the provided JNLP configuration file and starts the web container installer first.
This installer is a custom Java program, responsible for downloading a local web con-
tainer made available as JAR file on the server-side web container and for installing the

69

Browser (Online)

request JNLP file

Java Web Start

start

Web Container Installer

Remote Web Container

download web container package

locally install

servlet container

Web Application Installer

locally install web

application into web conatiner

start

download web application package

start

Local Web Container

Browser (Offline)

open with local URL

synchronize appication data

start JNLP client

synchronize

request offline application index page

Figure 6.4: Installation sequence of an offline web application.

local web container on the client machine. Thereon, the JNLP client launches the web
application installer that is responsible for downloading and installing the offline web
application, also prepared as JAR file, into the local web container. Finally, the JNLP
client starts the local web container and points a new web browser window to the local
URL of the offline web application. Before displaying the web application’s start page,
the local web container synchronizes the local data store with the data store on the server.
This approach assumes that the local data store is implemented based on files, thus no
local database management system is required on the client machine, but a lightweight
database management system may have been downloaded and installed locally using a
procedure similar to the one used to install the local web container.

Since the web browser itself is not capable of automatically referring to a different URL
if the online web application cannot be accessed, a transparent, dynamic transition to
the offline web application is not feasible. After the web browser presents a ’page-not-
found’ error, the user may decide to point the browser to the URL of the offline web
application. Also, if the local web container and the offline web application is not yet
installed locally, a switch to offline operation on a server or communication failure is
not possible. Therefore, the ’be-prepared’-configuration described in section 4.3.2 is not
completely supported for offline web applications.

70

6.3.3 Security

As for rich client applications, authentication and authorization for web applications
must be performed on the server machine running the online web application, but may
be adapted in offline operation in order to enhance the user experience. In contrast to rich
client applications, the web browser used as client component for web applications does
not offer a standard way to locally store user credentials during online operation and to
reuse them to silently re-authenticate the user for offline operation. Thus, the application
user has to re-authenticate when switching between online and offline operation in web
applications.

71

72

Section 7

Demonstration Application

This section describes the demonstration application implementing a simple, but business
relevant use case for an enterprise application that supports both an online and offline
operation mode. The use case is similar to the one described in section 3.2. Besides
acting as ’proof of concept’ application for the J2OO framework described in section 5,
this application allows the demonstration of different offline operation modes and shows
activities happening behind the graphical user interface visible to the standard user.
Although the use case is designed for simplicity, it covers most aspects of an enterprise
application listed in section 2.2, such as a multi-tier architecture approach, multiple
users in different roles, and application-specific security constraints. The demonstration
application is provided as Java source code with building scripts and runtime prerequisites
on the resource CD (Appendix A). Additional information on running and exploring the
demonstration application may be found in appendix C.

7.1 Application Use Case

Related to section 3.2, the demonstration application realizes an expense management
tool. Figure 7.1 shows the use case diagram for the expense management application.
Employees may acquire and manage expenses disbursed for company’s concerns and
are only allowed to browse their own expense records. Each expense record entered
must be approved by the employee’s manager. Managers may therefore browse and
approve the expense records of each of their subordinates, but managers are not allowed
to modify or remove an employee’s expense record. An administrator is able to create,
modify and remove employees, to set up the relation between managers and subordinated
employees and to manage the permissions for each user. Besides this base functionality,
additional features are imaginable such as generating monthly reports of expenses for all
subordinated employees or maintaining employee profiles.

Figure 7.1 highlights the parts of application functionality that are available both in on-
line and offline operation and the ones only provided for online operation (shaded in gray

73

Employee

Manager

Administrator

manage

expenses

add expense

record

approve

expense record of

subrodinate

edit expense

record

delete expense

record

browse expense

records

includes

includes

includes

view expense

records of

subordinates

add / remove

employees

add / remove

users

view

organizational

structure

set manager for

employee

set roles

for user

Figure 7.1: Use case diagram for the expense management application scenario. Areas
shaded in gray represent use cases that are only provided for online operation.

in figure 7.1). Managing user accounts and the organization structure, as well as generat-
ing data-intense reports may not be appropriate or reasonable during offline operation, as
shown in section 4.7. Although, browsing the company’s organizational structure or dis-
playing pre-generated and stored reports may be possible in offline operation for selected
scenarios.

7.2 Architecture and Design

The demonstration application is based on an offline-capable rich client architecture as
described in section 6.2. On the server side, an EJB container with an attached rela-
tional database management system is used to handle business objects and to provide the
business logic. The client application realized as JNLP-enabled rich client communicates
directly with the EJB components on the server machine using the RMI-IIOP proto-
col. The application’s design follows the approach proposed in section 4.7.2 and uses a
service-based design. The application functionality is grouped in services, each service
implementing a relevant part of the business logic. Each service uses one or multiple
controller instances that are responsible for creating, retrieving and modifying business
objects. On the server side, both services and controllers are wrapped in Session Beans.
Business objects are implemented as value objects and are encapsulated in Entity Beans
on the server side. In offline operation, value objects are managed by a generic controller
instance that is responsible for persisting any type of business objects to the file sys-
tem. Figure 7.2 illustrates the main components of the demonstration application such
as participating services, controllers and business objects and highlights their interaction.

