
CRYPTANALYSIS OF SIGABA

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Computer Science

By

Wing On Chan

May 2007

© 2007

Wing On Chan

ALL RIGHTS RESERVED

2

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp

Dr. John Avila

Dr. Robert Chun

APPROVED FOR THE UNIVERSITY

3

ABSTRACT

CRYPTANALYSIS OF SIGABA

by Wing On Chan

SIGABA is a World War II cipher machine used by the United States. Both the
United States Army and the United States Navy used it for tactical communication. In this
paper, we consider an attack on SIGABA using the largest practical keyspace for the
machine. This attack will highlight the strengths and weaknesses of the machine, as well as
provide an insight into the strength of the security provided by the cipher.

4

Table Of Contents

ABSTRACT..4
List of Figures... 6
List of Tables.. 6
1. Introduction...7
2. SIGABA Machine...8

2.1 Rotors.. 8
2.2 Encryption... 10
2.3 Decryption...13
2.4 Physical Security & Operation Guidelines... 14
2.5 Theoretical Keyspace.. 15
2.6 Practical Keyspace.. 16

3. Attacks On SIGABA...18
3.1 Previous Work...18
3.2 SIGABA Attack.. 18
3.3 Phase 1.. 19
3.4 Phase 2.. 23

4. Attack Refinements...24
5. Attack Comparisons..30
6. Simulator...32
7. Conclusion.. 33
 8. References..34
Appendix A: Rotor Permutations..35
Appendix B: Simulator Commands.. 36
Appendix C: Glossary...37

5

List of Figures

Figure 1: ECM Mark II, CSP 889/2900 [9].. 7
Figure 2: ECM Mark II - Cipher/Control Rotor & Index Rotor [9]....................................... 8
Figure 3: SIGABA Cipher/Control Rotors - Normal Orientation [1].....................................9
Figure 4: SIGABA Cipher/Control Rotors - Reverse Orientation [1].................................... 9
Figure 5: SIGABA Index Rotor [1].. 9
Figure 6: ECM Mark II Rotor Cage [9].. 10
Figure 7: SIGABA Encryption [1]..11
Figure 8: Control & Index Rotor ORing [1]... 12
Figure 9: SIGABA Decryption [1]..13
Figure 10: Type 8 Safe Locker [5]..15
Figure 11: Army Field Safe CH 76 [5]... 15
Figure 12: Tree Before Branch Collapsing and Pruning [1]...21
Figure 13: Tree After Branch Collapsing and Pruning [1]... 21

List of Tables

Table 1: Active Index Rotor Inputs...11
Table 2: Cipher Rotor Stepping Table.. 12
Table 3: Encryption/Decryption Quirk... 13
Table 4: Random Case [1].. 22
Table 5: Causal Case [1]... 22
Table 6: Index Permutation (5, 4, 7, 9, 3, 8, 1, 0, 2, 6) [1]... 25
Table 7: Index Permutation Input Pairs [1]...26
Table 8: Cipher Rotor Stepping Ratios [1]... 26
Table 9: Example Stepping Ratios [1].. 27
Table 10: Sets Of Pairs Consistent with Letter Counts 1, 2, 5, 7, and 11 [1]....................... 27
Table 11: Secondary Known Plaintext [1]..29
Table 12: Cipher Rotor Steppings...29
Table 13: Attack Comparisons [1].. 31

6

1. Introduction

The ECM (Electronic Cipher Machine) Mk II is a cipher machine used by the United States
(U.S.) during World War II and into the 1950s. The ECM Mk II was also known by several
other names, depending on which branch of the United States military was using it. The
U.S. Army called the machine the SIGABA or Converter M-134. The U.S. Navy called the
machine the CSP-888/889 [6]. For this paper, we will use the Army designation of
SIGABA for the machine. SIGABA was created out of the need for a better rotor cipher
machine since U.S. cryptographers were aware of the susceptibility of single stepping rotor
machines. William Friedman, the directory of the U.S. Army’s Signals Intelligence Service,
and his associate, Frank Rowlett were the ones who developed the SIGABA. Friedman
developed a system to randomize rotor movement, while Rowlett came up with a way to
advance rotors with other rotors. The strength of SIGABA was proven during its service
lifetime, as there is no record of a successful cyptological attack on the machine. During the
war, it is said that the Germans were never able to break SIGABA. It is also said that the
Japanese gave up on breaking SIGABA due to the seemingly random nature of the stepping
[3].

Figure 1: ECM Mark II, CSP 889/2900 [9]

7

2. SIGABA Machine

The SIGABA cipher machine is a rotor-based machine that uses rotating, wired rotor
wheels that are removable and interchangeable. SIGABA is similar to the Enigma machine,
except that SIGABA uses 15 rotors to encrypt a message compared to the Enigma’s three
rotors [2]. For the 15 rotors, there are three groups of rotors, five cipher rotors, five control
rotors, and five index rotors. The input is from a typewriter-style keyboard and the cipher
produces output on an output device, usually a paper tape. The SIGABA machine has a
rotor cage that holds the 15 rotors. The cage holds three banks of rotors, with a bank for
each type of rotor: cipher, control and index.

2.1 Rotors

The cipher and control rotors each have 26 contacts on the two faces of the rotor, while the
index rotors have 10 contacts on each face. The cipher and control rotors permute one letter
of the alphabet to another letter, while the index rotors permute one digit to another digit.
The rotors used for the cipher and control rotors could be interchanged to serve as either a
cipher rotor or a control rotor. They could also be inserted into the rotor cage in a reversed
orientation. The index rotors are inserted only in the forward orientation and are not
inserted in a reversed orientation. There is nothing to prevent the rotor from being inserted
in a reversed orientation. Before June 1945, the operation instructions allowed the index
rotors to be inserted in reverse. However, after June 1945, when new instructions were
released, the index rotors were left in the normal position [4]. For the purposes of this
paper, whether this rotor is reversible is not important, as will be explained in a later
section. Therefore, we will assume that the index rotors are only inserted in a forward
orientation for analysis and comparison purposes.

Figure 2: ECM Mark II - Cipher/Control Rotor & Index Rotor [9]

When the cipher and control rotors are inserted in the normal orientation, the current
position is shown to the user as a right side up letter that steps in reverse alphabetic order
(assuming the rotor is in a position that will step). For example, in Figure 3, a rotor inserted
in the normal position at letter O will have the letter P above it and the letter N below it. If
the rotor steps, the current position will change to N with the letter O above it and the letter

8

M below it. If the rotor is inserted in the reversed orientation, the current position is shown
upside down. Using the same example for the normal orientation, except with the rotor
inserted in the reverse orientation (Figure 4), the user would see an upside down O as the
current position, with an upside down N above it and an upside down P below it. If the
rotor steps, the current position will be an upside down P with an upside down O above it
and an upside down Q below it.

Figure 3: SIGABA Cipher/Control Rotors -
Normal Orientation [1]

Figure 4: SIGABA Cipher/Control Rotors -
Reverse Orientation [1]

The index rotors are inserted in only the normal orientation (though as previously
mentioned, they could be inserted in a reversed orientation), with the current position
appearing as a right side up digit. However, unlike the cipher and control rotors, which
appear in a decreasing order in the normal orientation, the index rotors appear in an
increasing order in the normal orientation.

