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ABSTRACT 
In industrial practice, information on post-release field quality of 
a product tends to become available too late in the software 
development process to affordably guide corrective actions. An 
important step towards remediation of this problem of late 
information lies in the ability to provide an early estimation of 
software post-release field quality. This paper presents the use of 
a suite of in-process metrics that leverages the software testing 
effort to provide (1) an estimation of potential software field 
quality in early software development phases, and (2) the 
identification of low quality software programs.  A controlled 
case study conducted at North Carolina State University provides 
initial indication that our approach is effective for making an early 
assessment of post-release field quality.     

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics - Performance measures, 
Process metrics, Product metrics. 

General Terms 
Measurement, Design, Reliability. 

Keywords 
Testing metrics, empirical software engineering, multiple 
regression, software field quality. 
 
1. INTRODUCTION 
In industry, estimates of software field quality are often available 
too late to affordably guide corrective actions to the quality of the 
software. True field quality cannot be measured before a product 
has been completed and delivered to an internal or external 
customer. Field quality is calculated using the number of failures 
found by these customers. Because this information is available 
late in the process, corrective actions tend to be expensive. [3] 
Software developers can benefit from an early warning regarding 
the quality of their product. 
This early warning can be built from a collection of internal 
metrics that are correlated with field quality, an external measure.    
An internal metric, such as the cylomatic complexity [20], is a 
measure derived from the product itself [13]. An external measure 
is a measure of a product derived from the external assessment of 

the behavior of the system [13]. For example, the number of 
defects found in test is an external measure.  
Structural object-orientated (O-O) measurements, such as those 
defined in the CK [9] and MOOD [7] O-O metric suites, are being 
used to evaluate and predict the quality of software [12].  
Structural O-O measurements, such as those in the Chidamber-
Kemerer (C-K) O-O metric suite [9], have been used to evaluate 
and predict fault-proneness [1, 5, 6].   The CK metric suite 
consists of six metrics: weighted methods per class (WMC), 
coupling between objects (CBO), depth of inheritance tree (DIT), 
number of children (NOC), response for a class (RFC) and lack of 
cohesion among methods (LCOM).  These metrics can be a useful 
early internal indicator of externally-visible product quality in 
terms of fault-proneness [1, 27, 28]. 
To summarize, there is a growing body of empirical evidence that 
supports the theoretical validity of the use of these internal 
metrics [1, 5] as predictors of fault-proneness. The consistency of 
these findings varies with the programming language [27].  
Therefore, the metrics are still open to criticism. [10] 
Our research objective is to construct and validate a set of easy-
to-measure in-process metrics that can be used as an early 
indication of an external measure of field quality.  To this end, we 
have created a metric suite we call the Software Testing and 
Reliability Early Warning metric suite for Java (STREW-J)[22].  
The metric suite is applicable for development teams that write 
extensive automated test cases, such as is done  in the Extreme 
Programming [2] software development methodology.  In this 
paper, we present the results of a study designed to analyze the 
capabilities of the STREW metrics suite.  The study was run with 
junior- and senior-students in a software engineering class at 
North Carolina State University (NCSU).       
The paper is organized as follows.  Section 2 outlines the STREW 
metric suite. Sections 3 discusses a controlled experiment, in 
which we studied the STREW metric suite. Section 4 presents the 
experimental results.  Finally, Section 5 presents the conclusions 
and future work.  
 
2. STREW METRIC SUITE 
The STREW-J metric suite is a set of internal, in-process software 
metrics that are leveraged to make an early estimation of post-
release field quality. The reasoning behind the metric suites is 
different from the traditional reliability estimation [31] models is 
that STREW puts a greater emphasis on internal software metrics, 