74

Expense

Record

Expense

Category

Employee
User

Expense Record Controller
 Expense Category Controller
User Controller
 Employee Controller

Administration Service
 Expense Service
Employee Service
Authentication Service

Application Client

B
u

s
in

e
s
s
 O

b
je

c
ts

C

o
n

tr
o

ll
e
rs

S

e
rv

ic
e
s

C
li
e
n

t

Figure 7.2: Main components of the demonstration application and their collaboration.

The following provides a description of the relevant components:

Client The graphical part of the application running on the client machine calls ser-
vice implementations directly. Controllers and business objects are not directly
accessible by the client.

Services The authentication service provides methods for user login and logout. The
administration service dedicated to users owning the administrator privilege offers
the functionality to retrieve, add and remove users, to set their privileges and pass-
word and to retrieve a list of all security roles. The employee services specifies
methods to add and remove employees, to set employee details and to retrieve col-
lections of employees depending on different criteria, such as all existing employees
or subordinates for a specific manager. The expense service offers the core ex-
pense management functionality such as creating, modifying and removing expense
records, managing expense categories and approving existing expense records.

Controllers A controller instance exists for each type of business object. All controllers
implement the same controller interface defining methods to add a new, modify or
delete an existing or return a specific or all existing business objects of a particular
type.

Business Objects The user business object represents an application user able to login
to the expense management tool. It contains the username, password and a list
of privileges with the security roles. The employee object describes a company’s
appointee, defining the name, an underlying application user and a responsible
manager. An expense record represents a single expense, having a date, description,
amount and an expense category associated with it. Each expense record belongs
to a single employee, referred to as the expense owner.

75

7.3 Security

The demonstration application implements the security concepts described in sections
4.8.1 and 4.8.3, following the ’accept-as-insecure’ approach. Therefore, all security rele-
vant checks are performed on the server side. Offline authentication using digitally signed
and locally stored user credential objects are only used to protect access to the applica-
tion client and to customize the application client’s look and feel. The server enforces
the application security policy during synchronization of modified data. The application
client defines security roles required to execute particular actions such as displaying the
company’s organizational structure or browsing a list of expense records for a particular
employee. Within the application client, these restrictions are only used to adapt the
look and feel of the user interface and to enable or disable application features for the
user’s convenience.

As proposed in section 4.8.1, the minimal amount of data required for offline operation is
transferred to and stored on the client machine. Depending on the user’s privileges and
preferences, the synchronization server decides which data is sent to the client during
synchronization. This decision mechanism is implemented using a combination of data
collections which are part of the framework described in section 5, and programmatic
security constructs mentioned in section 2.4.3.

Access to services and business objects on the server machine is realized using the stan-
dard J2EE security concepts: declarative and programmatic security. Whereas access to
several service methods is controlled completely by the fact that a user owns a specific se-
curity role or not, other service methods may be accessed with different security roles, but
on different access levels or may adapt their behaviour depending on the particular user
currently logged in, known as instance-based authorization. A call to the administration
service for example is restricted completely to users owning the ’administrator’ privilege,
where methods directly modifying an expense record business object are accessible both
for user with the ’employee’ or the ’manager’ role: employees may modify expense details
like date, description or amount, but only managers are allowed to modify the approved-
flag of an expense record. Instance-based authorization is required if a manager requests
a list of all subordinated employees. The resulting list returned to the caller depends not
only on the caller’s privileges, but mainly on the specific identity of the caller.

Security constraints are enforced either on the service level, on the controller/business
object layer or on both. Since the synchronization process accesses and manipulates
business objects not using the provided application services, but directly using controller
instances, securing access to service methods is not sufficient. As postulated in section
4.6.1, the synchronization process must not tamper with business objects regarding the
application security policy. In order to avoid duplicated security constraint checks that
both lead to duplicated code and decreased performance, security checks may be moved
back as far as appropriate towards the controllers and business objects.

76

7.4 Synchronization

Synchronization within the demonstration application is realized by integrating the syn-
chronization solution described in section 5 and by using the EJB-based default im-
plementation for the synchronization client, server and communication handler. The
application uses the synchronization manager responsible for initiating and controlling
the synchronization process. Synchronization is requested at several points within the
application, for example after logging in, during transition to a new operation mode, or
after the server restores again after a failure. Depending on the application configuration
defined, the synchronization manager is configured for specific synchronization events
and only starts synchronization processes actually triggered by one of the configured
synchronization events.

An application-specific inspector feature allows the user to inspect the state of the local
journal and the data currently stored on the local machine. If running in online operation,
the inspector shows the internal state of the server journal and all data currently residing
in the server data store. The inspector feature observes which data has been modified
in which data store and highlights synchronizable objects that are not yet synchronized
with the remote replica. In addition, a log window displays actions and potential error
messages triggered by the underlying J2OO framework using the listener concepts of the
framework.

7.5 Application Configurations

The demonstration application supports both the ’on-demand’ and the ’be-prepared’
configuration described in section 4.3. Each configuration is represented by a separate
settings implementation that specifies the required parameters such as service and con-
troller factory implementations, journal implementation and synchronization events.

