
Early Estimation of Software Quality Using In-Process
Testing Metrics: A Controlled Case Study

Nachiappan Nagappan1, Laurie Williams2, Mladen Vouk2, Jason Osborne3

1 Microsoft Research, Redmond, WA 98052

nachin@microsoft.com
2 Department of Computer Science, North Carolina State University, Raleigh, NC 27695

3 Department of Statistics, North Carolina State University, Raleigh, NC 27695
{lawilli3, vouk, jaosborn}@ncsu.edu

ABSTRACT
In industrial practice, information on post-release field quality of
a product tends to become available too late in the software
development process to affordably guide corrective actions. An
important step towards remediation of this problem of late
information lies in the ability to provide an early estimation of
software post-release field quality. This paper presents the use of
a suite of in-process metrics that leverages the software testing
effort to provide (1) an estimation of potential software field
quality in early software development phases, and (2) the
identification of low quality software programs. A controlled
case study conducted at North Carolina State University provides
initial indication that our approach is effective for making an early
assessment of post-release field quality.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics - Performance measures,
Process metrics, Product metrics.

General Terms
Measurement, Design, Reliability.

Keywords
Testing metrics, empirical software engineering, multiple
regression, software field quality.

1. INTRODUCTION
In industry, estimates of software field quality are often available
too late to affordably guide corrective actions to the quality of the
software. True field quality cannot be measured before a product
has been completed and delivered to an internal or external
customer. Field quality is calculated using the number of failures
found by these customers. Because this information is available
late in the process, corrective actions tend to be expensive. [3]
Software developers can benefit from an early warning regarding
the quality of their product.
This early warning can be built from a collection of internal
metrics that are correlated with field quality, an external measure.
An internal metric, such as the cylomatic complexity [20], is a
measure derived from the product itself [13]. An external measure
is a measure of a product derived from the external assessment of

the behavior of the system [13]. For example, the number of
defects found in test is an external measure.
Structural object-orientated (O-O) measurements, such as those
defined in the CK [9] and MOOD [7] O-O metric suites, are being
used to evaluate and predict the quality of software [12].
Structural O-O measurements, such as those in the Chidamber-
Kemerer (C-K) O-O metric suite [9], have been used to evaluate
and predict fault-proneness [1, 5, 6]. The CK metric suite
consists of six metrics: weighted methods per class (WMC),
coupling between objects (CBO), depth of inheritance tree (DIT),
number of children (NOC), response for a class (RFC) and lack of
cohesion among methods (LCOM). These metrics can be a useful
early internal indicator of externally-visible product quality in
terms of fault-proneness [1, 27, 28].
To summarize, there is a growing body of empirical evidence that
supports the theoretical validity of the use of these internal
metrics [1, 5] as predictors of fault-proneness. The consistency of
these findings varies with the programming language [27].
Therefore, the metrics are still open to criticism. [10]
Our research objective is to construct and validate a set of easy-
to-measure in-process metrics that can be used as an early
indication of an external measure of field quality. To this end, we
have created a metric suite we call the Software Testing and
Reliability Early Warning metric suite for Java (STREW-J)[22].
The metric suite is applicable for development teams that write
extensive automated test cases, such as is done in the Extreme
Programming [2] software development methodology. In this
paper, we present the results of a study designed to analyze the
capabilities of the STREW metrics suite. The study was run with
junior- and senior-students in a software engineering class at
North Carolina State University (NCSU).
The paper is organized as follows. Section 2 outlines the STREW
metric suite. Sections 3 discusses a controlled experiment, in
which we studied the STREW metric suite. Section 4 presents the
experimental results. Finally, Section 5 presents the conclusions
and future work.

2. STREW METRIC SUITE
The STREW-J metric suite is a set of internal, in-process software
metrics that are leveraged to make an early estimation of post-
release field quality. The reasoning behind the metric suites is
different from the traditional reliability estimation [31] models is
that STREW puts a greater emphasis on internal software metrics,