particularly those involving the testing effort. The metrics are 
intended to cross-check each other and to triangulate upon a post-
release field quality estimate. Prior studies [1, 5, 6, 8, 11, 27, 28, 
30] have all leveraged the structural aspects of the code, but not 
the testing effort that has been carried out, to make an estimate of 
field quality. 
The use of the STREW metrics is predicated on the existence of 
an extensive suite of automated unit test cases being created as 
development proceeds.  STREW leverages the utility of 
automated test suites by providing a post-release field quality 
estimate.  During the initial stages of creating a system, however, 
such a test suite might not be available.  In that case, historical 
data from a comparable project may be used.  The field quality 
estimate relative to historical data is calculated using multiple 
linear regression analysis which is used to model the relationship 
between software quality and selected software metrics [17, 21].  
The STREW-J metric suite consists of nine constituent metric 
ratios.  The metrics are intended to cross-check each other and to 
triangulate upon an estimate of post-release field quality.  Each 
metric makes an individual contribution towards estimation of the 
post-release field quality but work best when used together.  
Development teams record the values of these nine metrics and 
the actual post-release field quality of projects.  These historical 
values from prior projects are used to build a regression model 
that is used to estimate the post-release field quality of the current 
project under development.  The nine constituent STREW-J 
metrics (SM1 – SM9) are shown below in Table 1.  The metrics 
can be categorized into three groups:  test quantification metrics, 
complexity and O-O metrics, and a size adjustment metric.      

 
Table 1:  STREW metrics and collection and computation 

instructions 
Test quantification 
Number of Assertions 
SLOC* 

SM1 

Number of Test Cases 
SLOC* 

SM2 

Number of Assertions 
Number of Test Cases 

SM3 

_____(TLOC+/SLOC*)___ 
(Number of ClassesTest Number of 
ClassesSource) 

SM4 

Complexity and O-O metrics 
Σ Cyclomatic ComplexityTest 
Σ Cyclomatic ComplexitySource 

SM5 

Σ CBOTest 
Σ CBOSource 

SM6 

Σ DITTest 
Σ DITSource 

SM7 

Σ WMCTest 
Σ WMCSource 

SM8 

Size adjustment 
SLOC* ____________                                       
Minimum SLOC* 

SM9 

* Source Lines of Code (SLOC) is computed as non-
blank, non-comment source lines of code 
+ Test Lines of Code (TLOC) is computed as non-
blank, non-comment test lines of code 

 

The test quantification metrics (SM1, SM2, SM3, and SM4) are 
specifically intended to crosscheck each other to account for 
coding/testing styles.  For example, one developer might write 
fewer test cases, each with multiple asserts [26] checking various 
conditions.  Another developer might test the same conditions by 
writing many more test cases, each with only one assert.  We 
intend for our metric suite to provide useful guidance to each of 
these developers without prescribing the style of writing the test 
cases.  Assertions [26] are used in two of the metrics as a means 
for demonstrating that the program is behaving as expected and as 
an indication of how thoroughly the source classes have been 
tested on a per class level. SM4 serves as a control measure to 
counter the confounding effect of class size (as shown by  El-
Emam [11]) on the prediction efficiency; 
The complexity and O-O metrics (SM5, SM6, SM7, and SM8) 
examines the relative ratio of test to source code for control flow 
complexity and for a subset of the CK metrics. The dual hierarchy 
of the test and source code allows us to collect and relate these 
metrics for both test and source code.  These relative ratios for a 
product under development can be compared with the historical 
values for prior comparable projects to indicate the relative 
complexity of the testing effort with respect to the source code.  
The metrics are now discussed more fully:  

• The cyclomatic complexity [20] metric for software 
systems is adapted from the classical graph theoretical 
cyclomatic number and can be defined as the number of 
linearly independent paths in a program.  Prior studies 
have found a strong correlation between the cyclomatic 
complexity measure and the number of test defects [29]. 
Studies have also shown that code complexity correlates 
strongly with program size measured by lines of code 
[15] and is an indication of the extent to which control 
flow is used.  The use of conditional statements 
increases the amount of testing required because there 
are more logic and data flow paths to be verified [16].      

• The larger the inter-object coupling, the higher the 
sensitivity to change [9].  Therefore, maintenance of the 
code is more difficult [9].  Prior studies have shown 
CBO has been shown to be related to fault-proneness [1, 
5, 6]. As a result, the higher the inter-object class 
coupling, the more rigorous the testing should be [9].   

• A higher DIT indicates desirable reuse but adds to the 
complexity of the code because a change or a failure in 
a super class propagates down the inheritance tree. The 
relationship between the DIT and fault-proneness [1, 5] 
was found to be strongly correlated. 