7.5.1 ’On-Demand’ Configuration

When running the expense tool application with the ’on-demand’ configuration, the user
explicitly chooses whether to login in for online or offline operation. Depending on the
choice, the user is required to authenticate either with the credentials database on the
server or with the locally stored, digitally signed user object described in section 4.8.3.
Logging in for offline operation requires the expense management application to have pre-
viously synchronized the offline authentication credentials to the local data store. After
successfully authenticating, the user works in the chosen operation mode until deciding
to switch to another operation mode. During the transition sequence, the synchroniza-
tion process is initiated in order to download data required for offline operation onto
the local machine or to upload data modified in offline operation to the server. In addi-
tion, application functionality not available in the new operation mode is disabled, other
functionality exclusively provided for the new operation mode is enabled. All windows

77

displaying application data are refreshed in order to show the data actually available in
the specific operation mode. Switching between operation modes does not require the
user to re-enter the authentication credentials since the demonstration application caches
the credentials on login and uses these credentials when authenticating for the new oper-
ation mode. When running the demonstration application in online operation, the user
may initiate the synchronization process on demand. The ’on-demand’ configuration does
not offer enhanced mechanisms for error handling as required by the ’be-prepared’ con-
figuration, especially not regarding server or connectivity problems. Occurring problems
are simply displayed to the user. If an error occurs during operation mode switch, the
previous operation mode is tried to be recovered. If this fails for any reason, the user will
be remain in the logged out state.

7.5.2 ’Be-Prepared’ Configuration

The ’be-prepared’ configuration, as described in section 4.3.2, transparently handles con-
nectivity problems leading to offline operation of the application. Therefore, there is
no explicit choice whether to login in for online or offline operation. The application
itself tries to login with the authentication data on the server. If this fails because the
server is not accessible or not responsive, the application automatically switches to of-
fline operation and re-tries the authentication using the provided user credentials with
the previously locally stored authentication objects. During work with the application
in the default operation - online operation - each request is first sent to the server-side
service on a ’try-catch’ base, re-sending the request with the local service implementation
if the server is down.

As the server or the communication infrastructure between the client and the server may
be interrupted at any time, continuous synchronization is initialized right after logging
in. The synchronization is executed asynchronously since the graphical user interface
should not be blocked during the periodical synchronization. Each user action leading to
modification of data triggers a new synchronization process. If the user interface remains
idle for a certain time, a background synchronization timer initiates the synchronization
process as data may be modified on the server, resulting from actions applied by other
connected application clients.

A watchdog component running in the background periodically checks for server avail-
ability. If the server is not available or a communication timeout occurs, the watchdog
initializes a switch to offline operation. Thereon, the watchdog remains listening to
server responses on alive-check requests. As soon as the server is up and running again,
a switch to online operation is initialized. Whereas during a failover to offline operation,
synchronization may no be performed since the server will not respond any synchro-
nization requests, an explicit initiation of the synchronization process is performed when
switching back to online operation. This is recommended since data modifications during
offline operation must be expected. These modifications should be synchronized with the
server side as soon as possible. When running in offline operation, the synchronization
background thread and the background timer are suspended, also the synchronization on

78

data modifications are suppressed. In the demonstration application, the ’be-prepared’
configuration does not offer to initiate the synchronization process on demand since this
is not required in this transparent run mode.

Both the background synchronization and the watchdog functionality are provided by
the J2OO framework and are configured by the demonstration application using an ap-
propriate settings implementation for the ’be-prepared’ configuration.

79

80

Section 8

Conclusions

This section concludes the thesis with a discussion of the concepts proposed and results
achieved.

8.1 J2EE and Offline Operation

Basically, J2EE is an online-specific technology that builds on a reliable, permanent con-
nection between the client components on the client machine and the web, EJB and
back-end components on the server machine(s). This is contrary to offline operation
where an enterprise application must be able to complete its tasks without support from
the server side. In case the client machine does not run a J2EE-compliant application
server, most J2EE-specific technologies are not available on the client side and must be
replaced by other standard Java-based technologies. This fact leads to a trade-off between
pure, properly designed J2EE enterprise applications intended for online operation and
offline-capable enterprise applications that try to abstract from the J2EE-specific parts
and to reuse application components for both operation modes. The more J2EE-specific
technologies used on the server side for online operation, the more expensive is the pro-
visioning of offline operation since a larger part of the server-side components must be
re-factored or re-implemented to be able to run on the client machine.

Porting existing enterprise applications towards offline-capability may lead to a significant
effort depending on the underlying design of the existing enterprise application. Core
business logic and business object representation have to be detached from J2EE-specific
technologies such as EJBs or have to be re-implemented for offline operation. Against
the background of a well structured, highly modularized and maintainable system with
minimal duplicated code, re-implementing existing parts of an enterprise application
for offline operation is not the recommended option. When building an offline-capable
enterprise application from scratch, an adequate, offline-capable architecture as proposed
in section 6 reduces efforts resulting from offline-specific issues. In conjunction with a
modular application design discussed in section 4.7.2 that abstracts from J2EE-specific
technologies, this approach provides both online and offline operation based on a common
code base.

81

Nonetheless, since J2EE offers a wide range of support for enterprise applications, gen-
erally dispensing with any J2EE-specific features is not recommended. Concepts such
as persistence management, database connection pooling and transaction management
provided by the J2EE containers facilitate and accelerate the development of enterprise
applications. As online operation is the prevalent operation mode for most offline-capable
enterprise applications, performance, security and scalability issues are especially relevant
for the J2EE-based online operation mode.