Figure 5: SIGABA Index Rotor [1]

The machine is initialized by inserting the rotors into their respective banks within the rotor
cage. However, before the rotors can be inserted into the rotor cage, certain decisions must
be made regarding the key. First, the five rotors that will be used as cipher rotors and the
five rotors that will be used as control rotors must be selected from the ten available rotors.
Next, a permutation of the five cipher rotors and a permutation of the five control rotors
need to be decided. After the permutation is selected, the orientations of the ten rotors must
be selected. For each of the ten rotors, an initial starting position must be picked. Once that
is done, the ten rotors are inserted into the cipher rotor bank and the control rotor bank
within the rotor cage. After the cipher and control rotors are inserted, the five index rotors
must be set and inserted. A permutation of the five index rotors must be selected, as well as
their starting position. Index rotors can only be inserted in one orientation. Once the
permutation and starting positions are chosen, the index rotors can be inserted into the

9

index rotor bank in the rotor cage. Once that is done, the machine is initialized with the key
and is now ready to encrypt or decrypt a message.

Figure 6: ECM Mark II Rotor Cage [9]

2.2 Encryption

During the encryption process, the plaintext is entered using the keyboard. When a key is
pressed on the keyboard, a signal is generated that is sent to two of the three banks of rotors
in the rotor cage. The first signal is sent to the left side of the cipher rotor bank. It is then
permuted through the five cipher rotors to produce the ciphertext. The second signal is sent
to the right side of the control rotor bank. However, the signal is handled differently from
the signal sent to the cipher rotor bank.

For the control rotors, the signal is used to energize the input into the control rotor bank.
Four inputs to the control rotor bank are energized when a key is pressed on the keyboard.
The four inputs are always ‘F’, ‘G’, ‘H’, and ‘I’ regardless of which letter was pressed on
the keyboard. These four signals are then permuted through the control rotors in a right to
left fashion. Once the four signals emerge from the left side of the control rotor bank, the
signals go through an ORing to determine which inputs for the index rotor bank are
energized. The following table shows the index rotor bank inputs that are energized for the
different control rotor outputs.

10

Figure 7: SIGABA Encryption [1]

I1 = B I4 = F || G || H I7 = P || Q || R || S || T
I2 = C I5 = I || J || K I8 = U || V || W || X || Y || Z
I3 = D || E I6 = L || M || N || O I9 = A

Table 1: Active Index Rotor Inputs

In the table, Ij is the jth input of the index rotor bank. For example, “I7 = P || Q || R || S || T”
means that the seventh input to the index rotor bank is active if any of the four outputs from
the control rotor bank are P, Q, R, S, or T. I0 is never energized. Table 1 applies to the CSP-
889 version of the machine only. The later CSP-2900 version operates in a different
manner. In that version, the mapping of the output letters of the control rotors to active
inputs of the index bank was different. In addition, instead of just ‘F’ ‘G’, ‘H’, and ‘I’ being
active inputs to the control rotors, ‘D’ and ‘E’ were also activate [4].

After each letter that is keyed, one to three of the control rotors will step. Counting from the
left, the fast control rotor is the third rotor in the control rotor bank, the medium control
rotor is the fourth rotor in the control rotor bank, and the slow control rotor is the second
rotor in the control rotor bank. The fast rotor steps once for each letter keyed into the
keyboard. The medium control rotor steps once every time the fast rotor transitions from O
to another letter. For the forward orientation, this would be a transition from O to N. For
the reverse orientation, it would be from O to P. In [4], it is claimed that for a reversed
rotor, the transition occurs at A to B rather than O to P. Our description of the transition
occurring at O to P is consistent with the two simulators at [7] and [8]. The slow control
rotor steps once every time the medium control rotor makes a transition from O to N in the
forward orientation or O to P in the reversed orientation. The first and fifth control rotors

11

remain fixed during operation and are not changed by the encryption process like the fast,
medium, and slow control rotors.

Due to the ORing of the control rotor bank’s output, one to four of the index rotor bank’s
inputs will be energized. The active signals are permuted by the index rotor bank in a left to
right fashion. The outputs of the index rotor bank are then ORed again, though in a
different manner, to determine which cipher rotor should step. The following table shows
which cipher rotor will step based on the outputs of the index rotor bank.

C0 = O0 || O9

C1 = O7 || O8

C2 = O5 || O6

C3 = O3 || O4

C4 = O1 || O2

Table 2: Cipher Rotor Stepping Table

The table is in the format of Cj = Ox || Oy. This means that cipher rotor j will step if the
outputs of the index rotor bank contain either x or y.

Figure 8: Control & Index Rotor ORing [1]

An interesting quirk of SIGABA’s encryption algorithm is that the letter Z, and a word
space are treated slightly differently than other letters. Other letters are sent to the cipher
rotor bank without any modifications. However, the letter Z, and a word space are modified
before being sent to the cipher rotor bank. If the letter Z is input on the keyboard, it is
changed to an X before being sent to the cipher rotor bank. If a word space is input on the
keyboard, it is changed to the letter Z before being sent to the cipher rotor bank.

12

2.3 Decryption

Decryption works in the same manner as encryption except with two changes. The machine
is initialized in the same manner with the same key. However, when a key is pressed on the
keyboard, a signal is sent to the right side of the cipher rotor bank instead of the left side.
The second change is how the decryption of the letter Z and a word space work. When the
output of the cipher rotor bank is the letter Z, it is changed to a space before being sent to
the output device. Something to note here is that the decrypted plaintext will never have the
letter Z in it. Any Z’s in the original plaintext will be decrypted as an X. Table 3 shows
what happens to the letter Z and spaces during encryption and decryption.

Figure 9: SIGABA Decryption [1]

Plaintext ZERO ONE TWO THREE FOUR FIVE SIX
Ciphertext IEQDEMOKGJEYGOKWBXAIPKRHWARZODWG

Decrypted Ciphertext XERO ONE TWO THREE FOUR FIVE SIX

Table 3: Encryption/Decryption Quirk

13

2.4 Physical Security & Operation Guidelines

A cryptographic system is only as strong as the people who operate it. The United States
considered physical security important during the war, as evident by the operational
guidelines and equipment available for SIGABA that was not required for the actual use of
the machine. Although reliance on physical security was used during the war, today, heavy
reliance on physical security of a cryptographic system could be a serious mistake.
Kerckhoffs Principle states that a cryptographic system’s strength should only depend on
keeping the key a secret while not keeping the system’s algorithm a secret. This means that
an attacker is assumed to have full knowledge of how the algorithms and the system work.
In other words, the system is not a black box system that obtains its strength from “security
by obfuscation”. During the war, the United States formally trained operators and
monitored their compliance with operation procedures. When procedures were not
followed, memorandums were sent to inform operators about the errors and the
consequences of those errors. The following are excerpts from the memorandum in [9].

“The principles of communication security cannot be over stressed, for such security is
vital to the success of operations. Errors which seem minor in themselves may, when
accumulated, offer to the enemy an entering wedge for the eventual compromise of a
system. The object of this memorandum is to enlist your cooperation in protecting our
cipher systems and hence our national security.”

“THE PRICE OF SECURITY IS ETERNAL VIGILANCE.”

“CARELESS COMMUNICATIONS COST LIVES”

As for the physical security of these cipher machines, safes were often used to house them.
A Type 8 Safe Locker (Figure 10) used to house the SIGABA machines weighed 172
pounds when empty [5], with the actual SIGABA machine weighing around 94 pounds [9].
A “semi-portable” field safe, the Army Field Safe CH 76 (Figure 11), was used for
installation of the cipher machine at advanced bases. The total weigh of this safe, the cipher
machine, and it’s wooden box, was around 650 pounds, with provisions for the housing of
two M1 Thermite bombs [5].

