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Cryogenic air separation, while widely used in industry, is an energy intensive 

process. Effective design can improve efficiency and reduce energy consumption, 

however, uncertainties can make determination of the optimal design difficult. This 

paper addresses the conceptual design of cryogenic air separation process under 

uncertainty. A rigorous, highly nonlinear model of three integrated columns is 

developed to capture the coupled nature of the process. The multi-scenario approach 

is used to incorporate the uncertainty, giving rise to a nonlinear programming 

problem with over half a million variables. Nevertheless, this problem is solved 

efficiently using IPOPT, demonstrating the effectiveness of interior-point methods on 

complex, large-scale nonlinear programming problems. The optimal design from the 

multi-scenario approach is compared against the optimal design using nominal 

parameter values. As expected, the results using the multi-scenario approach are more 

conservative than the nominal case; however, they may be less conservative than 

traditional overdesign factors. 
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Introduction 

Large quantities of high purity air products are used in several industries, 

including the steel, chemical, semiconductor, aeronautical, refining, food processing, 

and medical industries. Methods of air separation include cryogenic and 

non-cryogenic approaches (Castle, 2002). Although non-cryogenic processes such as 

pressure swing adsorption and membrane separation have become more competitive, 

cryogenic distillation technology is still the dominant choice for producing large 

quantities of very high purity and liquefied air products (Baukal, 1998). Cryogenic air 

separation is an energy intensive process that consumes a tremendous amount of 

electrical energy. The U.S. industrial gas industry consumed approximately 31,460 

million kilowatt hours in the USA in 1998, which accounts for 3.5% of the total 

electricity purchased by the manufacturing industry (Karwan et al., 2007). 

Optimal operation and control of cryogenic air separation processes has received 

significant attention, with the primary goal of reducing energy consumption and 

improving economic performance during operation. Load switching in air separation 

columns are analyzed by White et al. (1996), and multivariable control schemes for 

cryogenic air separation are developed in Zhu et al. (2001) and Roffel et al. (2000). 

Trierweiler and Engell (2000) investigated the selection of an appropriate control 
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structure based on dynamic behavior analysis. Seliger et al. (2006) integrated an air 

separation process model with an IGCC power plant and analyzed the combined 

process dynamics. Control strategies such as nonlinear model predictive control 

(NMPC) are difficult to implement for these systems because of the high 

computational cost associated with optimization of a large, complex dynamic model. 

Approaches have been developed that promote efficient NMPC for these systems by 

reducing the size and complexity of the model. Bian et al. (2005) developed a strategy 

for nonlinear model predictive control by adopting a dynamic wave model for the 

single nitrogen column. The advanced step NMPC controller (Zavala and Biegler, 

2009), an alternative approach based on NLP sensitivity, has also been used in Huang 

et al. (2009) to perform efficient nonlinear model predictive control of a cryogenic air 

separation column as a part of an IGCC. Considering offline dynamic optimization, 

Zhu and Laird (2008) proposed an effective parallel nonlinear solution to deal with 

optimal control and operation under uncertainty for two highly coupled cryogenic air 

separation columns.   

In addition to process control, previous research has also focused on planning and 

scheduling for air separation columns. Karwan and Keblis (2007) use a mixed integer 

programming formulation to optimize operating decisions under real time pricing. 

Miller et al. (2008) use thermodynamic ideal work to predict the energy requirements 

when production rates of cryogenic air separation columns change under varying 

electrical prices. Ierapetritou et al. (2002) use an ARIMA model to predict future 
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power prices and minimize operating cost using a two stage stochastic programming 

formulation. Because of the complexity associated with handling uncertainty, much of 

the existing research regarding design and operation under uncertainty of air 

separation systems makes use of simplified or linear process models. However, when 

considering the entire coupled system and the potential for varying operating 

conditions, air separation plants can exhibit highly nonlinear behavior. There is a need 

for strategies that can consider uncertainties and provide rigorous optimization of 

these complex nonlinear models. 

