
Finding large primes and factorising large
numbers: is there any alternative to a

brute-force search?

by Professor Tim Gowers, 9th October 2006

LATEXed by Hiro Funakoshi
Please send comments and corrections to tms-sec@srcf.ucam.org

We all know of the standard method of checking whether a number is
prime; we divide a number n by primes 2,3,5 and so on up to

√
n. Let’s start

by considering how long this will actually take; this is an interesting problem
as the RSA public key cryptography works by having two prime numbers
where knowledge of the product alone is enough to encode a message, but the
original primes (i.e. the factorisation of the product) are needed to actually
decode and read the message.

Suppose n has 100 digits, then
√

n will have approximately 50 digits. This
means that using the above algorithm, we’ll have to look at approximately
1050 numbers (or slightly less if we just look at primes), so we clearly need a
clever method. In reality even if a clever method is found it will not really
matter to banks, as if we can factorise 100 digits in a reasonable time, then
we just use 300 digits. Indeed there are “better” methods, but none are
currently good enough to jeopardise bank security.

Let’s first have a quick recap of modular arithmetic. Pick any number m,
and then all numbers in the universe are 0, 1, . . . ,m− 1. We define addition
as normal if a+ b < m, otherwise a+ b = a+ b−m. Multiplication is defined
similarly; ab = remainder when ab is divided by m. So, as an example, if we
have m = 13, then 5 × 7 = 35 = 2 × 13 + 9 ≡ 9 (mod 13) - usually we just
write 5× 7 ≡ 9 (mod 13). It turns out that if m is prime, then all numbers
from 1 to m− 1 have unique multiplicative inverses, so for example when we
have m = 13:

Number 1 2 3 4 5 6 7 8 9 10 11 12
Inverse 1 7 9 10 8 11 2 5 3 4 6 12

Note here that 12×12 ≡ 1 (mod 13); this is true in general since (m−1)2 =
m2 − 2m + 1 ≡ 1 (m). In modular arithmetic we have something called the

1

Fermat’s Little Theorem (not to be confused of course with Fermat’s Last
Therorem which has the same abbreviation). This states that if we have a
prime p and a number a 6= 0, then ap ≡ a (mod p). For example, if p = 7
and a = 3, then 37 = 2187 = 7× 312 + 3 ≡ 3 (7). Here is a proof:

Suppose a 6≡ 0.

ax ≡ ay

bax ≡ bay (letting b = a−1)

x ≡ y

Now consider 1.2.3.p− 1 and (a.1).(a.2).(a.3).(a.(p− 1)).
We know from the above that ax ≡ by iff x ≡ y, so all the
numbers in the second expression are distinct. But there are only
p− 1 distinct numbers, so they are the numbers from 1 to p− 1
in some order (think back to the above table with numbers and
their inverses). Thus:

1.2.3.(p− 1) ≡ a.1.a.2.a.3.a.(p− 1)

1 ≡ a.a.a.a

1 ≡ ap−1

a ≡ ap

Note that if we are not working modulo a prime, we do not always have
inverses so we cannot carry out the cancellation.

Let’s now take a look at the problem of raising powers in modular arith-
metic. If for an exponent n, we required n numbers of steps, then our method
would not be particularly efficient; if for example we needed to raise some-
thing to the power of 10200, and we needed to do 10200 steps, then we would
very quickly reach the heat death of the universe. If however we could find a
method where to raise to an exponent n10 we only required on the order of
n steps, then we could do this fairly effectively. So, consider the problem of
calculating the value of 291 modulo 91. The bad way of doing this would be
to work out 291 and then divide through by 91. A better way would be to
subtract 91 as you multiply:

21 ≡ 2

22 ≡ 4

25 ≡ 32

211 ≡ 46 ≡ 2−1

2

222 ≡ 23 ≡ 2−2

245 ≡ 2−2 × 23× 2 ≡ 23× 2−1 ≡ 57

291 ≡ 37

We can get 23× 2−1 fairly easily; 23+91 = 114, but 114÷ 2 = 57. After this
we use a similar trick to get from 245 to 291. This is a fairly evil example,
as most people would assume 91 is prime and hence try to use FLT (so as a
side note, this also serves as a proof that 91 is not a prime).

This suggests a possible method to check for the primality of a number -
that if ap ≡ a (mod p) then p is prime. Unfortunately, this is not the case,
for example if we take the number 561, we have a561 ≡ a (mod 561) for all a,
but 561 is composite. These numbers are called Carmichael numbers. Let’s
see how we can use powers to prove that 561 is composite. We have that
a561 ≡ a (mod 561), from which we can say that a560 ≡ a (mod 560), as
long as a does not share a cofactor with 561; in practice for sufficiently large
numbers we can more or less say that an−1 ≡ 1 (mod n). Working to mod
561:

2560 ≡ 1

2280 ≡ 1

2140 ≡ 67

672 ≡ 1

672 − 1 ≡ 0

68× 66 ≡ 0

Thus 561 is a factor of 68 × 66, so it cannot be prime. This brings us to
another candidate for a primality test; in the above the crucial step was
where a square (2280) was congruent to 1 but the square root of this number
(2140) was not. In general, working mod p where p is prime:

x2 ≡ 1

(x + 1)(x− 1) ≡ 0

x ≡ ±1

where the last step follows since we are working modulo a prime so we can
cancel the terms. From this we can deduce that if there is a non-trivial
solution to x2 ≡ 1 (mod n) then n is not prime. It was in fact shown by
Miller and Rabin that there is no equivalent of Carmichael numbers for this
test; if ±1 are the only solutions, then n is prime. Furthermore, for any
composite n, for at least 3

4
of the a < n− 1 you get some exact square root

3

of 1 when you work out an−1. So, if we work out an−1 and it throws out
extra roots of 1, then we have confimation that n is composite, else we pick
another a and repeat until we are happy that n is prime. Practically, if we
pick about 50 different a, then we should be fine.

Like the above test, the best known tests for primality are randomised,
and are used on the basis that they are very fast and have a very high proba-
bility of working. There is a purely deterministic polynomial time algorithm,
due to Agrawal and Saxena, but this is not as fast as the aforementioned
tests so is not really used.

Suppose now that we pick a large number at random, say with 5 million
digits, and we run the test, and think that it is composite. With a number
as large as this it is not likely to be prime; by the prime number theorem
the probability that this number is prime is approximately 1/(5 million).
However, if we run the test with 50 different a as suggested above, this is
roughly equal to the probability that the test fails (i.e. it returns that a
number is prime when in fact it is not). So in fact this test is not without
problems.

Finally we will quickly cover some tricks for non-brute force factorising.
Say we want to factorise 8051 - but this is the difference of two squares and
from this we can say that 8051 = 83×97. In general we have that:(

a + b

2

)2

−
(

a− b

2

)2

= ab

so we can search through a, b to obtain a factorisation in this way. However,
this is still quite slow, but there is a clever trick which we can employ. To
factorise 1649:

412 − 1649 = 32

422 − 1649 = 115

432 − 1649 = 200

412 ≡ 32 (mod 1649)

432 ≡ 200 (mod 1649)

412 × 432 ≡ 6400 = 802 (mod 1649)

So, (41× 43 + 80)(41× 43− 80) is a multiple of 1649 thus running Euclid on
1843 and 1683, we can get the factors of 1649.

4