In [5], the operations manual has several sections (111 – 117) that deal specifically with
destruction of the machine and any other confidential information related to the machine,
such as code lists and rotors. These sections include instructions on how to remove and
dispose of the wires within a rotor, how to smash the rotor wheels, where to dispose of the
pieces, and even how to use the explosives in the demolition kit to destroy the machine if
the need arose. One wonders how this occurred on a naval vessel that was under attack and
in danger of sinking.

14

In addition to the safes, the machines were usually under armed guard. The Americans had
strict rules about where SIGABA could be deployed. The area it would be used in had to be
secure. SIGABA wasn’t to be used in the field unless it was at a base where it was under
constant security. The machine wasn’t given to Allied nations during the war since the
United States was afraid that if their strong cipher made it to the hands of the enemy
somehow, that the enemy ciphers would become “invincible”. The POTUS-PRIME link
that is described later may be a partial exception to this.

Figure 10: Type 8 Safe Locker [5] Figure 11: Army Field Safe CH 76 [5]

2.5 Theoretical Keyspace

First, we will discuss the theoretical keyspace of the SIGABA machine. We consider a key
to include the follow.

1. The choice of the five cipher rotors.

2. The choice of the five control rotors.

3. The choice of the five index rotors.

Each cipher and control rotor permute the 26 letters of the alphabet. This means that each
cipher and control rotor have 26! different possible permutations. Similarly, the index
rotors permute the digits to another digit. This means the index rotors each had 10! different
permutations. Combining these different permutations gives a theoretical keyspace of (26!)5

* (26!)5 * (10!)5 ≈ 2993 different keys for the machine. We do not need to consider the
starting positions of the 15 rotors in this calculation since we are considering all possible
rotor wirings. A different starting position would be equivalent to another rotor wiring. For

15

this reason, we can treat all the possible rotor wirings as being set to some standard starting
position. Since the index rotors do not step at all during the operation of the machine, the
(10!)5 permutations for the index rotors reduce down to 10! distinct permutations. This
reduces the theoretical keyspace down to (26!)10 * 10! ≈ 2906.

The theoretical keyspace seems to indicate that the key is the equivalent of a modern cipher
key that is 906 bits long, which is over three and a half times longer than the largest
encryption key today of 256 bits. If this were true, it would certainly explain why there are
no recorded instances of SIGABA ever being broken during the war by enemy forces.
However, is this keyspace accurate? Unfortunately, the answer is no. SIGABA did not have
a real keyspace of 906 bits. Several factors limited the actual keyspace of the machine
during its operation lifetime.

2.6 Practical Keyspace

The assumptions we made when determining the theoretical keyspace of SIGABA are
unrealistic. It would be impossible to make rotors for each possible wiring. It is also
impossible for that much equipment to be used in the field. In reality, there were only 10
rotors available for the cipher and control rotors and 5 rotors for the index rotors. There
were several sets of rotors that available for use, but for our purposes, we will consider only
one set of 15 rotors. This means that there are 10! ways to permute the 10 26-letter rotors,
and 210 ways to orient them. For each cipher and control rotor, there are 26 possible starting
positions. For each of the index rotors, there are 10 possible starting positions. This gives a
practical keyspace of 10! * 210 * 2610 * 105 ≈ 295 bits. Was this the actual keyspace available
during the operational life of the SIGABA machine? Unfortunately, it wasn’t. Two factors
reduced the practical keyspace even further.

First, the cipher rotors can be set to any starting position. However, they were usually set to
a standard position and stepped in a nonstandard manner, while at the same time, stepping
the control rotors. This effectively reduced the keyspace by a factor of 265 since the starting
position of the cipher rotors is constant. This means that the keyspace is now reduced to 10!
* 210 * 265 * 105 ≈ 272 bits, as claimed in [10].

Another factor that further reduced the practical keyspace is that a message indicator was
transmitted with the ciphertext for a message. Looking at the operation manual for
SIGABA shows that the control rotors’ starting positions are sent in the clear with the
encrypted ciphertext message [5]. If an attacker intercepted a message and knew the
meaning of the message indicator, that reduced the practical keyspace by a factor of 265.
With these two factors, the actual keyspace available for SIGABA during its operational
lifetime would have been 10! * 210 * 105 ≈ 248.4 bits. Today, a key of this size is vulnerable
to an exhaustive key search. The Data Encryption Standard (DES) uses a 56 bit key and has
been successfully attacked using an exhaustive key search. However, during World War II,

16

it would have been impossible to attempt an exhaustive key search unless there was a
shortcut attack that could reduce the keyspace to a more manageable size for World War II
era technology.

There is a variant of SIGABA used between United States President Franklin D. Roosevelt
and British Prime Minister Winston Churchill during the war that was more secure called
POTUS-PRIME1 [4]. Instead of sending the control rotor settings in the clear as part of a
message indicator, a codebook using three letter codewords was used instead. A codeword
is also used to indicate the cipher rotor settings, in addition to the control rotor settings.
These two codewords were sent with the message indicator instead. This increased the
keyspace since the cipher rotors could be set independently and the control rotor settings
weren’t sent in the clear with the message indicator. This gave the POTUS-PRIME variant
a keyspace of 10! * 210 * 265 * 265 * 105 ≈ 295.4 bits.

In Section 2.4, we mentioned that the United States did not allow access to SIGABA, even
to Allied nations. The POTUS-PRIME link seems to be a contradiction to this. However,
what most likely happened was that the machine in Britain was guarded and operated by
American forces. The operators would send and receive the messages and then relay the
messages to Churchill and his staff without giving the British direct access to the machine.

1 President Of The United States – Prime Minister

17

3. Attacks On SIGABA

3.1 Previous Work

There have been two previous attempts to attack SIGABA. The first attempt is described in
[4]. In this attack, John J. G. Savard and Richard S. Pekelney describe an attack that
requires no known plaintext. Their attack relies only on intercepted ciphertext messages
and does not rely on knowing the plaintext beforehand. For their attack, the plaintext is
recovered using Kerchoffs superimposition, which is described in [10]. The attack attempts
to reconstruct nearly complete cipher alphabets produced by the cipher rotors. By looking
at the different alphabets that are reconstructed, they can find cases of rotor steppings. Once
the wirings of the cipher rotors are reconstructed, they have the stepping motions of the
cipher rotors, which they mention can be used to attack the control rotors. This attack
requires a large amount of intercepted messages. The authors estimate that ten to fifteen
messages sent during the same day using the same key would be needed. This is highly
improbable. In their description, there was no mention of the expected work factor for this
attack.

The other attack on SIGABA is from Michael Lee [10]. In Lee’s attack, he first examines
attacking simpler versions of SIGABA that only have one, two, and three cipher rotors. The
attack on a single rotor version of SIGABA recovered the rotor wiring. In the attack on the
two and three rotor versions of SIGABA, he assumes that the wiring of the rotors is known.
The attack will recover the plaintext, the order of the rotors, and their initial positions. No
attacks are described for a four or five rotor SIGABA machine, though the estimated time
needed for attacking a four or five rotor machine using the attack on a three rotor machine
are extrapolated.

3.2 SIGABA Attack
For the attack on SIGABA, we assume that all three rotor banks can be set independently,
no settings are sent in a message indicator, that there are 10 rotors available for use as
cipher and control rotors and 5 rotors available for the index rotors and the internal wiring
of the 15 rotors is known to the attacker. Cipher and control rotors may be inserted in either
the normal or reversed orientations, while the index rotors can only be inserted in the
normal orientation. This gives us a keyspace of 10! * 210 * 265 * 265 * 5! * 105 ≈ 2102.3 bits.
Recall that the outputs of the index rotor bank are ORed together in order to determine
which of the cipher rotors will step. Instead of having 5! * 105 different index rotor settings,

we only have 52
!10
= 113,400 ≈ 216.8 distinct index rotor settings. This reduces the keyspace

down to 10! * 210 * 265 * 265 * 113,400 ≈ 295.8.