Optimizing the design of the cryogenic air separation system has the potential to 

significantly affect not only the capital investment, but also the future economic 

performance. In practice, most current design schemes focus on specialized column 

structures and opportunities for energy and mass integration. Agrawal and coworkers 

simulate and analyze various thermal coupling methods (Agrawal and Yee, 1994), 

structured packing on packed columns for argon production (Agrawal, et al., 1993), 

and multiple component distillation sequences (Agrawal, 1995, 1996) in order to 

improve energy efficiency and separation performance. Egoshi and coworkers 

(Egoshi et al., 2002) address the problem of predicting practical separation 

performance and obtaining the optimal design of cryogenic air separation plants using 

a rigorous transport model for structured packing. Regardless of the design strategy 

used, in order to retain future process flexibility it is important to consider potential 

uncertainties during the design phase. These include uncertainty in process 
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performance, uncertainty in product demands and pricing, and uncertainty in 

availability and pricing of process inputs. 

One example of uncertainty in the model arises in the selection of 

thermodynamic methods and parameters. The primary components are separated 

under extremely low temperatures, and standard packages may not adequately 

describe the behavior of the system under these conditions. Indeed, many companies 

specializing in air separation have spent significant resources developing specialized 

thermodynamic methods for their systems.  

A second form of uncertainty relates to unknown demands on the process. Air 

separation systems can produce three component products of various grades in both 

vapor and liquid phases. Different customers have different product and purity 

demands, and these demands can change with seasons and other external factors. It is 

important to consider this product demand uncertainty during the design phase and 

develop a process that is flexible enough to meet future product demands. 

A third form of uncertainty comes from unknown or varying availability of 

process inputs and pricing. The dominant operating expense in cryogenic air 

separation systems is the electricity required by the process. Peak versus off-peak 

costs and real-time pricing changes, can significantly affect the economic 

performance of the process. This uncertainty is well studied in a number of articles 

(Ierapetritou et al., 2002; Karwan and Keblis 2007; Miller et al., 2008). 
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To handle potential uncertainties in the design phase, the traditional approach is 

to design the process according to nominal values of the uncertain parameters and 

then overdesign based on empirical factors. However, this approach may result in 

infeasible or conservative design decisions. The development of systematic design 

methods that explicitly consider process uncertainty has been an important research 

topic for many years (Grossmann and Sargent, 1978; Halemane and Grossmann, 

1983). The two dominant approaches for rigorous consideration of uncertainty in 

optimization are the stochastic programming approach and the chance-constrained 

approach. Grossmann and Guillén-Gosálbez (2009) recently discussed the 

opportunities for the use of these approaches in the synthesis and planning of 

sustainable processes. 

In the stochastic programming approach, individual scenarios are included in the 

optimization formulation for each discrete realization of the uncertain parameters. 

Continuous uncertainty spaces are usually approximated by appropriate sampling. 

The problem can be formulated using multiple stages with potential for decisions (or 

recourse) at each stage. Several good textbooks describe this approach in detail (e.g. 

Birge and Louveaux, 2000)  

In chance-constrained programming, constraints need not be satisfied over the 

entire uncertainty space, but instead they are required to be satisfied with a given 

probability. While this explicit description is often desirable, these formulations can 

be very difficult to solve in the general case. 
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Multi-scenario optimization is a popular approach for design of chemical 

processes under uncertainty. Several researchers have investigated effective 

formulation and solution strategies for this class of problems (Pistikopoulos and 

Grossmann, 1988a, 1988b; Pistikopoulos and Ierapetritou, 1995; Paules and Floudas, 

1992; Varvarezos et al., 1994; Rooney and Biegler, 1999, 2001, 2003; Raspanti et al., 

2000), and several well known reviews are available (Pistikopoulos, 1995; Biegler, 

Grossmann, and Westerberg, 1997; Sahinidis, 2004). Two stages are typically 

considered in these formulations: the design stage and the operation stage. Values for 

the design variables must be determined, whereas values of the control variables can 

be determined during the operational stage when some uncertainties may have been 

resolved. 

Rooney and Biegler (2003) generalize the multi-scenario approach and classify 

the uncertainties into process variability and process uncertainty. Process uncertainty 

refers to quantities that are unknown at both the design stage and the operation stage. 