8.2 Impact of the Enterprise Application Architecture

Comparing the enterprise application architectures specified by the J2EE platform and
the resulting solutions for offline-capable enterprise applications proposed in section 6,
the following items may be summarized regarding the architectural impact on the offline-
capable enterprise application solution:

Offline Infrastructure Prerequisites The more server-centric the architecture and
thus, the thinner the application client is for online operation, the more infrastruc-
ture is required on the client machine in order to run the enterprise application in
offline operation. While the fat client architecture - the most client-centric architec-
ture described - only requires a mechanism for locally storing the business data, the
architecture for web applications - the most server-centric architecture - depends on
a local, HTTP(S)-capable web container for presentation and interaction handling
of the web browser-based user interface.

Data Synchronization The solution for application data synchronization is widely in-
dependent from the actual enterprise application architecture since synchronization
mainly relies on the business data layer, that is similar in all architectural variants
discussed. By providing an architecture-specific communication integration, the
synchronization solution proposed in section 5 may be applied to each of the dis-
cussed architectural scenarios. Although, for scenarios where the server machine
does not provide a Java runtime environment, such as if using the fat client ar-
chitecture, the data modification tracking and synchronization must be managed
by the application client. As this important part regarding the central data store
is managed peripherally, problems in connection with concurrent modifications of
business objects and their journal information must be expected. Specific archi-
tectures may offer the possibility for alternative synchronization solutions, such as
the database replication approach for offline-capable enterprise application archi-
tectures that uses a database management system on the client machine which is
compatible with the one running on the server machine.

Operation Mode Transition Procedure While the procedure executed during an
operation mode transition is mainly controlled by the application configuration
used within the enterprise application, the architecture significantly influences the
first few steps of the procedure. Before being able to locally store and synchro-
nize application data between the client and server data store and to start the

82

enterprise application in offline mode, the transition procedure has to set up and
prepare the additional infrastructure required on the client machine. Depending on
the architecture, this may range from starting an already existing local database
management system for the fat client scenario to downloading, installing and con-
figuring a complete web container with the offline enterprise application for the web
application architecture. The transition procedure may further be detached from
the application architecture by pre-installing all infrastructure prerequisites on the
client machines or simplified, if the environment on the client machine has already
been set up during a previous operation mode switch.

Application Configurations Not all application configurations proposed in section
4.3 are supported in the same manner for all architecture variants. Figure 8.1
summarizes the configurations supported for each architecture and lists potential
preconditions and actions required during the operation mode transition for each
configuration.

not supported, since web browser is not able to switch to

offline web application if server for online operation is not

available

supported

replace data source using controller factory

trigger synchronization process / database replication

'On-Demand' Configuration
 'Be-Prepared' Configuration

 Fat Client

 Architecture

 Rich Client

 Architecture

 Web Application

 Architecture

supported, if at least one synchronization has completed

periodically check for server database availability

periodically synchronize data in background

switch to offline operation on database server failure

supported

replace service implementations using service factory

trigger synchronization process

supported, if at least one synchronization has completed

periodically check for server availability

periodically synchronize data in background

switch to offline operation on server failure

supported

download / install infrastructure prerequisites

start offline web application / local web container

point web browser to offline application URL

Figure 8.1: Supported application configurations depending on the enterprise application
architecture, their preconditions and actions during operation mode transition.

Security Realization of enterprise application security for online operation is entirely
based on the server-side security concepts. For the rich client and web application
architecture, the described J2EE security concepts are suitable. For the fat client
architecture, server-side security is limited to privileges supported by the database
management system. For offline operation, the security solution depends mainly
on offline-specific security issues and the offline security approach (section 4.8.1)
selected rather than on the architectural aspects. The technology used for the local
data store and the access control mechanisms provided by the operating system
highly affects the effort required to secure the client environment. Only a well-
protected operating system, as well as variety of additional boundary conditions
that are fulfilled may allow for an adequate security level on the client machine.

To summarize: although the fat client architecture supports the development of offline-
capable enterprise applications, it leads to monolithic applications that do not benefit

83

from the J2EE technologies provided. In addition, tracking changes in the central data
store is complicated. Web applications rely completely on server-side J2EE concepts and
use a wide range of J2EE-specific features, but pose significant infrastructure require-
ments for the client machine to run the web application in offline operation. Enterprise
applications based on the rich client architecture rely mainly on server-side technologies
for core business logic and business objects, but offer an appropriate client-side environ-
ment that facilitates the support of an offline operation mode.

8.3 J2EE Offline Framework of Application Developers

Providing an offline operation mode to an enterprise application leads to additional costs
and complexity compared to a standard J2EE online enterprise application. Offline-
specific issues like modification tracking, data synchronization and offline security have
to be tracked down and resolved for every offline-capable enterprise application. In or-
der to reduce the additional effort to implement an offline operation mode, application
developers may be supported with practical solutions in the form of reusable libraries
and implemented frameworks. By providing a framework-based, configurable solution to
application developers, the development of an offline-capable enterprise application may
be facilitated and accelerated.

This thesis proposes and implements a framework for offline-capable J2EE enterprise
applications that is aimed to solve omnipresent offline-related issues in an general, but
configurable manner. Thus, tasks like synchronization and operation mode transitions
must not be re-implemented, but may simply be configured for and adapted to a specific
enterprise application project. The framework described in section 5 offers a flexible
way to configure parameters such as the point of time, the mode and the set of data to
be synchronized and the communication protocol to be used during the synchronization
process. Other aspects such as data modification tracking or update generation should
be supported and resolved by the framework, but must not stringently be configurable
as the default implementation is expected to be suitable for most scenarios.