18

The attack on SIGABA will consist of two different phases. Phase 1 tries all possible cipher
rotor initial positions and determines which settings are consistent with the known
plaintext/ciphertext pair. For each setting that is consistent, we will also know which rotors
are used as cipher rotors and what orientation they are inserted into the machine in. Here,
we will refer to the rotors used, their orientations, and their initial positions collectively as a
“setting”. There will be two types of settings: random and causal. Random settings are
settings that survive Phase 1 but are incorrect settings for the plaintext/ciphertext pair.
Since Phase 1 only considers the cipher rotors, there may be an incorrect surviving setting
that is valid. However, this setting may become invalid once the control and index rotors
are also examined. The causal setting is the actual setting used to encrypt the known
plaintext to the known ciphertext. Phase 1 will recover all possible cipher rotor settings.

In Phase 2, we take the survivors from Phase 1 and attempt to recover the control rotor
settings. In this attack, the index rotor settings are not recovered directly as a permutation
of the five index rotors and their positions. The index rotor setting will be recovered as an
equivalent permutation of the 10 digits. In effect, the index rotors will be recovered as a
collapsed version of the five rotors.

3.3 Phase 1

During Phase 1 of the attack, we will need to select five of the ten available rotors to use as

cipher rotors. There are 








 10

5
 = 252 possible ways to pick five rotors. For the five selected

rotors, there are 5! ways to arrange them. For each of these rotors, we can insert them in
either the normal or reversed orientation. For each rotor, there are 26 possible starting

positions. This gives 








 10

5
* 5! * 2 5 * 265 ≈ 243.4 initial settings that we need to try.

For phase 1, we analyze the cipher rotor bank in isolation. For each initial setting, we pass a
plaintext letter through the cipher rotors to determine the corresponding ciphertext letter. If
the output of the cipher rotor bank matches the known ciphertext that we have, we attempt
to recursively test the remaining letters. After the first letter is encrypted, one to four of the
cipher rotors can step. This means that we need to try the 30 possible steppings of the
cipher rotors and determine which, if any, of the 30 possible steppings will encrypt the next
plaintext letter correctly. At each step after the initial plaintext letter, this 30 stepping test
must be done.

At first glance, the testing of all initial settings seems like a fixed amount of work and is
equivalent to an exhaustive key search. However, if we model the encryption permutations
as being uniformly random, we get a binomial distribution where the probability of a match

19

p =
26
1

and n = 30. This means that for any given letter (beyond the first), we expect the

number of survivors to grow at a rate of
26
30

 ≈ 1.15 per letter. This is a property of the

machine having five rotors. In a machine that uses the same cipher but with less than five
rotors, the growth rate is less than one, indicating a decrease in survivors, as the message
length gets longer. Such a machine would have a much weaker cipher due the decreasing
number of survivors. Attacks on machines that use the same cipher but use less than five
cipher rotors are described in [10]. The paper in [10] also extrapolates the amount of time
needed to attack the full five-rotor version of Sigaba. However, that paper fails to take into
account the branching phenomenon. While a decrease in survivors is what we would like to
see, we can still get useful information from the survivors.

The five rotor design made SIGABA more secure since it means that at any given step

beyond the first letter, there are
26
30

 ≈ 1.15 surviving paths. A way to decrease the number

of surviving paths in Phase 1 is to store a record of the survivors in a tree-like format and
merge any branches that have the same common parent node. In Figure 12, the tree has two
children for the starting position AAAAA. There are two possible steppings for the cipher
rotors from the position AAAAA. For each of those two steppings, they have a valid
stepping to the third letter in the message. If two paths both reach the same intermediate
position at the same level of the tree, which in Figure 10 would the intermediate position of
BBBBA at step 2, one of the paths can be trimmed. This is seen in Figure 11. The actual
path that is trimmed does not matter since from this step on, the two paths will be identical.
In Figure 11, the path from position BBABA at step 1 to BBBBA is trimmed and is merged
into the path from ABABA to BBBBA. Based on this trimming and merging of paths, we
can eliminate a significant number of paths if we keep track of paths we have already
visited before without decreasing our chances of finding the correct setting. Since we are
only concerned with the initial starting position (in this example AAAAA), we can prune
the branch from BBABA and “redirect” it to the child of ABABA, as shown in Figure 13.
This is partially described in [1]. In the random case, before any merging, we expect the

number of paths to increase by a factor of
26
30

 ≈ 1.154. In the causal case, we expect the

number of paths to be greater since we are guaranteed one causal match, with the remaining
elements matching in the random case. This allows us to statistically distinguish between
the causal case and the random cases. This distinction will also reduce the number of
random cases that we must test later.

20

Figure 12: Tree Before Branch
Collapsing and Pruning [1]

Figure 13: Tree After Branch
Collapsing and Pruning [1]

The results in Table 4 are derived using the following method. Given a known
plaintext/ciphertext pair, we ran a certain number of tests on it. A random setting for the
order and initial positions of the rotors was generated. Next, the first plaintext letter is
encrypted before any rotors are stepped. Here, a random setting will survive the first step
with a 1/26 probability. If the setting survives the first letter, the rotors can be stepped in 30
different ways. Any stepping that is consistent for the second letter is saved. This is
repeated for all the letters until one of two things happens. If the last letter is reached, then
the path is valid and will be considered for Phase 2. The other option is that if at any letter,
none of the 30 possible steppings for the cipher rotors yields a consistent path, that path is
eliminated since it is a random path. Table 5 was generated using the same method.
However, instead of a random setting, the causal setting was used.

From Table 4, we can see that as the number of letters (steps) increases, the number of
surviving settings decreases. This shows that the number of random settings can be reduced
using a small amount of known plaintext and ciphertext. However, we need to note that
although the number of surviving settings decreases, the number of surviving paths (non-
zero settings * average per non-zero) increases. For example, in Table 4, for a 30-letter
message, we expect that 0.427% of the random settings (Non-Zero Settings) will survive,
with each survivor expanding to an average of about 16.5 paths and a maximum of 84
paths. For the causal case, Table 5 shows that for a 30-letter message, we expect 29.6 paths
with the 10,000 cases tests. We also expect a minimum of one and a maximum of 151
consistent paths.

21

Steps
(Letters)

Tests Non-Zero
Settings

Average Per
Non-Zero

Maximum

10 105 763 6.5 27
20 105 516 11.8 56
30 105 427 16.5 84
40 105 324 20.8 105
50 105 290 28.4 194
60 105 275 38.8 163
70 105 269 47.1 415
80 105 212 71.3 524
90 105 216 77.6 486
100 105 203 100.5 1005

Table 4: Random Case [1]

Steps Tests Average Maximum Minimum
10 10,000 10.2 51 1
20 10,000 19.6 94 1
30 10,000 29.6 151 1
40 10,000 40.1 237 1
50 10,000 54.1 404 1
60 10,000 69.2 566 1
70 5,000 85.0 689 1
80 5,000 105.0 829 2
90 3,000 130.4 1152 1
100 3,000 161.1 1926 1

Table 5: Causal Case [1]

From the information in Table 5, we could reduce the number of random settings by saving
only those settings that meet some threshold. One example would be if the setting exceeds
the expected mean in the causal case. This refinement to Phase 1 would decrease the
number of random settings, but at the same time, it makes the attack probabilistic since we
may end up discarding the causal case.