• The number of methods and the complexity of methods 
involved is a predictor of how much time and effort is 
required to develop and maintain the class [9]. The 
larger the number of methods in a class, the greater is 
the potential impact on children, since the children will 
inherit all the methods defined in the class. The ratio of 
the WMCtest and WMCsource measures the relative ratio 
of the number of test methods to source methods. This 
measure serves to compare the testing effort on a 
method basis. The  relationship between the WMC as an 
indicator of fault-proneness has been demonstrated in 
prior studies[1, 5]. 

The final metric is a relative size adjustment factor.  Defect 
density has been shown to increase with class size [11].   We 



account for the difference in size in terms of lines of code for the 
projects used to build the STREW prediction equation using the 
size adjustment factor. 
The metrics that comprise the STREW metric suite have evolved 
[23-25] through our case studies.  Some metrics were removed 
based on the lack of their ability to contribute towards the 
estimation of post-release field quality and due to already existing 
inter-correlations between the elements. The removal of metrics 
was governed by statistical inter-correlations, multicollinearity, 
stepwise, backward, and forward regression techniques [19]. The 
following metrics were removed: 

• Statement coverage 

• Branch coverage 

• Number of requirements/Source lines of code 

• Number of childrentest/Number of childrensource 

• Lack of cohesion among methodstest/Lack of cohesion 
among methodssource 

 
3. CONTROLLED EXPERIMENT  
Section 3.1 discusses the research design of the controlled 
experiment performed in an academic environment at North 
Carolina State University (NCSU). The experimental limitations 
are discussed in section 3.2. 

3.1. Research Design 
To evaluate the predictive ability of STREW-J to provide an early 
estimate of post-release field quality, a case study was carried out 
in a junior/senior-level software engineering course at NCSU in 
the fall 2003 semester. Students developed an open source 
Eclipse1 plug-in in Java that automated the collection of static 
code metrics. Each project was developed by a group of four or 
five junior or senior undergraduates during a six-week final class 
project. The plug-in was required to have 80% unit test coverage 
via the JUnit2 unit test suite and for acceptance test cases to be 
automated via the FIT3 tool. A total of 22 projects were 
submitted; all were used in the analysis.  Table 2 below shows the 
size of the projects developed in terms of the source lines of code 
(SLOC) and the test lines of code (TLOC).  

Table 2: Project size 
Metric Mean Std Dev Max Min  
SLOC 1996.9 835.9 3631 617 
TLOC 688.7 464.4 2115 156 

The plug-ins were evaluated using a comprehensive set of 45 
black-box test cases.  Twenty-six of these were acceptance tests 
and were given to the students during development.  The 45 test 
cases included exception checking, error handling, and boundary 
test cases that checked the operational correctness of the plug-in.  

3.2. Case Study Limitations  
An external validity issue arises because the programs were 
written by students.  This concern is mitigated to some degree 
because the students were advanced undergraduates 
                                                                 
1 Eclipse is an open source integrated development environment.  
For more information, go to http://www.eclipse.org/. 
2 http://junit.org/index.htm 
3 http://fit.c2.com/ 

(junior/senior).  Some of the students have had industry 
experience.  Since the experiment was performed in an academic 
setting it was possible to exert a degree of control that could 
ensure uniformity across the development environment. This 
control may represent ideal conditions to study the involved 
dependent and independent variables that might not be exactly 
reflective of industrial software development. 
The Eclipse plug-ins are small relative to industry applications.  
Additionally, we calculated actual post-release field quality by 
running black box test cases and computing an approximation of 
field quality (black box test failures/KLOC). Black box test 
failures are approximated as the problems that would have been 
found by the customer had the academic projects been released to 
an external customer. Further, using the same set of 45 test cases 
to evaluate post-release field quality may also have skewed the 
Black box test failures/KLOC to a certain degree as all the groups 
might not have made the same kind of failures.  
 