8.4 Limitations concerning Application Functionality

While theoretically, arbitrary application functionality may be provided for offline oper-
ation (potentially with additional requirements concerning storage space, network traffic
and performance on the client machine), it may not be reasonable to support several
kinds of application features in offline operation. For example, features that either re-
quire a large amount of or especially sensitive application data to be stored on the client
machine, features that are absolutely time critical related to results that have to be re-
flected immediately in the server data store, or actions that are not very time-consuming
to complete from the user’s point of view, but expensive to realize in offline operation.
In addition, application functionality, that can not be provided independent from a spe-
cific J2EE technology not supported on the client machine, or that extensively relies on

84

back-end services, may not be available for offline operation. Summarized, each feature
may be audited based on a cost-benefit and risk analysis. If benefits prevail and risks
are acceptable, the application feature may be supported in offline operation. Otherwise,
the particular feature may be limited to online operation only.

85

86

Section 9

Outlook

This section takes a brief outlook into the future of offline operation for enterprise ap-
plications. Further efforts are suggested in order to enhance both the conceptual and
programmatical solutions provided in this thesis.

The architectural and design-oriented concepts for development of offline-capable J2EE
enterprise applications and the framework provided have proven their usefulness for the
demonstration applications. Nonetheless, further investigations of offline-related require-
ments posed by specific enterprise applications scenarios may reveal additional parameters
and concepts to be supported by the framework for development of offline-capable en-
terprise applications. It may be necessary to further enhance the prototypic framework
based on feedback from offline enterprise application projects, both related to function-
ality and performance.

The synchronization solution proposed as part of the framework may suffer from short-
comings in real world scenarios. Especially, the performance of the synchronization pro-
cess is crucial as particular scenarios may require nearly continuous synchronization in
the background. The synchronization process proposed may be optimized by evaluating
further state information on completed synchronization processes and modifications done
since the last synchronization in order to decide whether a synchronization process has
to be initiated and which steps of the process have to be executed. The vector-based
versioning mechanism may not scale for enterprise applications that have large numbers
of application clients and objects that need to be synchronized between different data
stores. The versioning mechanism provided may therefore be replaced by a more scalable
approach depending on the actual requirements. In general, there is a trade-off between
the amount of object version information stored on each replica and the amount of data
that has to be transferred between two replicas in order to determine the set of updates
to be exchanged during synchronization.

Concurrency issues resulting from simultaneously running synchronization processes initi-
ated by multiple application clients, object locking during synchronization, and business-
specific relations and constraints between multiple synchronizable objects have to be
investigated further.

87

Related to security issues arising from offline operation and locally stored application
data, additional measurements and techniques are required in order to protect sensitive
data from unauthorized access and modification on the client machine. While offline-
capable enterprise applications are desired in many business sectors, an insufficient se-
curity level may inhibit the use of offline operation, especially in the financial sector.
Technologies such as encrypted file systems and enhanced authentication mechanisms
may enable a higher level of local data security.

In future, the relevance of offline-capable enterprise applications may change its direction.
While the need for on-demand, conscious work in offline mode may be reduced based on
the wider support of ubiquitous connectivity, the usage of offline operation for bypassing
short, unprepared connection interruptions may become more important in the context
of portable devices in mobile networks. This would also shift the relevance from well-
controlled, on-demand configured operation mode switches towards the proposed ’be-
prepared’ configuration.

88

Appendix A

Resource CD

The resource CD accompanying this thesis contains the complete Java source code with
JavaDoc documentation for all demonstration applications and the J2OO framework.
In addition, the resource CD provides binary prerequisites necessary for building and
executing the demonstration applications. The binaries include the JBoss application
server, version 3.2.1, that is used as J2EE-compliant application server for running the
demonstration applications.

A.1 Requirements

In order to compile, deploy and run the demonstration applications, the following tech-
nologies and tools must be supported:

� Java 2 SDK, Standard Edition, version 1.4.1 or later
available at http://java.sun.com

� Java Applet Plug-In, version 1.4.1 or later
available at http://java.sun.com

� Java Web Start, version 1.2
available at http://java.sun.com/products/javawebstart

� JBoss application server, version 3.2.1
available at http://www.jboss.org

� Ant building tool
available at http://ant.apache.org

� Read/write access to the user directory on the local file system.

For each binary prerequisite listed above, the resource CD contains a version for the
Microsoft Windows and the Linux operation system. Binaries for other operating systems
may be available at the URLs listed above.

89

A.2 CD Layout

ResourceCD
+- bin
+- linux Binary Prerequisites for Linux Operating Systems
+- win32 Binary Prerequisites for Windows Operating Systems

+- doc Diploma Thesis Paper, Abstract in English and German
+- ear Pre-built EARs for Demonstration Applications
+- src
+- AddressBook AddressBook Demonstration Application Source Code
+- ExpenseTool ExpenseTool Demonstration Application Source Code
+- J2OO J2OO Framework Source Code
+- ObjectSigning Object Signing and Verification Source Code

90

Appendix B

AddressBook Application

This section describes the deployment and execution of the AddressBook demonstration
application. Using a simple address book scenario with limited functionality, the Ad-
dressBook application demonstrates an offline-capable J2EE enterprise application based
on the three architectural solutions discussed in section 6.