If we are given a small amount of known plaintext and its corresponding ciphertext, we
expect the work factor to be on the order of 243.4 since most of the random cases will not
survive the first known plaintext. If we use more plaintext letters and save the merged
paths, then we may exceed 243.4 since the number of surviving paths increases as more
letters are used.

22

Suppose we had a 100 letter known plaintext and ciphertext pair. After the first known

plaintext letter, we have
26

2 4.43

≈ 238.7 surviving paths. From Table 4, in the row for 100

steps, the number of surviving merged paths increases to about

4.414.43
5 22*

10
5.100*203 ≈

This means that when 99 letters are used after the first letter, the number of merged paths
increases from 238.7 to 241.1 and all merged paths must be processed at each step. We can
approximate the number of paths at an arbitrary step k by using 238.7xk. For this example, we
would have 238.7x99 = 241.1. Solving this equation gives us x ≈ 1.017. Using

1

1

−
−=

+

=
∑ x

xxx
mnn

mi

i

the primary work can be calculated by

7.46
99

0

100
7.384.437.383.43 2

017.0
1017.122017.1*22 ≈




 −+=+ ∑ k

For 100 plaintext letters, we see that only about 241.1 merged paths will survive Phase 1.

From Table 4, about 5.344.43
5 22*

100*10
5.100*203 ≈ random settings survive.

At the end of Phase 1, we will have a list of all initial cipher rotor settings that can possibly
be the part of the correct key. However, there will also be settings included in this list that
are not valid since it may not be possible to step the cipher rotors in the same manner as the
steppings of Phase 1.

3.4 Phase 2

In Phase 2, we attempt to recover the control rotor settings. We are assuming that no
message indicator was used here and that the control rotor settings were set independently.
Since we already used five rotors for the cipher rotors in Phase 1, we only need to
determine the order of the remaining five rotors and their orientations. After determining
how the rotors are inserted, we need to determine the starting position of the control rotors.
This gives us 5! * 25 * 265 ≈ 235.41 settings to try. As states previously mentioned, the actual
number of index rotor permutations is only 113,400 ≈ 216.8. Combining the control and
index rotors, we have about 5! * 25 * 265 * 113,400 ≈ 252.2 different settings to try. We test

23

the survivors of Phase 1 by setting the cipher rotors to the setting used by the survivor, then
testing each of the 252.2 settings for the control and index rotors. Any survivors of Phase 2
are valid keys for the known plaintext/ciphertext pair. Here, it appears that for each
surviving setting from Phase 1, we have a work factor on the order of 252.2. Fortunately, we
can improve on this rather naïve implementation of Phase 2.

4. Attack Refinements

The attack described in Sections 3.3 and 3.4 is more or less an exhaustive key search.
While an exhaustive key search for the SIGABA keyspace as it was used during the war (≈
248.4 bits) is possible given the speed and power of today’s computers, an exhaustive key
search for the practical keyspace is still not feasible, even with today’s computers.2 Here we
will examine possible ways to reduce the keyspace in both Phase 1 and Phase 2 of the
attack.

For Phase 2, we will look at an improvement that is also partially described in [1]. We will
examine the frequency of the active outputs of the control rotor bank to the index rotor
bank. Recall from Table 1 that the inputs for the index rotor bank are energized by a
variable number of outputs from the control rotor bank. Input 8 of the index rotor bank is
energized by six outputs of the control rotor bank, but inputs 9, 1, and 2 are each only
energized by one output of the control rotor bank. With the frequency of the stepping of the
cipher rotors from Phase 1’s survivors, we can estimate the probabilities for the index
rotors’ permutation.

In Figure 8, we show how the control and index rotors interact. In that figure, we have
collapsed both banks of rotors into one equivalent rotor. The control rotors receive four
energized inputs for F, G, H, and I. The four inputs are passed through the control rotor and
combined according to the rules in Table 1 before being sent to the index rotors. The one to
four active index rotor inputs are combined according to the rules in Table 2. Since the
control rotors permutation changes with each letter, we model the collapsed version of the

control rotors as being uniformly random. This means that we assume all of the 








 26

4
 =

14,950 combinations of outputs from the control rotors are equally likely. However, since
the outputs of the control rotors are ORed together according to Table 1, the inputs to the
index rotors are not uniform. Input 8 on the index rotors will be active more than inputs 1,
2, or 9 since input 8 is activated by 6 letter, whereas inputs 1, 2, and 9 are activated by only
one letter.

The index rotor outputs are ORed together according to the rules in Table 2 to determine
which cipher rotors will step. If we can determine the frequency with which the cipher
2 The 56 bit key for the Data Encryption Standard (DES) has been successfully attacked using an exhaustive
key search. [2]

24

rotors step, we can assign probabilities to the index permutation. For each of the surviving
paths from Phase 1, we have a list of the cipher rotor steppings. By using this list, we can
determine how many times each cipher rotor steps. For the merged paths from Phase 1, we
do not lose any information. In Figure 11, we have the initial position of AAAAA. There
are two paths from AAAAA to the second letter, BBABA and ABABA. At the third letter,
both of those paths merged to BBBBA. Since both paths reached BBBBA, we know that on
both paths, cipher rotors C0, C1, C2, and C3 stepped once while cipher rotor C4 did not step.

Let us consider an index permutation of (5, 4, 7, 9, 3, 8, 1, 0, 2, 6). This permutation
indicates that an input of 0 maps to an output of 5, an input of 1 maps to an output of 4, and
so forth. If we consider the pairs of outputs that will determine the cipher rotor steppings,
we see that some rotors will step more often than others. In Table 6, inputs 6 and 8 map to
outputs of 1 and 2 respectively. The inputs of 6 and 8 correspond to the outputs of 6 and 8
from the control rotors. At least one of these outputs from the control rotors will be active if
at least one of the following letters are the active output of the four signals though the
control rotors according to Figure 8: L, M, N, O, U, V, W, X, Y, Z. The same method can
be used to determine the letters that control the other four cipher rotors. From the counts,
we can see that for this index permutation, cipher rotor C0 will step more than all the other
cipher rotors.

Cipher Rotor
C0 C1 C2 C3 C4

Index Rotor Outputs (1,2) (3,4) (5,6) (7,8) (9,0)
Index Rotor Inputs (6,8) (4,1) (0,9) (2,5) (3,7)

Control Rotor Count 10 4 1 4 7
Table 6: Index Permutation (5, 4, 7, 9, 3, 8, 1, 0, 2, 6) [1]

If we assume that the control rotors generate random permutations, the expected number of
steps for a given cipher rotor i depends only on the number control rotor output letters that
feed into cipher rotor Ci. The list of all 45 input pairs and their corresponding number of
letters is show in Table 7. If a sufficient amount of plaintext is known, we can obtain
information related to the Count column of Table 7 for each cipher rotor based on a count
of the number of times that cipher rotor i has stepped. From this count, we can make
restrictions on the index permutation using the Pairs column.

We can estimate the amount of plaintext that is needed in the following manner. Each
cipher rotor is connected to k control rotor outputs, where 1 ≤ k ≤ 11. We can determine the
expected stepping ratios for a rotor connected to exactly k control rotor outputs. These will
sum up to a value greater than one since more than one rotor generally steps. To compute

the ratios, we assume all control rotor outputs to be equally likely and generate all 








 26

4
=

25

14,950 outputs, counting the number of times that at least one element of each pair in Table
7 occurs. Table 8 shows the results, where Step Ratio is obtained by dividing the Step
Count column by 14,950. Note that these results are independent of the actual index rotor
permutation.