The design itself should ensure feasibility across these uncertainties. Process 

uncertainty includes, for example, unmeasured disturbances and uncertain model 

parameters. Process variability refers to quantities that are uncertain at the design 

stage but measureable during operation. Process control variables are allowed to 

change in order to compensate for this variability. While multi-scenario programming 

is a popular approach, challenges still include efficient solution of these large-scale 

problems, especially in the general nonlinear case. 
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The multi-scenario approach is generally viewed as focusing on reliability more 

than profitability since it requires feasibility of all scenarios. However, when the 

uncertainty space is continuous, the discrete scenarios represent only a sample of the 

continuous space. Recent research has demonstrated that this approach represents an 

approximation of the probabilistic approach and, in special cases, rigorous confidence 

intervals can be established (Luedtke and Ahmed, 2008; Nemirovski and Shapiro, 

2006). These developments, coupled with improvements in optimization tools and 

computational capability, serve to increase the importance of this approach and its 

practical applicability. 

Considering cryogenic air separation systems, uncertainty can arise from several 

sources. Process uncertainty (which is unknown during operation) can arise from 

unknown physical properties. For example, activity coefficient models for N2-Ar-O2 

systems contain binary interaction parameters that are sensitive to argon purities and 

pressures (Harmens, 1970). Process variability (or measurable uncertainty) can arise 

because of changing product demands. In order to satisfy variable product demands, 

the cryogenic air separation system may be required to switch among different 

operating conditions. The argon product variability is often ignored; however, it can 

affect the optimal design significantly. 

This paper addresses the conceptual design of cryogenic air separation systems 

considering an example of both process variability (uncertain thermodynamic 

parameters) and process uncertainty (uncertain product demands). A rigorous 
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nonlinear model is developed that includes all three primary separation columns (with 

recycle) to capture the coupled nature of these systems. A multi-scenario approach is 

used to discretize the uncertainty space and formulate a large-scale nonlinear 

optimization problem. The paper compares the nominal optimal design with that 

resulting from the multi-scenario formulation. This paper further demonstrates that 

the multi-scenario formulation is an effective tool for optimization under uncertainty, 

even when the process models are nonlinear and highly complex. The capabilities of 

off-the-shelf nonlinear programming tools have increased dramatically in the last five 

to ten years. The nonlinear interior-point solver, IPOPT (Wächter and Biegler, 2006), 

provides efficient solution of these large-scale problems, and this paper also shows 

the scalability of this approach as a function of the number of scenarios considered. 

The paper is structured as follows. The next section describes the general 

multi-scenario formulation approach along with an overview of the interior-point 

solution approach. Next, the cryogenic air separation plant is described, followed by a 

description of the optimization formulation. The section Numerical Results shows the 

scalability of IPOPT as the problem size is increased, and discusses the optimal design. 

Finally, the paper closes with some conclusions about the design of air separation 

systems considering uncertainty, the use of multi-scenario programming with rigorous 

nonlinear programming models, and potential decomposition strategies for more 

efficient solution on parallel computing architectures. 
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Multi-scenario Programming Approach 

The multi-scenario formulation can be expressed in general form as,  
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where the design variables are given by d, control variables are given by u, and the 

state variables are given by l. The general equality and inequality constraints are 

given by h and g respectively. The objective allows for a general function associated 

with the design variables, as well as a weighted sum of terms from each scenario.The 

index set K is defined for discrete values of variable parameters, θ
v
, and the index set 

Q is defined for discrete values of unknown parameters, θ
u
. We assume that the 

control variables u can be used to compensate for measured variable parameters, θ
v
, 

but not the uncertainty associated with unknown parameters, θ
u
. Thus, the control 

variables are indexed over the set K, while the state variables, are indexed over both 

Q and K.  

The objective function includes fixed costs related to the design variables and a 

weighted sum arising from a quadrature representation of the expected value of the 

objective over the uncertainty space. Discretization points are selected for this 

quadrature, however, realizations can be added to enforce feasibility at additional 

points. This gives a large-scale nonlinear multi-scenario problem with significant 

coupling or interaction induced by both the control and design variables. 
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 In this paper, we solve the large-scale multi-scenario programming problem using 

the nonlinear interior-point algorithm IPOPT (Wächter and Biegler, 2006). This 

algorithm provides efficient handling of large numbers of inequality constraints by 

shifting variable bounds to the objective in the form of a log-barrier term. The 

solution of the overall NLP problem is obtained by approximately solving a sequence 

of these barrier sub-problems where the barrier parameter approaches zero.  