B.1 J2EE Application Server Configuration

An instance of the JBoss application server must be running on the local machine, con-
figured with the JBoss default properties listed in table B.1:

Property Name Property Value
Version 3.2.1
Host Name localhost
Naming Service Port 1099
HTTP Service Port 8080

Table B.1: JBoss application server properties.

The JAVA HOME environment variable has to be set to the location of the Java runtime
environment.

B.2 Java Source Compilation & Building

The Java source code of the AddressBook application is available on the resource CD in
the directory <cd>/src/AddressBook/. Prior to building the EAR file, the content of
the resource CD has to be copied to a writable directory on the local file system. <cd>

refers to the base directory on the file system where the copy of the resource CD resides.
The AddressBook enterprise application archive (EAR) file can be created with the Ant
building tool using the following command:

91

ant -f <cd>/src/AddressBook/build.xml

The resulting EAR file AddressBook.ear is located in <cd>/src/AddressBook/build/.
There is a pre-built EAR file available in <cd>/ear/.

B.3 Deployment

The AddressBook demonstration application is deployed by copying the EAR file to the
JBoss deployment directory:

copy <cd>\ear\AddressBook.ear <jboss>\server\default\deploy\ (Windows)

cp <cd>/ear/AddressBook.ear <jboss>/server/default/deploy/ (Linux)

<jboss> refers to the JBoss installation base directory. Since the JBoss application server
supports hot deployment of enterprise applications, all components of the AddressBook
application are deployed automatically.

B.4 Starting the AddressBook Application

All application client variants of the AddressBook demonstration application can be
started from the web page at

http://localhost:8080/AddressBook/

referred to as the AddressBook index page.

During application runtime, data required for offline operation is stored in the directory
<user.home>/.AddressBook where <user.home> refers to the home directory of the sys-
tem user that is configured by the Java system property user.home. Each application
client variant maintains its own local data store that is located in the appropriate subdi-
rectory WebClient, RichClient or FatClient. In addition, infrastructure prerequisites
for the offline web application are also stored in separate subdirectories. When deleting
the local data directory containing offline-related data, the library cache of the Java Web
Start client has to be cleaned in order to enable the proper re-installation of the offline
web application infrastructure prerequisites the next time the web client is started in
offline operation.

B.4.1 Web Client

The AddressBook web client is started by pointing the web browser to the URL

http://localhost:8080/AddressBook/fc/GetAllAddresses

or by using the appropriate link on the AddressBook index page. Figure B.1 shows the
address list screen of the AddressBook web client containing test address entries.

92

Figure B.1: Web client address list screen.

Address entries can be managed using the appropriate buttons ’New Address’, ’Edit
Address’ and ’Delete Address’ in the tool bar of the web client. Data synchronization is
initialized using the ’Synchronize Data’ button. Clicking the button displays a new web
page with an embedded Java applet implementing the synchronization client. During the
loading of the Java applet, a security confirmation alert is displayed by the applet plug-in
since the synchronization applet requires access to the local file system in order to store
data for offline operation. The actual synchronization of the local data store with the
data in the server database is started by clicking the synchronization button in the center
of the screen.

The offline version of the AddressBook web application can be installed and started
either by using the appropriate link on the AddressBook index page or by clicking the
’Go Offline’ button in the online web client. Both ways start the JNLP-based installation
of the offline web application described in section 6.3.2 that installs a local web server and
deploys the offline web application archive to the local web server. The locally installed
web server is an instance of the Jakarta Tomcat server running on port 9090. During the
installation procedure, several security confirmation alerts are presented since the offline
installation program requires access to the file system. Finally, a new web browser window
displaying the offline web client is opened. Once the infrastructure prerequisites and the
offline web application are installed, the offline web client may also be started by using
the appropriate link on the AddressBook index page. The offline web client functionality
is identical to the one provided by the online variant except from the missing ’Go Offline’
feature.

93

B.4.2 Rich Client

The AddressBook rich client is started by referring to the JNLP file located at the URL

http://localhost:8080/AddressBook/RichClient.jnlp

using the web browser. An appropriate link is listed on the AddressBook index page.
By clicking this link, the Java Web Start client starts the graphical user interface of
the rich client, as illustrated in figure B.2. Managing address entries and triggering the
data synchronization works similar to the web client. Transitions between the online and
offline operation mode are initialized using the ’Go Offline’ or ’Go Online’ button in the
tool bar of the rich client. The same application client instance is used both for online
and offline operation.

Figure B.2: Rich client address list screen.

B.4.3 Fat Client

The AddressBook fat client may also be started using JNLP by pointing the web browser
to the URL

http://localhost:8080/AddressBook/FatClient.jnlp

or by clicking the appropriate link on the AddressBook index page. The look and feel of
the fat client is identical to the rich client.

94

Appendix C

ExpenseTool Application

This section describes how to deploy and run the expense management application, herein
referred to as ExpenseTool application, that demonstrates a business-relevant use case
for an offline-capable J2EE enterprise application.