particularly those involving the testing effort. The metrics are
intended to cross-check each other and to triangulate upon a post-
release field quality estimate. Prior studies [1, 5, 6, 8, 11, 27, 28,
30] have all leveraged the structural aspects of the code, but not
the testing effort that has been carried out, to make an estimate of
field quality.
The use of the STREW metrics is predicated on the existence of
an extensive suite of automated unit test cases being created as
development proceeds. STREW leverages the utility of
automated test suites by providing a post-release field quality
estimate. During the initial stages of creating a system, however,
such a test suite might not be available. In that case, historical
data from a comparable project may be used. The field quality
estimate relative to historical data is calculated using multiple
linear regression analysis which is used to model the relationship
between software quality and selected software metrics [17, 21].
The STREW-J metric suite consists of nine constituent metric
ratios. The metrics are intended to cross-check each other and to
triangulate upon an estimate of post-release field quality. Each
metric makes an individual contribution towards estimation of the
post-release field quality but work best when used together.
Development teams record the values of these nine metrics and
the actual post-release field quality of projects. These historical
values from prior projects are used to build a regression model
that is used to estimate the post-release field quality of the current
project under development. The nine constituent STREW-J
metrics (SM1 – SM9) are shown below in Table 1. The metrics
can be categorized into three groups: test quantification metrics,
complexity and O-O metrics, and a size adjustment metric.

Table 1: STREW metrics and collection and computation

instructions
Test quantification
Number of Assertions
SLOC*

SM1

Number of Test Cases
SLOC*

SM2

Number of Assertions
Number of Test Cases

SM3

_____(TLOC+/SLOC*)___
(Number of ClassesTest Number of
ClassesSource)

SM4

Complexity and O-O metrics
Σ Cyclomatic ComplexityTest
Σ Cyclomatic ComplexitySource

SM5

Σ CBOTest
Σ CBOSource

SM6

Σ DITTest
Σ DITSource

SM7

Σ WMCTest
Σ WMCSource

SM8

Size adjustment
SLOC* ____________
Minimum SLOC*

SM9

* Source Lines of Code (SLOC) is computed as non-
blank, non-comment source lines of code
+ Test Lines of Code (TLOC) is computed as non-
blank, non-comment test lines of code

The test quantification metrics (SM1, SM2, SM3, and SM4) are
specifically intended to crosscheck each other to account for
coding/testing styles. For example, one developer might write
fewer test cases, each with multiple asserts [26] checking various
conditions. Another developer might test the same conditions by
writing many more test cases, each with only one assert. We
intend for our metric suite to provide useful guidance to each of
these developers without prescribing the style of writing the test
cases. Assertions [26] are used in two of the metrics as a means
for demonstrating that the program is behaving as expected and as
an indication of how thoroughly the source classes have been
tested on a per class level. SM4 serves as a control measure to
counter the confounding effect of class size (as shown by El-
Emam [11]) on the prediction efficiency;
The complexity and O-O metrics (SM5, SM6, SM7, and SM8)
examines the relative ratio of test to source code for control flow
complexity and for a subset of the CK metrics. The dual hierarchy
of the test and source code allows us to collect and relate these
metrics for both test and source code. These relative ratios for a
product under development can be compared with the historical
values for prior comparable projects to indicate the relative
complexity of the testing effort with respect to the source code.
The metrics are now discussed more fully:

• The cyclomatic complexity [20] metric for software
systems is adapted from the classical graph theoretical
cyclomatic number and can be defined as the number of
linearly independent paths in a program. Prior studies
have found a strong correlation between the cyclomatic
complexity measure and the number of test defects [29].
Studies have also shown that code complexity correlates
strongly with program size measured by lines of code
[15] and is an indication of the extent to which control
flow is used. The use of conditional statements
increases the amount of testing required because there
are more logic and data flow paths to be verified [16].

• The larger the inter-object coupling, the higher the
sensitivity to change [9]. Therefore, maintenance of the
code is more difficult [9]. Prior studies have shown
CBO has been shown to be related to fault-proneness [1,
5, 6]. As a result, the higher the inter-object class
coupling, the more rigorous the testing should be [9].

• A higher DIT indicates desirable reuse but adds to the
complexity of the code because a change or a failure in
a super class propagates down the inheritance tree. The
relationship between the DIT and fault-proneness [1, 5]
was found to be strongly correlated.

• The number of methods and the complexity of methods
involved is a predictor of how much time and effort is
required to develop and maintain the class [9]. The
larger the number of methods in a class, the greater is
the potential impact on children, since the children will
inherit all the methods defined in the class. The ratio of
the WMCtest and WMCsource measures the relative ratio
of the number of test methods to source methods. This
measure serves to compare the testing effort on a
method basis. The relationship between the WMC as an
indicator of fault-proneness has been demonstrated in
prior studies[1, 5].