 To solve each barrier sub-problem, this algorithm calculates the step using a 

Newton-based approach on the primal-dual optimality conditions. Global 

convergence is ensured using a filter-based line search strategy. More details on this 

algorithm can be found in Wächter and Biegler (2006). The software is completely 

open-source and freely available through the COIN-OR foundation. In this paper, 

AMPL (Fourer, Gay, and Kernighan, 2006) is used to formulate the optimization 

problems. AMPL is a powerful modeling language that provides efficient 1
st
 and 2

nd
 

order derivative information through automatic differentiation. All optimization 

problems in this paper were solved using IPOPT version 3.7.1. 

Process Description 

This paper addresses optimization of a rigorous model of a cryogenic air separation 

plant, including three coupled primary separation columns. The plant studied includes 

a double-effect heat integrated distillation column with a side crude argon column 

(CAC). The CAC introduces one energy integration structure and one recycle loop to 

the cryogenic air separation problem, making first-principle modeling and 
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optimization of the system significantly more difficult because of the additional 

coupling. Figure 2 shows the simplified structure of this particular cryogenic air 

separation system. The air feed stream is first compressed and pre-purified to remove 
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Figure 1. Flow Diagram for Air Separation Plant 

primary impurities such as water and carbon dioxide. After being cooled by a primary 

heat exchanger, a portion of the air feed stream is introduced into the low pressure 

distillation column (LPC). The LPC is designed with 70 theoretical stages. The 

remaining feed enters the bottom of the high pressure distillation column (HPC), 

which contains 36 theoretical stages.  A side vapor stream is withdrawn at the 28
th

 

tray of the LPC and is fed into the CAC for distillation. The liquid from the bottom of 

the CAC is returned to the LPC at the location of vapor stream withdrawal. The 
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oxygen-rich liquid from the bottom of the HPC contains approximately 62% nitrogen. 

This stream passes through a heat exchanger then is split into two streams, where one 

portion of this liquid flow will enter into the LPC for further distillation, and the 

remaining portion of this liquid is used as cold resource for the condensation of argon 

products at the top of the CAC before re-entering the LPC as feed flow. The reflux 

flow of the LPC is withdrawn from the top of the HPC and passes through the same 

heat exchanger as the oxygen-rich liquid described previously. 

Liquid oxygen product is withdrawn from the combined condenser/reboiler, and 

vapor oxygen product is withdrawn from the bottom of the LPC. Liquid nitrogen 

product is withdrawn from the top of the HPC, while gas nitrogen product is 

withdrawn from the top of the LPC. Crude argon product is withdrawn from the top 

of the CAC.  

This is a highly integrated system that can be very difficult to design and operate. 

Typically, there are a large number of design variables which need to be determined 

in the detailed design phase of a cryogenic air separation plant. However, this study 

mainly focuses on conceptual design under uncertainty. Therefore all valves are 

assumed to be throttle expansion valves, the mass loss in pipelines are assumed to be 

negligible, and constant heat transfer area and coefficients are used in the heat 

exchanger calculations.  

Based on process dynamics of the cryogenic air separation system, five main 

control variables, u = [U1 U2 U3 U4 U5], are selected to compensate for variability of 
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argon product demands. These variables are defined as the feed air stream of the HPC 

(U1), the feed air stream of the LPC (U2), the reflux flow from the HPC to the LPC 

(U3), the waste nitrogen stream (U4), and the side withdrawal from the LPC to the 

CAC (U5). The five main design variables are the diameters of the three distillation 

columns (the HPC, LPC and CAC), the heat transfer area of the combined 

condenser/reboiler, and the brake horsepower of the compressor. Table 1 shows the 

nominal operating conditions of the plant used in the case study. 

 

Table 1. Operating Conditions for Case Study 

Variables (Units) Nominal Value  

Gas oxygen product, mol/s 2.44 

Liquid oxygen product, mol/s 0.64 

Oxygen product purity ≥98% 

Gas nitrogen product, mol/s 13.13 

Nitrogen product purity ≥99.99% 

Argon product purity ≥96% 

Pressure of LPC, MPa 0.13-0.14 

Pressure of HPC, MPa 0.68-0.69 

Pressure of CAC, MPa 0.12-0.13 

 