Letters Count Pairs
1 3 (0,1) (0,2) (0,9)
2 4 (0,3) (1,2) (1,9) (2,9)
3 5 (0,4) (0,5) (1,3) (2,3) (3,9)
4 7 (0,6) (1,5) (2,5) (5,9) (1,4) (2,4) (4,9)
5 6 (0,7) (1,6) (2,6) (6,9) (3,4) (3,5)
6 6 (0,8) (1,7) (2,7) (7,9) (3,6) (4,5)
7 6 (1,8) (2,8) (8,9) (3,7) (4,6) (5,6)
8 3 (3,8) (4,7) (5,7)
9 3 (4,8) (5,8) (6,7)
10 1 (6,8)
11 1 (7,8)

Table 7: Index Permutation Input Pairs [1]

Letters Example Pairs Step Count Step Ratio
1 (0,1) 2,300 0.1538462
2 (0,3) 4,324 0.2892308
3 (0,4) 6,095 0.4076923
4 (0,6) 7,635 0.5107023
5 (0,7) 8,965 0.5996656
6 (0,8) 10,105 0.6759197
7 (1,8) 11,074 0.7407358
8 (3,8) 11,890 0.7953177
9 (4,8) 12,570 0.8408027
10 (6,8) 13,130 0.8782609
11 (7,8) 13,585 0.9086957

Table 8: Cipher Rotor Stepping Ratios [1]

Now given the cipher rotor stepping counts from Phase 1, we can use Table 8 to determine
the most likely pairs of control rotor output letters for each cipher rotor. Since these are
connected to the index permutation, this information combined with the information from
Table 7 will reduce the number of possible index permutations.

A valid index permutation must contain five pairs from Table 7 such that two conditions
are met. The first condition is that each digit is used once and only once. The second
condition is that the number of letters for the five pairs must sum up to exactly 26. If we
order all the valid sets of five pairs that have letters that sum to 26 and use each digit only
once, we find that there are 2148 groupings.

26

Now that we have the stepping counts from Phase 1, we can calculate the stepping ratios
for each cipher rotor. The stepping ratio is just the step count divided by the number of
letters. Once we have the ratios computed, we can attempt to distinguish the number of
letters connected to each cipher rotor in the index permutation.

Consider an example where the cipher rotors had the following stepping ratios.

Cipher Rotor Stepping Ratio
C0 0.15
C1 0.29
C2 0.60
C3 0.74
C4 0.91

Table 9: Example Stepping Ratios [1]

Using the results from Table 8, the most likely number of letters connected to cipher rotors
C0, C1, C2, C3, C4 are 1, 2, 5, 7, and 11 respectively. Of the 2148 valid combination of pairs
from Table 7, there are six sets of pairs that are consistent with the number of letters
derived from Table 8. These six sets of pairs are shown in Table 10.

Set Pairs
1 (0,1) (2,9) (3,4) (5,6) (7,8)
2 (0,1) (2,9) (3,5) (4,6) (7,8)
3 (0,2) (1,9) (3,4) (5,6) (7,8)
4 (0,2) (1,9) (3,5) (4,6) (7,8)
5 (0,9) (1,2) (3,4) (5,6) (7,8)
6 (0,9) (1,2) (3,5) (4,6) (7,8)

Table 10: Sets Of Pairs Consistent with Letter Counts 1, 2, 5, 7, and 11 [1]

According to [1], the 2148 consistent groupings of five pairs can be reduced to 89 distinct
categories based on letter counts. Using the previous example, one of the 89 categories
would be one that corresponded to letter counts of 1, 2, 5, 7, and 11 letters. On average,
there are 24 sets of five pairs for each category, with the actual range being between 3 and
72.

With the stepping counts computed, we can now compute a score to determine which of the
89 categories is the best match. Let xi be the step ratio in row i for Table 8. Then 1 ≤ i ≤11
and xi is the expected fraction of the time that a cipher rotor steps when it is connected to i
letters. For convenience, let x0 = 0 and x12 = 1.

27

For the known plaintext, we compute the five stepping ratios s0, s1, s2, s3, and s4 where we
assume s0 < s1 < s2 < s3 < s4. For each sj stepping ratio, we determine the index i for which xi

≤ sj < xi + 1. Then we let
ii

ij
j xx

xs
t

−
−

=
+ 1

 with the provisions that if tj < 1, we set tj = 1 and if ti

> 11, we set ti = 11. Here we note that i ≤ tj ≤ i + 1 and t0 < t1 < t2 < t3 < t4. Each tj is a
decimal representation (including the fractional part) of the most likely number of letters
connected with cipher rotor j. We are using a linear interpolation for the points between
consecutive xi values since the xi values are not equally spaced.

Next, we let (u0, u1, u2, u3, u4) be one of the 89 categories that was discussed earlier where
u0 < u1 < u2 < u3 < u4. We compute the score as the square of the Euclidean distance. For
each category, we compute d = (to – u0)2 + (t1 – u1)2 + (t2 – u2)2 + (t3 – u3)2 + (t4 – u4)2. The
category that has the smallest distance d from (t0, t1, t2, t3, t4) is selected as the most likely
category.

Table 11 shows some empirical results about how many letters of known plaintext we
would need for the secondary phase of the attack using the scoring method discussed. In the
table, we can see that for 100 known plaintext letters, we have a 0.2332 probability of
having all five pairs correct. If we consider the case where two of the pairs are off by +1
letter and –1 letter, we get the percentage in the last column of the table. For 100 letters, we
would have a 0.8216 probability that the pairs are either all correct, or off by +1/-1. Since
there are 24 sets of pairs on average for a category, we would need to test less than 28 sets

of pairs on average (24 * 








 5

2
 = 24 * 10 = 240 < 28) to get the correct index permutation

with a 0.8216 probability of success.

We have more information available to us from Table 11. If at any point, only one of the
five cipher rotors step, then we can eliminate rows 1, 2, and 3 from Table 7 since the
control rotor permutation always have four active outputs. From Table 12, we see that a
single rotor stepping is a relatively rare occurrence. It only occurs about 2.5% of the time.
When it does occur, it can eliminate up to ¼ of the possible index permutations. Using such
refinements, we expect to be able to reduce the plaintext requirements from Table 11
without decreasing out probability of success. However, since we merged paths in the
primary phase, it may be difficult to utilize this information.

28

Pairs Correct
Plaintext
Letters

0 1 2 3 4 5 Iterations Probability
(+/- 1 Letter)

50 0.0287 0.2213 0.1837 0.4756 0.0000 0.091 1000000 0.5666
100 0.0036 0.1076 0.0672 0.5884 0.0000 0.2332 1000000 0.8216
150 0.0006 0.0517 0.0234 0.5522 0.0000 0.3721 1000000 0.9243
200 0.0001 0.0253 0.0085 0.4722 0.0000 0.4939 1000000 0.9661
250 0.0000 0.0128 0.0033 0.3900 0.0000 0.5939 1000000 0.9839
300 0.0000 0.0064 0.0013 0.3153 0.0000 0.6769 1000000 0.9922
400 0.0000 0.0018 0.0002 0.2023 0.0000 0.7957 1000000 0.9980
500 0.0000 0.0005 0.0001 0.1300 0.0000 0.8694 1000000 0.9994
1000 0.0000 0.0000 0.0000 0.0157 0.0000 0.9843 1000000 1.0000

Table 11: Secondary Known Plaintext [1]

To summarize, by using the cipher rotor stepping counts, we can reduce the index

permutations to a fraction of the
32

!10
≈ 216.8 that would need to be considered. With enough

known plaintext, we can reduce to around 28 permutations, and possibly even less.