The final metric is a relative size adjustment factor. Defect
density has been shown to increase with class size [11]. We

account for the difference in size in terms of lines of code for the
projects used to build the STREW prediction equation using the
size adjustment factor.
The metrics that comprise the STREW metric suite have evolved
[23-25] through our case studies. Some metrics were removed
based on the lack of their ability to contribute towards the
estimation of post-release field quality and due to already existing
inter-correlations between the elements. The removal of metrics
was governed by statistical inter-correlations, multicollinearity,
stepwise, backward, and forward regression techniques [19]. The
following metrics were removed:

• Statement coverage

• Branch coverage

• Number of requirements/Source lines of code

• Number of childrentest/Number of childrensource

• Lack of cohesion among methodstest/Lack of cohesion
among methodssource

3. CONTROLLED EXPERIMENT
Section 3.1 discusses the research design of the controlled
experiment performed in an academic environment at North
Carolina State University (NCSU). The experimental limitations
are discussed in section 3.2.

3.1. Research Design
To evaluate the predictive ability of STREW-J to provide an early
estimate of post-release field quality, a case study was carried out
in a junior/senior-level software engineering course at NCSU in
the fall 2003 semester. Students developed an open source
Eclipse1 plug-in in Java that automated the collection of static
code metrics. Each project was developed by a group of four or
five junior or senior undergraduates during a six-week final class
project. The plug-in was required to have 80% unit test coverage
via the JUnit2 unit test suite and for acceptance test cases to be
automated via the FIT3 tool. A total of 22 projects were
submitted; all were used in the analysis. Table 2 below shows the
size of the projects developed in terms of the source lines of code
(SLOC) and the test lines of code (TLOC).

Table 2: Project size
Metric Mean Std Dev Max Min
SLOC 1996.9 835.9 3631 617
TLOC 688.7 464.4 2115 156

The plug-ins were evaluated using a comprehensive set of 45
black-box test cases. Twenty-six of these were acceptance tests
and were given to the students during development. The 45 test
cases included exception checking, error handling, and boundary
test cases that checked the operational correctness of the plug-in.

3.2. Case Study Limitations
An external validity issue arises because the programs were
written by students. This concern is mitigated to some degree
because the students were advanced undergraduates

1 Eclipse is an open source integrated development environment.
For more information, go to http://www.eclipse.org/.
2 http://junit.org/index.htm
3 http://fit.c2.com/

(junior/senior). Some of the students have had industry
experience. Since the experiment was performed in an academic
setting it was possible to exert a degree of control that could
ensure uniformity across the development environment. This
control may represent ideal conditions to study the involved
dependent and independent variables that might not be exactly
reflective of industrial software development.
The Eclipse plug-ins are small relative to industry applications.
Additionally, we calculated actual post-release field quality by
running black box test cases and computing an approximation of
field quality (black box test failures/KLOC). Black box test
failures are approximated as the problems that would have been
found by the customer had the academic projects been released to
an external customer. Further, using the same set of 45 test cases
to evaluate post-release field quality may also have skewed the
Black box test failures/KLOC to a certain degree as all the groups
might not have made the same kind of failures.

4. EXPERIMENTAL RESULTS
Using the post-release field quality calculated via black box test
failures/KLOC obtained by running the 45 test cases, as the
dependant variable and the seven metrics as predictors, a multiple
linear regression analysis on was performed. One difficulty
associated with multiple linear regression is multicollinearity
among the metrics, which can lead to inflated variance in the
prediction of post-release field quality. Multicollinearity occurs
because of internal correlations between the metrics as shown in
Table 4. To address the potential problem caused by
multicollinearity, we perform PCA [14] using the above 22
projects. In PCA, a smaller number of uncorrelated linear
combination of the metrics (principal components) are created for
use in a regression analysis. These principal components do not
suffer from multicollinearity and accounts for as much sample
variance as possible.

Table 3: Principal Component Matrix
 Component
 1 2 3

SM1 .509 .590 .380

SM2 .438 .544 -.536

SM3 .272 -3.501E-02 .877

SM4 .365 .808 -.176

SM5 .784 -.560 -9.552E-02

SM6 .727 -.482 -9.762E-02

SM7 .661 .513 -2.921E-03

SM8 .645 -.573 3.544E-02

SM9 -1.454E-02 .278 .584

Performing PCA resulted in the reduction of the seven metric
measures into three principal components. These components
remove multicollinearity and are orthogonal to each other. This
means that changes in one component do not influence either of
the other components, unlike the individual metrics.

Table 4: Correlation Matrix with Black box test failures/KLOC
 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 Black box

test failures/
KLOC

SM1 r 1

 Sig. .