Mathematical Model of the Process 

The distillation column (the LPC, the HPC, and the CAC) models are derived 

from the mass and energy balances coupled with the equilibrium relationships. In this 

rigorous model, key assumptions include: 1) complete mixing on each tray and 100% 

tray efficiency; 2) negligible heat losses in the tray; 3) constant pressure drop on each 

tray; 4) uniform pressure and temperature on each tray. 
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The mass balances for each tray are given by, 

1 1
0

V L V L

j j j j j j j j
F F V L V S L S

 
         (2) 

where j is the index of each tray from the top of each column, Fj
V
 and Fj

L 
are the 

vapor and liquid molar feed flows entering into the j
th

 tray, and Sj
V
 and Sj

L 
are the 

vapor and liquid molar side flows out of the j
th

 tray. The vapor and liquid flow rates 

are given by Vj and Lj , respectively. Component mass balances are given by, 

   1 , 1 1 , 1 , , , ,
0

V V L L V L

j i j j i j j i j j i j j j i j j j i j
V y L x F z F z V S y L S x

   
         (3) 

where i is the index of each component (1-nitrogen, 2-argon, 3-oxygen), and the 

liquid and vapor compositions are given by xi,j and yi,j, respectively. The vapor and 

liquid compositions of feed flows entering the j
th

 tray are z
V

i,j and z
L

i,j, respectively.  

The model includes tray by tray energy balances, expressed by, 

   1 1 1 1
0

V L V FV L FL V V L L

j j j j j j j j j j j j j j
V H L H F H F H V S H L S H

   
         (4) 

where Hj
FV

 and Hj
FL 

are the vapor and liquid enthalpies of feed flow entering into the 

j
th

 tray. The vapor and liquid enthalpies in the j
th

 tray are Hj
V
 and Hj

L
 respectively. 

The temperature dependence of the enthalpies were represented using a high-order 

polynomial fit to simulation data. 

The vapor-liquid equilibrium expressions for each tray are given by,  

ijijijij
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where Tj is the temperature of the j
th

 tray. The activity coefficients, γ, are calculated 

using Margule’s equation, and ideal vapor-liquid equilibrium constants Kij are 

calculated using Antoine’s equation with saturation pressure Pi
s
. The variables αmn are 

the binary interaction parameters of activity coefficients. 

The following expressions are used to capture design relationships (Douglas, 

1988; Peters et al., 2002). Column diameters are given by, 
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where Pm is the tray pressure of each column, and Mg is the molecular 

weight of distillate. 

   CACHPCLPCmDD
jmm

,,,max
,

  

(11) 

The height of each column is,  

,4.2
mm

nH   (12) 

where nm is the number of stages in each column and the heat transfer area in the 

combined condenser/reboiler can be described by, 

 TUQA
I

  (13) 

where ∆T is the temperature driving force. QI is the transferred heat between the LPC 

and the HPC, and U is the heat transfer coefficient.  
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The capital costs of column shells and trays (CSC and CTC) are estimated with 

the following equations: 

 
pminmmm

cccHDCSC 
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Here, M&S is the Marshall and Swift index. The parameters cp, cm and cin are the 

pressure range, construction material and installation cost coefficients. The 

parameters cs and ct are the tray spacing and design cost coefficients, respectively. 

The capital cost of heat exchanger (HEC) in combined condenser/reboiler is, 

  
ptmin

ccccAHEC 
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and the capital cost of the main compressor (CPC) is, 
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where BHP is the brake horsepower of the compressor. The entrance and exit 

pressures of the compressor are Pin and Pout, and ∆Fl is the loss amount of the feed 

flow in the compressor. The adiabatic index number of the gas is given by k.  

Because the major operating cost of cryogenic air separation processes is 

required electrical power, we assume the other operating costs can be ignored. Here, 

we also assume that a liquefier is not installed in the system. The power price is 



  18 

 

assumed to be constant in this study, however, more complex formulations 

considering uncertain power prices will be investigated in future work.  

The electricity cost (EC) is given by, 

/BHPCEC
ele

 , (19) 

where Cele is electricity price ($0.0574/(kWh)), and η is the efficiency of the 

compressor (0.75). The total annual cost (TAC) of our air separation process is given 

by the following form, 

   /
m m p qk qk

m k K q Q

TAC C SC C TC H EC C PC t EC
 

 
     
 
   , (20) 

where tp is the payback time, which is assumed to be 3 years. The last term in Eq. (20) 

is a numerical integration for the expected value of the operating cost. In the case 

studies, we assume that variability and uncertainty are both uniformly distributed. 