C.1 J2EE Application Server Configuration

An instance of the JBoss application server must be running on the local machine, con-
figured with the JBoss default properties listed in table B.1. In addition, the server-side
JAAS context has to be configured in the JBoss login configuration file

<jboss>/server/default/conf/login-config.xml

where <jboss> refers to the JBoss installation base directory. The following configuration
entry has to be added:

<application-policy name="ExpenseTool">

<authentication>

<login-module

code="com.canoo.diploma.expensetool.auth.server.ServerLoginModule"

flag="required">

<module-option name = "unauthenticatedIdentity">

anonymous

</module-option>

<module-option name="principalsQuery">

select PASSWORD from EJBUSEREJB where USERNAME=?

</module-option>

<module-option name="rolesQuery">

select PRINCIPALLIST from EJBUSEREJB where USERNAME=?

</module-option>

</login-module>

</authentication>

</application-policy>

95

This entry configures the source of the server-side authentication data and the login
module to be used whenever the application client tries to authenticate itself with the
JBoss application server or one of its containers.

The JAVA HOME environment variable has to be set to the location of the Java runtime
environment.

C.2 Java Source Compilation & Building

The Java source code of the ExpenseTool application is available on the resource CD in
the directory <cd>/src/ExpenseTool/. Prior to building the EAR file, the content of
the resource CD has to be copied to a writable directory on the local file system. <cd>

refers to the base directory on the file system where the copy of the resource CD resides.
The AddressBook enterprise application archive (EAR) file can be created with the Ant
building tool using the following command:

ant -f <cd>/src/ExpenseTool/build.xml

The resulting EAR file ExpenseTool.ear is located in <cd>/src/ExpenseTool/build/.
There is a pre-built EAR file available in <cd>/ear/.

C.3 Deployment

The ExpenseTool demonstration application is deployed by copying the EAR file to the
JBoss deployment directory:

copy <cd>\ear\ExpenseTool.ear <jboss>\server\default\deploy\ (Windows)

cp <cd>/ear/ExpenseTool.ear <jboss>/server/default/deploy/ (Linux)

Since the JBoss application server supports hot deployment of enterprise applications, all
components of the ExpenseTool application are deployed automatically.

C.4 Creating the Test Data Set

The ExpenseTool enterprise application requires a set of test data containing user logins
and expense records. The JNLP-based test data tool that creates a predefined set of test
data can be started using the appropriate link on the web page at

http://localhost:8080/ExpenseTool/

referred to as the ExpenseTool index page. During startup of the test data tool, a security
confirmation alert is presented since the test data tool requires access to the local file
system. By applying the test data set, all ExpenseTool application data, both on the
server and the client machine, is reset.

96

C.5 Starting the Application Client

The application client of the ExpenseTool demonstration application can be started from
the ExpenseTool index page.

During application runtime, data required for offline operation is stored in the direc-
tory <user.home>/.ExpenseTool and its subdirectories, where <user.home> refers to
the home directory of the system user that is configured by the Java system property
user.home. For each application user logging into the ExpenseTool application, a sepa-
rate local data store with a corresponding journal is created in an appropriate subdirec-
tory that is named by the username of the user logged in.

C.5.1 Application User Logins

The user logins listed in table C.1 are pre-configured for test purposes.

Username Password Privileges
employee employee user, sync, employee
manager manager user, sync, employee, manager
admin admin user, sync, employee, admin

Table C.1: ExpenseTool application user logins with associated privileges.

Table C.2 lists and describes the security roles used by the ExpenseTool application.

Security Role Description of Privileges
user log into the ExpenseTool application
sync synchronize data and work in offline operation
employee manage own expense records
manager approve expense records of subordinates
admin manage users and employees

Table C.2: Security roles used by the ExpenseTool application.

Both the ’on-demand’ and the ’be-prepared’ configuration described in section 4.3 are
supported by the ExpenseTool application.

C.5.2 Starting the ExpenseTool in ’On-Demand’ Configuration

The ExpenseTool application client configured for the ’on-demand’ mode can be started
by using the appropriate link on the ExpenseTool index page. The ExpenseTool appli-
cation client is started by Java Web Start. During startup, a security confirmation alert
is presented since the ExpenseTool requires access to the local file system. In the login
dialog presented, the user can select to start the application client in online or offline
operation. Login to offline operation is only possible after the successful completion of

97

at least one synchronization process. After logging into the ExpenseTool with one of the
user logins listed in table C.1, the application working desk is presented. Depending on
the user privileges and the windows opened, the graphical user interface may look like
shown in figure C.1.

Figure C.1: Working desk of the ExpenseTool application with several windows opened.

The ’Inspector’ window shows the state of the local journal, the data stored in the local
data store on the client machine and, if running in online operation, the state of the
journal and data on the server machine. Gray shaded entries in the journal table of the
’Inspector’ window indicate that the synchronizable object represented by the journal
entry has been synchronized with the local and the server data store. Entries in black
have been modified either on the client or the server machine since the last synchronization
process was completed. The ’Inspector’ feature significantly decreases the performance
of the ExpenseTool application when it is visible as the ’Inspector’ window is updated
on each data modification.

The ’Log Window’ feature displays a selection of messages for J2OO framework events
such as transition to a new operation mode, results of synchronization processes and data
modifications. The ’Log Window’ also shows the stack trace of potential exceptions.

When using the ’on-demand’ configuration, the ’Go Online’, ’Go Offline’ and ’Synchro-
nize’ buttons may be used to switch between online and offline operation and to initialize
data synchronization on demand.