SM2 r .450 1

 Sig. .036 .

SM3 r .569 -.310 1

 Sig. .006 .160 .

SM4 r .510 .564 -.095 1

 Sig. .015 .006 .675 .

SM5 r .011 .096 .097 -.127 1

 Sig. .963 .670 .668 .573 .

SM6 r .021 .069 .153 -.127 .819 1

 Sig. .927 .760 .497 .572 .000 .

SM7 r .447 .402 .045 .660 .205 .283 1

 Sig. .037 .063 .842 .001 .361 .202 .

SM8 r -.020 -.032 .183 -.184 .834 .520 .116 1

 Sig. .929 .886 .416 .412 .000 .013 .606 .

SM9 r .106 -.169 .239 .121 -.112 -.214 .281 -.087 1

 Sig. .637 .452 .285 .590 .619 .340 .205 .700 .

Black box
test failures/

KLOC

r -.185 .226 -.307 -.103 .393 .642 .101 .118 -.627 1

 Sig. .410 .312 .165 .647 .071 .001 .655 .600 .002 .

In order to demonstrate the efficacy of the predictions, of the
black box test failures/KLOC, we use the regression predicted
values of the three principal components (PC1, PC2, and PC3)
from all the 22 projects to build a regression model, as shown in
Equation 1.
Black box test failures/KLOC = 7.60 + 2.36*PC1 - 2.40*PC2 –
4.39*PC3 …. (1)
The F-ratio to test the hypothesis that all regression coefficients of
the model are zero was statistically significant, (R2= 0.512,
(F=6.284, p=0.004)). The multiple coefficient of determination,
R2, provides a quantification of how much variability in the
quality can be explained by the regression model. But this R2 does
not quantify the predictability of the STREW-J metric suite. For
this, we employ a technique of random data splitting. From the
available 22 projects, 15 projects were randomly selected to build
a different multiple regression model, and the model was used to
predict the defect density of the remaining seven projects to
evaluate the fit of the model in terms of predictability. We repeat
the random split seven times to ensure that our results are not for
one particular case. The predictability of the models is computed
using the average absolute error (AAE)[18] and average relative
error (ARE)[18] and shown in Equation 2 and 3.

AAE = ∑
=

n

1i
n
1 | Estimated Value – Actual Value | … (2)

ARE = ∑
=

n

1i
n
1 (| Estimated Value – Actual Value |) / Actual

Value … (3)
The AAE and ARE results in Table 5 indicate that the model
produces an estimate that is indicative of the true black box test
failures/KLOC.

Table 5: AAE, ARE values for random splits

Random
Sample

Model characteristics
R2 (F- ratio, sig.)

AAE ARE

1. 0.513 (F=3.867, p=0.041) 2.90 1.16

2. 0.509 (F=3.798, p=0.043) 2.04 0.97

3. 0.445 (F=2.946, p=0.080) 7.49 0.82

4. 0.788 (F=13.621, p=0.001) 7.56 2.10

5. 0.853 (F=21.316, p<0.0005) 6.37 1.68

6. 0.633 (F=6.312, p=0.010) 5.33 1.20

7. 0.690 (F=8.157, p-0.004) 4.50 0.87

The actual values of black box test failures/KLOC range from
1.43 black box test failures/KLOC to 35.5 black box test
failures/KLOC indicating a wide spectrum of quality in terms of
black box test failures for the academic projects. This range of
Black box test failures/KLOC of the projects is shown by the
histogram in Figure 1.

Black box test failures/KLOC

35.030.025.020.015.010.05.00.0

10

8

6

4

2

0

Std. Dev = 7.74
Mean = 7.6

N = 22.00

Figure 1: Black box test failures/KLOC
The ARE and AAE values are less than the standard deviation of
the black box test failures/KLOC (standard deviation is 7.738
black box test failures/KLOC). In spite of the wide spectrum of
the Black box test failures/KLOC, the ARE and AAE values
indicate the feasibility of using the STREW metric suite compared
to the actual values of the Black box test failures/KLOC. Figure 2
demonstrates that the estimated post-release field quality is a
practical estimate of the actual post-release field quality. This
indicates the efficacy of using the STREW-J metrics to make an
early assessment of post-release field quality.

Random Sample

7654321

AA
E,

 A
R

E
va

lu
es

 w
ith

 S
.D

.

10

8

6

4

2

0

AAE

ARE

S.D.