Assuming we had a message with 100 known plaintext letters, the average work factor for
Phase 2 would be around 28 * 5! * 25 * 265 ≈ 243.3. It should be possible to further reduce the
factor of 28. This is a significant improvement over the naïve implementation of Phase 2’s
work factor of 252.2. These refinements to Phase 2 also make the work factor comparable to
the work of Phase 1. However, the work factor applies to each survivor of Phase 1. To
improve the overall performance of the attack, we need to reduce either the number of
survivors from Phase 1 and/or make Phase 2 more efficient.

The following is a method to use the information from the cipher rotor stepping counts
obtained in Phase 1. For each distinct index permutation, we can compute the probabilities
pi for i = 1, 2, 3, and 4 that exactly i cipher rotors step, where the probabilities are computed
over all possible control rotor outputs. Recall that we are modeling each of the four letter
control rotor outputs as being equally likely. The average, maximum and minimum over all
the index permutations appear in Table 12.

Rotors
That Step

Average Maximum Minimum

1 0.0109 0.0247 0.0027
2 0.2543 0.3579 0.1694
3 0.5669 0.5954 0.5177
4 0.1679 0.2368 0.0996

Table 12: Cipher Rotor Steppings

29

An interesting thing to notice about the results from Table 12 is that the range of the values
is small and only overlap when 2 and 4 rotors step. The ranges for 1 and 3 rotors stepping
do not overlap. Consequently, this means that we assign a score to each survivor of Phase 1
without making any assumptions about the index permutation. For each survivor, we
compute a score based on the number of cipher rotors that stepped for each known plaintext
letter. Then, in the secondary phase, we can test the highest scoring survivor, then the
second highest, and so on. This method would trim away unlikely paths in Phase 1,
reducing the number of survivors that are sent to Phase 2. The merging of paths in Phase 1
creates a slight complication since different number of rotors can be stepped to reach the
merge position. A solution to this would be to take the maximum probability of the paths
that merge.

Assuming we have sufficient known plaintext, we have shown that the work factor for the
secondary phase for each survivor of Phase 1 is around 243. This amount of work is feasible
for today’s technology, although the actual attack is not trivial to implement. The primary
phase has a similar work factor and is feasible for today’s technology. However, in the
attack described here, the number of survivors from Phase 1 is large, which makes cost of
the attack quite high.

5. Attack Comparisons

It would be beneficial to compare the work factors related to attacking SIGABA. To remain
consistent, we will split each attack into a primary and secondary phase. We first discussed
a straightforward exhaustive key search. The primary phase for an exhaustive key search
has 243.4 different cipher rotor settings to test. For a straightforward secondary phase, as
described in Section 3.4, there were 252.5 different control and index rotor settings to test for
each of settings from the primary phase. This gives a maximum work factor of 295.6 and an
expected work factor of 294.6 to find the correct setting. This attack has a success rate of one
since all settings are tested.

Now let us consider an attack that uses one known plaintext letter. The primary phase for
this attack would again consist of trying all the cipher rotor settings, yielding a work factor
of 243.4. However, since we have one known plaintext letter, we expect only 1/26 of the

settings to survive. This gives us an estimate of
26

2 4.43

≈ 238.7 survivors for the primary phase.

The secondary phase requires trying all control and index rotor settings, which like the
exhaustive key search described in the last paragraph, has a work factor of 252.2. This gives
a total work factor of 290.9. Again, we expect to find the correct setting after a work factor of
289.9 with a probability of success of one.

30

Next, we consider an attack that uses 100 plaintext letters. According to the primary phase

described in Section 3.3, we expect 4.43
5 2*

100*10
5.100*203

≈ 234.5 survivors from Phase 1. Using

a straightforward Phase 2, as described in Section 3.4, which has a work factor of 252.2, this
attack would have a maximum work factor of 286.7 and an expected work factor of 285.7

before we find the correct setting. Again, the probability of success in this attack is one.

Finally, we consider an attack using the primary phase described in Section 3.3 and the
refined secondary phase from Section 4 with 100 known plaintext letters. In the secondary
phase, we must test the surviving merged paths instead of the settings. From Section 3.3,
we see that the number of merged paths grows to about 241.1 paths. From Section 4, we
know that the work for the secondary phase with 100 known plaintext letters is about 243.4.
This gives a total work factor of around 284.5, with an expected work factor of 283.5. The
probability for success in this attack is only 0.82 (see Table 11).

While the last attack described in this section is a modest improvement over a
straightforward secondary phase and is now only probabilistic with regards to success,
there are refinements that can be made to reduce the work factor. Trimming of paths with a
low probability in Phase 1 is one such refinement.

The different attacks mentioned above are summarized in Table 13. This table shows that
while our attack on SIGABA is far from being practical, it is more efficient than the
obvious attacks on the full keyspace of SIGABA. However, for our attack to succeed, we
must have a favorable amount of known plaintext. Our attack is also probabilistic, though
with enough known plaintext, we have a fairly high probability of success. This can been
seen as additional evidence as to why SIGABA was never broken during World War II.

Attack Primary
Survivors

Secondary
Work

Total
Work

Probability
Of Success

Exhaustive Key Search 243.4 252.2 295.6 1.00
1 Known Plaintext 238.7 252.2 290.6 1.00

100 Known Plaintexts 234.5 252.2 286.7 1.00
100 Known Plaintexts 241.1 243.4 284.5 0.82

Table 13: Attack Comparisons [1]

31

6. Simulator

For this paper, a simulation of the SIGABA cipher machine was needed in order to
implement and test the different parts of the attack. A simulator has been coded that we
believe closely matches the behavior of the online simulator written by Richard Pekelney at
[8], which appears to be the standard SIGABA simulator. There is Windows-based
simulator with a better graphical user interface at [7]. The Windows-based SIGABA
simulator is also based on the simulator written by Richard Pekelney. Our simulator does
not contain as many features as the simulator online but the encryption and decryption
algorithm matches the behavior of the online simulator in CSP-889 mode.

All the attacks described in Section 3 & 4 were tested using the simulator we have written
since we needed to have a simulator where we have control over the different sections of
code that represent the encryption and decryption algorithm. Another reason why we
needed our own simulator is that the attack’s execution efficiency is an important factor.
The execution efficiency of a Java program is low, so we had to write our simulator in C,
which has higher execution efficiency. For our simulator, we duplicated the rotor wiring
from the Java simulator. However, it should be noted that of those wirings, only the index
rotor wirings are actual rotor wirings. Richard Pekelney made up the wiring for the control
and cipher rotors since the rotors he had access to were straight-pass-through rotors only.

In our simulator, the rotors are an array of offsets from their respective letters. Suppose we
had a cipher rotor that had the following offsets.

24 1 5 8 12 13 14 25 19 20 24 12 1 12 22 15 1 24 3 16 25 5 0 8 16 13

This means that ‘A’ is offset by 24 letters, ‘B’ is offset by 1 letter, ‘C’ by 5 letters, and so
forth, where ‘A’ is considered position 0, ‘B’ position 1, and so forth. This means that this
particular rotor has the following permutation.

YCHLQSUGBDIXNZKERPVJTAWFOM

The offsets for the index rotors are used in the same manner. Suppose we had an index
rotor with the following offsets: 7 4 7 8 0 3 6 9 5 1. This means that 0 maps to 7, 1 maps to
5, 2 maps to 9, and so forth. The actual rotor permutation would be 7591482630. A list of
all the rotor permutations used is included in Appendix A.

The source code for the simulator and the source code for the attack are included on the
enclosed CD-ROM disc.