4. EXPERIMENTAL RESULTS 
Using the post-release field quality calculated via black box test 
failures/KLOC obtained by running the 45 test cases, as the 
dependant variable and the seven metrics as predictors, a multiple 
linear regression analysis on was performed. One difficulty 
associated with multiple linear regression is multicollinearity 
among the metrics, which can lead to inflated variance in the 
prediction of post-release field quality. Multicollinearity occurs 
because of internal correlations between the metrics as shown in 
Table 4.  To address the potential problem caused by 
multicollinearity, we perform PCA [14] using the above 22 
projects. In PCA, a smaller number of uncorrelated linear 
combination of the metrics (principal components) are created for 
use in a regression analysis.  These principal components do not 
suffer from multicollinearity and accounts for as much sample 
variance as possible.  

Table 3: Principal Component Matrix 
 Component 
 1 2 3 

SM1 .509 .590 .380 

SM2 .438 .544 -.536 

SM3 .272 -3.501E-02 .877 

SM4 .365 .808 -.176 

SM5 .784 -.560 -9.552E-02

SM6 .727 -.482 -9.762E-02

SM7 .661 .513 -2.921E-03

SM8 .645 -.573 3.544E-02 

SM9 -1.454E-02 .278 .584 

Performing PCA resulted in the reduction of the seven metric 
measures into three principal components.  These components 
remove multicollinearity and are orthogonal to each other.  This 
means that changes in one component do not influence either of 
the other components, unlike the individual metrics. 



Table 4: Correlation Matrix with Black box test failures/KLOC 
  SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 Black box 

test failures/
KLOC 

SM1 r  1          

 Sig.  .          

SM2 r .450 1         

 Sig.  .036 .         

SM3 r .569 -.310 1        

 Sig.  .006 .160 .        

SM4 r .510 .564 -.095 1       

 Sig.  .015 .006 .675 .       

SM5 r .011 .096 .097 -.127 1      

 Sig.  .963 .670 .668 .573 .      

SM6 r .021 .069 .153 -.127 .819 1     

 Sig.  .927 .760 .497 .572 .000 .     

SM7 r .447 .402 .045 .660 .205 .283 1    

 Sig.  .037 .063 .842 .001 .361 .202 .    

SM8 r -.020 -.032 .183 -.184 .834 .520 .116 1   

 Sig.  .929 .886 .416 .412 .000 .013 .606 .   

SM9 r .106 -.169 .239 .121 -.112 -.214 .281 -.087 1  

 Sig.  .637 .452 .285 .590 .619 .340 .205 .700 .  

Black box 
test failures/ 

KLOC 

r -.185 .226 -.307 -.103 .393 .642 .101 .118 -.627 1 

 Sig.  .410 .312 .165 .647 .071 .001 .655 .600 .002 . 

 
In order to demonstrate the efficacy of the predictions, of the 
black box test failures/KLOC, we use the regression predicted 
values of the three principal components (PC1, PC2, and PC3) 
from all the 22 projects to build a regression model, as shown in 
Equation 1. 
Black box test failures/KLOC = 7.60 + 2.36*PC1 - 2.40*PC2 – 
4.39*PC3 …. (1)                                        
The F-ratio to test the hypothesis that all regression coefficients of 
the model are zero was statistically significant, (R2= 0.512, 
(F=6.284, p=0.004)).  The multiple coefficient of determination, 
R2, provides a quantification of how much variability in the 
quality can be explained by the regression model. But this R2 does 
not quantify the predictability of the STREW-J metric suite. For 
this, we employ a technique of random data splitting. From the 
available 22 projects, 15 projects were randomly selected to build 
a different multiple regression model, and the model was used to 
predict the defect density of the remaining seven projects to 
evaluate the fit of the model in terms of predictability. We repeat 
the random split seven times to ensure that our results are not for 
one particular case. The predictability of the models is computed 
using the average absolute error (AAE)[18] and average relative 
error (ARE)[18] and shown in Equation 2 and 3.  
 
 

AAE = ∑
=

n

1i
n
1 | Estimated Value – Actual Value | … (2)                                

ARE = ∑
=

n

1i
n
1 (| Estimated Value – Actual Value |) / Actual 

Value … (3) 
The AAE and ARE results in Table 5 indicate that the model 
produces an estimate that is indicative of the true black box test 
failures/KLOC.  

