
SVG Open 2005
XML to SVG Transformation Mechanisms Comparison

The GraphML use case
cjolif@ilog.fr

● GraphML and SVG in a nutshell
● GraphML to SVG using XSLT
● GraphML to SVG using Java Transformation
● GraphML in SVG thanks to sXBL

XML to SVG Transformation Mechanisms

GraphML use case

● XML based file format for graphs (set of nodes
connected by edges)

 <graph edgedefault=”directed”>
 <desc>GraphML sample</desc>
 <node id=”root”/>
 <node id=”n1”/>
 <node id=”n2”/>
 <node id=”n11”/>
 <edge source=”root” target=”n1”/>
 <edge source=”root” target=”n2” directed=”false”/>
 <edge source=”n1” target=”n11”/>
</graph>

GraphML and SVG in a nutshell

GraphML (1/2)

● Can represent direct or undirect, hyper and nested
graphs

 <graph>
 <graph>
 </graph>
</graph>

● Can be extended to add additional data to the nodes and
edges

 <node id=”n1”>
 <data key=”color”>green</data>
 </node>

GraphML and SVG in a nutshell

GraphML (2/2)

● Scalable Vector Graphics XML based format
● SVG can be used to represent a GraphML graph:

graph.svg
● There are three main tasks to achieve to

transform GraphML to SVG:
– Transform node elements to g, rect & text, and

edge elements to polyline elements
– Position the created SVG elements
– Apply a drawing style to the elements

GraphML and SVG in a nutshell

SVG

● GraphML and SVG in a nutshell
● GraphML to SVG using XSLT
● GraphML to SVG using Java Transformation
● GraphML in SVG thanks to sXBL

XML to SVG Transformation Mechanisms

GraphML use case

● We only experimented translating GraphML to
SVG for the description of a single rooted tree.
This already requires quite a big XSLT stylesheet
for a limited result: graphml2svg.xslt

● We have to first iterate (using recursion) over the
nodes to determine the root of the tree

● Once done, we then recurse over the tree (nodes
and links) to create their SVG counterparts and
layout them

GraphML to SVG using XSLT

Portable XSLT (1/3)

● Advantages:
– Natural choice when translating an XML format to

another one
– Fits very well the first part of the transformation

process
– Can leverage CSS style to allow changing the style

without modifying the XSLT stylesheet: default.css
– Can be applied either on the client or on the server

GraphML to SVG using XSLT

Portable XSLT (2/3)

● XSLT limitations:
– No iteration
– No updateable variables
– Lack of advanced mathematical library
– The two last points lead to obscure code like this

one:<xsl:variable name="abs_x"select="2*
(number($x > 0) -0.5)*$x"/> to compute the
absolute value of x

● These limitations makes the second task (nodes
and edges positionning) difficult

GraphML to SVG using XSLT

Portable XSLT (3/3)

● Using the ability of XSLT to be extended permits
to overcome some of the XSLT limitations by
building an external functions library which
would reduce the stylesheet complexity

● However the resulting stylesheet is not anymore
portable

● graphml2svg-ext.xslt

GraphML to SVG using XSLT

Extended XSLT

● GraphML and SVG in a nutshell
● GraphML to SVG using XSLT
● GraphML to SVG using Java Transformation
● GraphML in SVG thanks to sXBL

XML to SVG Transformation Mechanisms

GraphML use case

● Among ILOG JViews Component Diagrammer
packages the following will be used:
– The SDM (Stylable Data Mapper) package creates

graphical representation from data models and a set of
stylesheets

– The Graph Layout package provides a set of
algorithms that are able to layout nodes and/or edges
of a graph and will be used internally by SDM

– The Graphics Framework brings to SDM the ability to
export its result to SVG

GraphML to SVG using Java Transformation

Leveraging ILOG Jviews Diagrammer

● Allow to layout more complex graphs

● Allow to better parametrize the layout process

GraphML to SVG using Java Transformation

Advantages

● GraphML and SVG in a nutshell
● GraphML to SVG using XSLT
● GraphML to SVG using Java Transformation
● GraphML in SVG thanks to sXBL

XML to SVG Transformation Mechanisms

GraphML use case

● SVG allows third party namespaces elements into
its contents:

 <svg
xmlns:graphml=”http://graphml.graphdrawing.org/xmlns”>
 <graphml:graph edgedefault=”directed”>
 <graphml:desc>GraphML sample</graphml:desc>
 <graphml:node id=”root”/>
 <graphml:node id=”n1”/>
 <graphml:edge source=”root” dest=”n1”/>
 </graphml:graph>
</svg>

● How to visualize it? sXBL (W3C Working Draft)

GraphML in SVG thanks to sXBL

Introduction

● Allows SVG user agents to automatically
recognize elements in a third-party namespace
and perform a transformation of these elements
into SVG elements for rendering

● To each third-party element corresponds a
definition element with a template sub-element
which will be cloned an put into a shadow tree to
be rendered by the SVG user agent

● The component definition receives events and
can react to them by modifying the shadow tree

GraphML in SVG thanks to sXBL

SVG's XML Binding Language (1/2)

<xbl:definition element="grapml:graph">
 <xbl:template>
 <g><xbl:content/></g>
 </xbl:template>
 <xbl:handlerGroup>
 <handler ev:event="xbl:prebind" type="text/ecmascript">
 InitGraph(evt.target)
 </handler>
 </xbl:handlerGroup>
</xbl:definition>
<xbl:definition element="graphml:node">
 <xbl:template>
 <g class="node"><rect width="100" height="100"/><text/></g>
 </xbl:template>
 <xbl:handlerGroup>
 <handler ev:event="prebind" type="text/ecmascript">
 var text = evt.xblShadowTree.getElementsByTagNameNS(SVG_NS, "text").item(0)
 var label = document.createTextNode(evt.target.getAttributeNS(null, "id"))
 text.appendChild(label)
 </handler>
</...>

GraphML in SVG thanks to sXBL

SVG's XML Binding Language (2/2)

● Pros:
– Dynamic Transformation
– Flexibility
– Interoparable Component Model
– Portable, Standart

● Cons:
– Can't leverage other libraries than ECMAScript ones

without breaking interoperability as SVG mandates
only ECMAScript as supported language

– No predefine integration with server side components

GraphML in SVG thanks to sXBL

Pros & Cons

● The transformation process can follow a lot of
different paths

● Developper has to choose among those paths
depending on:
– How far from the XSLT paradigms the required

algorithm is?
– Does he need a fully dynamic transformation?
– Does he want to leverage existing libraries?

● The different alternatives can be mixed

Conclusion

● http://jviews.ilog.com
● http://www.w3.org/TR/sXBL
● http://www.w3.org/TR/SVG11
● http://www.w3.org/TR/SVG12
● http://www.w3.org/TR/xslt
● http://www.w3.org/TR/xpath
● http://graphml.graphdrawing.org/primer/graphml-primer.html

Conclusion

References & QA