Figure 2: Plots of AAE, ARE with Standard Deviation

Further, to assess the ability of STREW-J metrics to be used to
identify programs of low quality, we use the binary logistic
regression technique[4]. For logistic regression, the exact R2
values cannot be calculated. An approximate measure of R2 given
by the Cox and Snell R2 (0.586) and the Nagelkerke R2 (0.790)[4]

is used. To determine the efficacy of identifying high and low
quality components correctly, we use the statistical normal lower
confidence bound formula on the black box test failures given by
Equation 4.
 (lower bound) = µBlack box test failures – [(zα/2*Standard deviation of
black box test failures/KLOC) / n] …. (4)

where Zα/2 is the upper α/2 quantile of the standard normal
distribution and n is the number of samples.
All programs having a Black box test failures/KLOC lower than
the calculated lower bound from Equation 4 are of high quality
and the remaining is of low quality. The overall classification of
the low and high quality programs in shown in Table 6.

Table 6: Overall classification of program quality
 Predicted

Quality
Percentage

Correct

 High
quality

Low
quality

High
quality

7 2 77.8
CI=[49.05,100]

Observed
Quality

Low
quality

0 13 100.0

Overall
Percentage

 90.9
CI= [78.30,100]

The point estimate of the percentage correct classification is
90.9% (i.e. overall 20 of the 22 programs were correctly identified
as high or low quality programs.). The confidence intervals (CI)
for these point estimates are given in brackets.

5. CONCLUSIONS AND FUTURE WORK
Feedback on potential field quality of software is very useful to
developers because it helps identify weaknesses and faults in the
software that require fixing. However, in most production
environments, field quality is measured too late to affordably
guide significant corrective actions In this paper we have
reported on the use of an in-process testing metric suite for
providing an early warning regarding post-release field quality
measured by black box test failures/KLOC, and for identifying
low quality programs.
The main observations are:

• A empirical multiple regression approach using the
STREW metric suite is a practical approach to measuring
software post-release field quality ; and

• STREW-based logistic regression analysis is a feasible
technique for detecting low quality programs.

We will continue to validate the metric suite under different
industrial and academic environments. There also arises the need
to generalize the STREW-J for other object-oriented languages
with more case studies. Finally, we will develop standards for
these metrics, so that developers can compare their program
quality in a meaningful was, and get feedback on the quality of
their testing effort relative to industry developed standards.

ACKNOWLEDGEMENTS
We would like to thank Lucas Layman and Jiang Zheng of NCSU
for reviewing earlier drafts of this paper. This work was funded
by an in part by an IBM Eclipse Innovation Award and by the
National Science Foundation under CAREER Grant No. 0346903.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References
[1] Basili, V., Briand, L., Melo, W., "A Validation of Object

Oriented Design Metrics as Quality Indicators," IEEE
Transactions on Software Engineering, Vol. 22, No. 10, pp.
751 - 761, 1996.

[2] Beck, K., Extreme Programming Explained: Embrace
Change. Reading, Massachusetts: Addison-Wesley, 2000.

[3] Boehm, B. W., Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

[4] Brace, N., Kemp, R., Snelgar, R., SPSS for Psychologists:
Palgrave Macmillan, 2003.

[5] Briand, L. C., Wuest, J., Daly, J.W., Porter, D.V., "Exploring
the Relationship between Design Measures and Software
Quality in Object Oriented Systems," Journal of Systems and
Software, Vol. 51, No. 3, pp. 245-273, 2000.

[6] Briand, L. C., Wuest, J., Ikonomovski, S., Lounis, H.,
"Investigating Quality Factors in Object-Oriented Designs :
An Industrial Case Study," Proceedings of International
Conference on Software Engineering, 1999, pp. 345-354.

[7] Brito e Abreu, F., "The MOOD Metrics Set," Proceedings of
ECOOP '95 Workshop on Metrics, 1995, pp.

[8] Chidamber, S. R., Darcy, D.P., Kemerer, C.F., "Managerial
Use of Metrics for Object Oriented Software: An
Exploratory Analysis," IEEE Transactions on Software
Engineering, Vol. 24, No. 8, pp. 629-639, 1998.

[9] Chidamber, S. R., Kemerer, C.F., "A Metrics Suite for
Object Oriented Design," IEEE Transactions on Software
Engineering, Vol. 20, No. 6, pp. 476 - 493, 1994.

[10] Churcher, N. I. and M. J. Shepperd, "Comments on 'A
Metrics Suite for Object-Oriented Design'," IEEE
Transactions on Software Engineering, Vol. 21, No. 3, pp.
263-5, 1995.