Table 5: AAE, ARE values for random splits 

Random 
Sample 

Model characteristics      
R2 (F- ratio, sig.) 

AAE ARE 

1. 0.513 (F=3.867, p=0.041) 2.90 1.16 

2. 0.509 (F=3.798, p=0.043) 2.04 0.97 

3. 0.445 (F=2.946,  p=0.080) 7.49 0.82 

4. 0.788 (F=13.621, p=0.001) 7.56 2.10 

5. 0.853 (F=21.316, p<0.0005) 6.37 1.68 

6. 0.633 (F=6.312, p=0.010) 5.33 1.20 

7. 0.690 (F=8.157, p-0.004) 4.50 0.87 



The actual values of black box test failures/KLOC range from 
1.43 black box test failures/KLOC to 35.5 black box test 
failures/KLOC indicating a wide spectrum of quality in terms of 
black box test failures for the academic projects. This range of 
Black box test failures/KLOC of the projects is shown by the 
histogram in Figure 1.   

Black box test failures/KLOC
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Figure 1: Black box test failures/KLOC 
The ARE and AAE values are less than the standard deviation of 
the black box test failures/KLOC (standard deviation is 7.738 
black box test failures/KLOC). In spite of the wide spectrum of 
the Black box test failures/KLOC, the ARE and AAE values 
indicate the feasibility of using the STREW metric suite compared 
to the actual values of the Black box test failures/KLOC. Figure 2 
demonstrates that the estimated post-release field quality is a 
practical estimate of the actual post-release field quality.   This 
indicates the efficacy of using the STREW-J metrics to make an 
early assessment of post-release field quality.  
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Figure 2: Plots of AAE, ARE with Standard Deviation 

Further, to assess the ability of STREW-J metrics to be used to 
identify programs of low quality, we use the binary logistic 
regression technique[4]. For logistic regression, the exact R2 
values cannot be calculated.  An approximate measure of R2 given 
by the Cox and Snell R2 (0.586) and the Nagelkerke R2 (0.790)[4] 

is used. To determine the efficacy of identifying high and low 
quality components correctly, we use the statistical normal lower 
confidence bound formula on the black box test failures given by 
Equation 4.  
 (lower bound) = µBlack box test failures – [(zα/2*Standard deviation of 
black box test failures/KLOC) / n ] …. (4) 

where Zα/2 is the upper α/2 quantile of the standard normal 
distribution and n is the number of samples. 
All programs having a Black box test failures/KLOC lower than 
the calculated lower bound from Equation 4 are of high quality 
and the remaining is of low quality. The overall classification of 
the low and high quality programs in shown in Table 6.  

Table 6: Overall classification of program quality 
 Predicted 

Quality 
Percentage 

Correct 

 High 
quality 

Low 
quality 

 

High 
quality

7 2 77.8  
CI=[49.05,100]

Observed 
Quality 

Low 
quality

0 13 100.0 

Overall 
Percentage 

   90.9         
CI= [78.30,100]

 
The point estimate of the percentage correct classification is 
90.9% (i.e. overall 20 of the 22 programs were correctly identified 
as high or low quality programs.). The confidence intervals (CI) 
for these point estimates are given in brackets. 

5.  CONCLUSIONS AND FUTURE WORK 
Feedback on potential field quality of software is very useful to 
developers because it helps identify weaknesses and faults in the 
software that require fixing. However, in most production 
environments, field quality is measured too late to affordably 
guide significant corrective actions   In this paper we have 
reported on the use of an in-process testing metric suite for 
providing an early warning regarding post-release field quality 
measured by black box test failures/KLOC, and for identifying 
low quality programs. 
The main observations are: 

• A empirical multiple regression approach using the 
STREW metric suite is a practical approach to measuring 
software post-release field quality ; and  

• STREW-based logistic regression analysis is a feasible 
technique for detecting low quality programs.  

We will continue to validate the metric suite under different 
industrial and academic environments. There also arises the need 
to generalize the STREW-J for other object-oriented languages 
with more case studies.  Finally, we will develop standards for 
these metrics, so that developers can compare their program 
quality in a meaningful was, and get feedback on the quality of 
their testing effort relative to industry developed standards.  
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