Therefore, the weights ωqk are all equal. More accurate quadrature rules could be used 

along with other distributions. Other costs such as pipelines and valves are not 

included in this study. 

Numerical Results 

 The base formulation described in the previous section is used to find the optimal 

design for the nominal case. In addition, a multi-scenario formulation is developed 

that considers uncertainty in argon product demands and the thermodynamic 

parameter α12, and evaluates the objective using the expected value of the operating 
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costs. Before discussing the optimization results in detail, we first present the timing 

results showing the scalability of the multi-scenario approach with IPOPT.  

Argon product demands are assumed to be uniformly distributed between 0.1063 

(-20%) mol/s and 0.1595 (+20%) mol/s, and the binary interaction parameter, α12, is 

assumed to be uniformly distributed between 7.0 and 9.5 (Harmens, 1970). Figure 2 

shows the IPOPT solution times using the default options. The same number of 

discretizations is used for each uncertain parameter, and the category labels give the total 

number of scenarios considered for each run. The white bars on the left list the average 

CPU time for each iteration. The grey bars on the right list the total CPU time in seconds. 

Note that the number of iterations need not be the same for each case. Furthermore, by 

default IPOPT uses exact first and second derivative information, and the number of 

iterations remains relatively constant as the size of the problem increases.  
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Figure 2. Timing Results for Multi-scenario Approach (Default Options) 

Figure 3 shows the timing information using the quasi-Newton approach within 

IPOPT. With this option, the Hessian information is approximated using a limited memory 

BFGS update. Similar scaling is seen for this approach. The number of variables in the 4 

scenario case is approximately 8,000, while the number of variables in the 196 scenario 

case is approximately 675,000. These results demonstrate that off-the-shelf nonlinear 

programming tools are able to scale effectively to reasonably large problems, even when 

the models are highly coupled and nonlinear. 
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Figure 3. Timing Results for Multi-scenario Approach (L-BFGS) 

Taking the largest number of scenarios (196 scenarios), optimal results from the 

multi-scenario formulations are compared with optimal results for the nominal case in 

Table 2. As expected, the design is more conservative when uncertainty is considered. 

The optimal diameter of the HPC is the least sensitive to the uncertainty considered here.  

Table 2. Optimal Design for the Nominal and Multi-Scenario Formulations 

 

Variables 

Nominal  

Case 

Multi-Scenario 

Formulation 

 

Difference 

Dia. of LPC, m 0.66 0.76 15.65% 

Dia. of HPC, m 0.88 0.95 8.24% 

Dia. of CAC, m 0.44 0.54 23.42% 

BHP, Kw 90 113 25.57.2% 

Heat exch. area, m
2
 24 26 11.45% 

TAC, $10
5
 1.412 1.586 12.35% 

 

The diameter of the CAC and the brake horsepower are significantly affected. This is 

reasonable, since the variability in argon demands will require greater process flexibility. 
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This result also shows that it is not optimal (and may not be feasible) to absorb potential 

argon variability by operational changes alone. Both design and operation changes should 

be considered. The effects of these uncertainties on the diameter of the LPC are more 

dramatic than on the diameter of the HPC. This is expected given the variability in argon 

production and the integration between the LPC and the CAC. Increased withdrawal from 

the LPC to the CAC, coupled with variability in recycle from the CAC, requires 

increased flexibility in the LPC. In contrast, the CAC is less tightly integrated with the 

HPC. 

Figure 4 shows how the optimal design changes as a function of the number of 

scenarios considered. The values for the argon demand and the uncertain binary 

interaction parameter were selected randomly from the ranges given previously. While it 

is difficult to guarantee that the scenarios sufficiently span the space of variability and 

uncertainty, it can be seen that the multi-scenario design solution converges as we 

increase the number of scenarios.  
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Figure 4. Dependence between multi-scenario design and increasing scenario number 

 

Summary & Conclusions 

This work uses a multi-scenario approach to determine the optimal design of a 

cryogenic air separation process considering two classes of uncertainty. Process 

variability is describes uncertainty that is measurable during operation, and control 

variables can be used to compensate for this uncertainty. Process uncertainty represents 

unmeasurable quantities like uncertain model parameters or unmeasured disturbances. In 

this paper, argon product demands were selected as an example of process variability, and 

unknown activity coefficients were selected as an example of process uncertainty. 