[11] El Emam, K., Benlarbi, S., Goel, N., Rai, S.N., "The
Confounding Effect of Class Size on the Validity of Object-
Oriented Metrics," IEEE Transactions on Software
Engineering, Vol. 27, No. 7, pp. 630 - 650, 2001.

[12] Harrison, R., S. J. Counsell, and R. V. Nithi, "An Evaluation
of the MOOD Set of Object-Oriented Software Metrics,"
IEEE Transactions on Software Engineering, Vol. 24, No. 6,
pp. 491-496, June 1998.

[13] ISO/IEC, "DIS 14598-1 Information Technology - Software
Product Evaluation," 1996.

[14] Jackson, E. J., A User's Guide to Principal Components:
John Wiley & Sons, Inc., 1991.

[15] Kan, S. H., Metrics and Models in Software Quality
Engineering. Reading, MA: Addison-Wesley, 1995.

[16] Khoshgoftaar, T. M., Munson, J.C.,, "Predicting software
development errors using software complexity metrics,"
IEEE Journal on Selected Areas in Communications, Vol. 8,
No. 2, pp. 253-261, 1990.

[17] Khoshgoftaar, T. M., Munson, J.C., Lanning, D.L., "A
Comparative Study of Predictive Models for Program
Changes During System Testing and Maintenance,"
Proceedings of International Conference on Software
Maintenance, 1993, pp. 72-79.

[18] Khoshgoftaar, T. M., Seliya, N., "Fault Prediction Modeling
for Software Quality Estimation: Comparing Commonly
Used Techniques," Empirical Software Engineering, Vol. 8,
No. 3, pp. 255-283, 2003.

[19] Kleinbaum, D. G., Kupper, L.L., Muller, K.E., Applied
Regression Analysis and Other Multivariable Methods.
Boston: PWS-KENT Publishing Company, 1987.

[20] McCabe, T. J., "A Complexity Measure," IEEE Transactions
on Software Engineering, Vol. 2, No. 4, pp. 308-320, 1976.

[21] Munson, J. C., Khoshgoftaar,T.M., "Regression Modeling of
Software quality : Empirical Investigation," Information and
Software Technology, Vol. 32, No. 2, pp. 106-114, 1990.

[22] Nagappan, N., "A Software Testing and Reliability Early
Warning (STREW) Metric Suite",Department of Computer
Science, North Carolina State University, 2005.

[23] Nagappan, N., Williams, L., Vouk M.A., ""Good Enough"
Software Reliability Estimation Plug-in for Eclipse,"
Proceedings of IBM-ETX Workshop, in conjunction with
OOPSLA 2003, 2003, pp. 36-40.

[24] Nagappan, N., Williams, L., Vouk M.A., "Towards a Metric
Suite for Early Software Reliability Assessment,"
Proceedings of International Symposium on Software
Reliability Engineering, FastAbstract, Denver,CO, 2003, pp.
238-239.

[25] Nagappan, N., Williams, L., Vouk M.A., Osborne, J., "Using
In-Process Testing Metrics to Estimate Software Reliability:
A Feasibility Study," Proceedings of IEEE International
Symposium on Software Reliability Engineering,
FastAbstract, Saint Malo, France, 2004, pp. 21-22.

[26] Rosenblum, D. S., "A practical approach to programming
with assertions," IEEE Transactions on Software
Engineering, Vol. 21, No. 1, pp. 19-31, 1995.

[27] Subramanyam, R., Krishnan, M.S., "Empirical Analysis of
CK Metrics for Object-Oriented Design Complexity:
Implications for Software Defects," IEEE Transactions on
Software Engineering, Vol. 29, No. 4, pp. 297 - 310, 2003.

[28] Tang, M.-H., Kao, M-H., Chen, M-H., "An empirical study
on object-oriented metrics," Proceedings of Sixth
International Software Metrics Symposium, 1999, pp. 242-
249.

[29] Troster, J., "Assessing Design-Quality Metrics on Legacy
Software," Software Engineering Process Group, IBM
Canada Ltd. Laboratory, North York, Ontario 1992.

[30] Vouk, M. A., Tai, K.C., "Multi-Phase Coverage- and Risk-
Based Software Reliability Modeling," Proceedings of
CASCON '93, 1993, pp. 513-523.

[31] Xie, M., Software Reliability Modeling. Singapore: World
Scientific Publishing Co. Pte. Ltd., 1991.