32

7. Conclusion

As generally used during World War II, SIGABA had a keyspace of size 248.4, which means
the expected work for an exhaustive key search was 247.4. However, the POTUS-PRIME
link between President Roosevelt and Prime Minister Churchill used the full keyspace of
over 95 bits. For a designer of a cryptographic system, there is no reason to have a
keyspace larger than a known shortcut attack on the system since a larger keyspace entails
more settings and more chance for errors. During the war, the work factor for an exhaustive
key search would have been impossible to do. Since SIGABA was used for strategically
important tactical information, like the POTUS-PRIME link between President Roosevelt
and Prime Minister Churchill, a larger keyspace may have been desired if it provided a
greater amount of security. In this paper, we describe an attack on the full keyspace of
SIGABA that requires less than 95 bits of work. The attack described here can certainly be
improved so that it runs more efficiently. By making the attack more efficient, the number
of survivors from Phase 1 and the number of cases that need to be tested in Phase 2 for each
survivor of Phase 1 is reduced. This reduction will lead to a more practical attack.

SIGABA’s large keyspace certainly played a role in ensuring that enemy forces never
broke it. The designers of SIGABA were obviously aware of how important the seemingly
random stepping of the machine was to the security of the cipher after having studied and
broken other rotor-based cipher machines. Although they may not have looked at the
strength of the cipher in terms of bits, they surely knew that their design would make an
attack infeasible during World War II. Commanders of the Army and Navy were also
aware of how important it was to physically guard the machines from capture and the
detrimental effects of operational error. These two factors combined made SIGABA very
hard to attack since it appeared to step randomly and physical security on the machine was
very high. While the physical security of the machine was important since it made an attack
harder, it is not something that should be depended on. Assuming an attacker could get hold
of the machine and the rotor wirings, the cipher would still be secure. Even after more than
fifty years, the analysis of attacks on SIGABA seem to indicate that having the machine
and the rotor wirings would not be that helpful in breaking the cipher. This would indicate
that during the war, if enemy forces had obtained the machine and rotors, they would still
not be able to compromise the cipher.

33

 8. References

[1] M. Stamp and W. O. Chan, Analysis of SIGABA, Department of Computer Science,
San Jose State University, April 2007

[2] M. Stamp and R. M. Low, Applied Cryptanalysis: Breaking Ciphers in the Real
World, Wiley Interscience, 2007

[3] National Cryptologic Museum, The ‘Big’ Machines Exhibit, at
http://www.nsa.gov/museum/museu00002.cfm

[4] J. J. G. Savard and R. S. Pekelney, The ECM Mark II: Design, History, and
Cryptology, Cryptologia, Vol. 23, No. 3, July 1999, pp. 211-228

[5] R. Pekelney, ECM MARK 2 and CCM MARK 1, at
http://www.hnsa.org/doc/crypto/ecm/

[6] SIGABA – Wikipedia, the free encyclopedia, at http://en.wikipedia.org/wiki/SIGABA

[7] Frode Weierud's CryptoCellar | ECM MK II Cipher Machine, at
http://frode.home.cern.ch/frode/crypto/simula/SIGABA/index.html

[8] USS Pampanito - CSP-889/2900 Emulation, at http://www.maritime.org/ecmapp.htm

[9] R. Pekelney, USS Pampanito – ECM Mark II, at http://www.maritime.org/ecm2.htm

[10] M. Lee, Cryptanalysis of the SIGABA, University of California Santa Barbara, at
http://ucsb.curby.net/broadcast/thesis/thesis.pdf

34

http://ucsb.curby.net/broadcast/thesis/thesis.pdf
http://www.maritime.org/ecm2.htm
http://www.maritime.org/ecmapp.htm
http://frode.home.cern.ch/frode/crypto/simula/sigaba/index.html
http://en.wikipedia.org/wiki/Sigaba
http://www.hnsa.org/doc/crypto/ecm/
http://www.nsa.gov/museum/museu00002.cfm

Appendix A: Rotor Permutations

Cipher Rotor 0 YCHLQSUGBDIXNZKERPVJTAWFOM
Cipher Rotor 1 INPXBWETGUYSAOCHVLDMQKZJFR
Cipher Rotor 2 WNDRIOZPTAXHFJYQBMSVEKUCGL
Cipher Rotor 3 TZGHOBKRVUXLQDMPNFWCJYEIAS
Cipher Rotor 4 YWTAHRQJVLCEXUNGBIPZMSDFOK

Control Rotor 0 QSLRBTEKOGAICFWYVMHJNXZUDP
Control Rotor 1 CHJDQIGNBSAKVTUOXFWLEPRMZY
Control Rotor 2 CDFAJXTIMNBEQHSUGRYLWZKVPO
Control Rotor 3 XHFESZDNRBCGKQIJLTVMUOYAPW
Control Rotor 4 EZJQXMOGYTCSFRIUPVNADLHWBK

Index Rotor 1 7591482630
Index Rotor 2 3810592764
Index Rotor 3 4086153297
Index Rotor 4 3980526174
Index Rotor 5 6497135280

35

Appendix B: Simulator Commands

Set of commands for the simulation include:

!quit
!q

Quit program

!reset
!r

Reload configuration and reset rotors

!encrypt
!e

Switch to encryption mode [default mode]

!decrypt
!d

Switch to decryption mode

!reverse
!rev

Reverse a rotor

!encryptfromfile !
eff

Encrypt using the plaintext from a file

!printConf
!pc

Print the rotor permutations

!printPos
!pp

Print the rotor positions

!printoffsets
!po

Print the rotor offsets

!set
!s

Set a rotor

!setpositions
!sp

Set the positions of the rotors. String of 15 characters. 0-9 must be
letters from A-Z and 10-15 must be digits 0-9

!setrotors
!sr

Set the rotors to use and their order. String of 15 characters. 0-9 must
be a permutation of 0-9 and 10-14 must be a permutation of 1-5

36

Appendix C: Glossary

Cipher Rotor Rotor that permutes letters to letters. Interchangeable with the control rotors.
Reversible.

Control
Rotor

Rotor that permutes letters to letters. Interchangeable with the cipher rotors.
Reversible.

CSP Code and Signal Publication
ECM Electronic Cipher Machine
Index Rotor Rotor that permutes digits to digits
Key Collection of settings used to initialize the machine. This includes:

- The five rotors to be used as cipher rotors, their ordering, their initial
positions, and their orientations.

- The five rotors to be used as control rotors, their ordering, their
initial positions, and their orientations.

- The ordering of the five index rotors and their initial positions.
Path An initial setting for the cipher rotors along with the stepping pattern of the

cipher rotors that lead to the correct ciphertext
POTUS-
PRIME

President of The United States – Prime Minister

Rotor A mechanical wheel that permutes a set on inputs to a set of outputs.
Rotor Bank A set of five rotors that are used for the same function.
Rotor Cage Holds the three rotor banks: cipher rotor bank, control rotor bank, and index

rotor bank.
Setting Initial positions, and orientations of rotors

37

	ABSTRACT
	List of Figures
	List of Tables
	1. Introduction
	2. SIGABA Machine
	2.1 Rotors
	2.2 Encryption
	2.3 Decryption
	2.4 Physical Security & Operation Guidelines
	2.5 Theoretical Keyspace
	2.6 Practical Keyspace

	3. Attacks On SIGABA
	3.1 Previous Work
	3.2 SIGABA Attack
	3.3 Phase 1
	3.4 Phase 2

	4. Attack Refinements
	5. Attack Comparisons
	6. Simulator
	7. Conclusion
	 8. References
	Appendix A: Rotor Permutations
	Appendix B: Simulator Commands
	Appendix C: Glossary