98

C.5.3 Starting the ExpenseTool in ’Be-Prepared’ Configuration

By using the appropriate link on the ExpenseTool index page, the ExpenseTool appli-
cation client can be started with the ’be-prepared’ configuration. Compared to the ’on-
demand’ configuration, there is no choice between online or offline authentication and no
possibility to change the operation mode or to synchronize data on demand. The actual
operation mode and data synchronization is transparently controlled by the ExpenseTool
application client or the underlying J2OO framework, respectively.

A server or communication infrastructure failure may be simulated by terminating the
JBoss application server process while the ExpenseTool application client is running.
Seconds after the server shutdown, the application client switches to offline operation.
As soon as the JBoss application server is restarted again, the application client switches
back to online operation.

99

100

Bibliography

[Alu01] D. Alur, D. Malks, and J. Crupi. Core J2EE Patterns, Best Practices
and Design Strategies. Sun Microsystems Press / Prentice Hall PTR,
2001.

[Bod+02] S. Bodoff, D. Green, K. Haase, E. Jendrock, M. Pawlan, and B. Stearns.
The J2EE Tutorial. Addison-Wesley, 2002.

[Bra+00] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensi-
ble Markup Language (XML) 1.0 (Second Edition). World Wide Web
Consortium W3C, 2000.
http://www.w3.org/TR/REC-xml

[Ced03] P. Cederqvist et al. Version Management with CVS. CollabNet, Inc.
2003.
http://www.cvshome.org

[Coh03] N. H. Cohen. IBM Research Report: Design and Implementation of
the MNCRS Java Framework for Mobile Data Synchronization. IBM
Research Division, 2003.
http://www.research.ibm.com/sync-msg/RC21774.pdf

[Cow01] D. Coward. Java Servlet Specification, Version 2.3. Sun Microsystems
Inc., 2001.
http://www.jcp.org/aboutJava/communityprocess/final/jsr053

[Dem+01] L. DeMichiel, L. mit Yalinalp, and S. Krishnan. Enterprise JavaBeans
Specification, Version 2.0. Sun Microsystems Inc., 2001.
http://java.sun.com/products/ejb/docs.html

[Ell+01] J. Ellis, L. Ho, and M. Fisher. JDBC 3.0 Specification. Sun Microsys-
tems Inc., 2001.
http://java.sun.com/products/jdbc/download.html

[Fow02] M. Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2002.

[Gam+95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pattern:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

101

[Gon98] L. Gong. Java Web Start. Sun Microsystems Inc., 1998.
http://java.sun.com/products/jdk/1.2/docs/guide/security

[HWG03] HTML Working Group. HyperText Markup Language (HTML) Home
Page. World Wide Web Consortium W3C, 2003.
http://www.w3.org/MarkUp

[Ken+03] S. Kent, T. Polk, R. Housley, and S. Bellovin. Public-Key Infrastructure
(X.509) (pkix). The Internet Engineering Task Force, 2003.
http://www.ietf.org/html.charters/pkix-charter.html

[Lai+99] C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers. User Au-
thentication and Authorization in the Java Platform. Sun Microsystems
Inc., 1999.
http://java.sun.com/security/jaas/doc/acsac.html

[Orf97] R. Orfali. Essential Client/Server Survival Guide, Second Edition. John
Wiley & Sons, 1997.

[Pel53] E. Pelegr-Llopart. JavaServer Pages Specification, Version 1.2. Sun
Microsystems Inc., 2001.
http://www.jcp.org/aboutJava/communityprocess/final/jsr053

[Sch01] R. W. Schmidt. Java Network Launching Protocol and API Specifica-
tion (JSR-56), Version 1.0.1. Sun Microsystems Inc., 2001.
http://java.sun.com/products/javawebstart/download-spec.html

[Sha01] B. Shannon. Java 2 Platform Enterprise Edition Specification, v1.3.
Sun Microsystems Inc., 2001.
http://java.sun.com/j2ee/j2ee-1 3-fr-spec.pdf

[Shi00] R. Shirey. Internet Security Glossary. The Internet Engineering Task
Force, 2000.
http://www.ietf.org/rfc/rfc2828.txt

[Sin+02] I. Singh, B. Stearns, and M. Johnson. Designing Enterprise Applica-
tions with the J2EE Platform. Addison-Wesley, 2002.

[Sto83] P. Stott. Detection of Mutual Inconsistency in Distributed Systems.
IEEE Transaction on Software Engineering, 9(3), 1983.

[Sun03a] Java 2 Enterprise Edition, Frequently Asked Questions. Sun Microsys-
tems Inc., 2003.
http://java.sun.com/j2ee/faq.html

[Sun03b] Javadoc Tool Home Page. Sun Microsystems Inc., 2003.
http://java.sun.com/j2se/javadoc/index.html

[Sun03c] Java Foundation Classes. Sun Microsystems Inc., 2003.
http://java.sun.com/products/jfc

102

[Sun03d] Java Web Start. Sun Microsystems Inc., 2003.
http://java.sun.com/products/javawebstart

[Sun99] Java Naming and Directory Interface Application Programming Inter-
face (JNDI API). Sun Microsystems Inc., 1999.
ftp://ftp.javasoft.com/docs/j2se1.3/jndi.pdf

[Syn02] SyncML Sync Protocol, version 1.1.1. SyncML Initiative Ltd., 2002.
http://www.syncml.org

103