As expected, the optimal design is more conservative when uncertainties are 

considered. However, the multi-scenario approach provides a more rigorous treatment of 
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uncertainty than applying traditional overdesign factors. The approach allows for a more 

efficient design by capturing the potential for operational changes in the control variables 

as a function of process variability. Furthermore, nonlinear interactions between the 

uncertainties, the design decisions, and these potential control possibilities are rigorously 

captured. 

While multi-scenario programming is a popular approach for treatment of 

uncertainty in optimization, it can be challenging to find efficient solution strategies for 

these large-scale problems, especially in the general nonlinear case. Nevertheless, there 

have been significant advancements in nonlinear programming algorithms, and the 

capabilities of general off-the-shelf solvers (e.g. IPOPT) have increased dramatically. The 

largest multi-scenario problem considered in this paper includes 196 scenarios and more 

than 675,000 variables. Nevertheless, this formulation solves in under 20 minutes on a 

standard desktop computer. These results show that recent algorithm improvements, 

coupled with continued increases in computational capability, allow practical application 

of the multi-scenario approach with rigorous, large-scale nonlinear models. This will be 

even more evident as we continue to develop algorithms that can exploit modern 

computing architectures to promote efficient solution in parallel. 

Future Work 

In this study, a rigorous model of an air separation process was developed that 

considered three highly integrated columns. The two uncertainties considered were a 

thermodynamic interaction parameter and the argon product demand. Future work is 
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needed to include treatment of additional uncertainties. A key variability during 

operation is the price of electricity, which is the dominant operating cost for the 

process. A careful analysis will help engineers further quantify the impact of this and 

other uncertainties on design and operation. 

This work used a steady-state model and assumed perfect control was possible. 

Given the potential control challenges with such a highly integrated process, these 

optimization formulations should consider integrated design and control 

Finally, the main challenge in multi-scenario optimization is still efficient 

solution of the large-scale problem. The dominant computational expense of the IPOPT 

algorithm is the solution of the augmented linear system resulting from a Newton 

iteration of the primal-dual equations. Given a problem with a specialized structure, 

decompositions are possible that can exploit this structure and produce efficient 

solutions in parallel. We have developed a package, SCHUR-IPOPT, that uses an 

internal decomposition approach for the parallel solution of structured nonlinear 

programming problems based on the serial IPOPT algorithm. For the general design 

under uncertainty formulation, previous results on a large distributed cluster have 

demonstrated that the solution time is almost constant as scenarios and processors are 

added (Laird and Biegler, 2008; Zavala et al., 2008; Zhu and Laird, 2008). In the 

general multi-scenario formulation considering both process variability and process 

uncertainty, there is additional structure. If the problem is decomposed with a single 

scenario for each processor, then the common variables in the parallel decomposition 
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include both the control variables and the design variables. However, there is no 

restriction that each individual block needs to consider only a single scenario. If the 

problem is decomposed over the process variabilities only, then the number of 

common variables considered in the parallel decomposition includes only the design 

variables. With this scheme, the coupling induced by the control variables is handled 

internally by the serial linear solver. Furthermore, nested decomposition strategies are 

possible to promote further parallelization. Future work will include the development 

of specialized decomposition strategies for this nested structure. 

Nomenclature 

F = feed flow rate, mol/s 

K = ideal vapor-liquid equilibrium constant 

V = vapor flow rate, mol/s 

L = liquid flow rate, mol/s 

S = side flow rate, mol/s 

H = vapor or liquid enthalpies 

T = tray temperature  

P = tray pressure 

Q = transferred heat 

UA = heat transfer rate, W/K 

x = liquid flow composition 

y = vapor flow composition 

z = feed flow composition 

U1 = air feed flow rate in HPC, mol/s 

U2 = expand air flow, mol/s 

U3 = nitrogen reflux from HPC to LPC, mol/s 

U4 = waste nitrogen, mol/s 

U5 = feed flow rate of crude argon column, mol/s. 

D = Diameter of distillation columns, m 

 

Greek letter 

γ = Activity coefficient 

η = Compression efficiency 

k = Adiabatic index number in compressor 
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Abbreviation 

HPC = High Pressure Distillation Column 

LPC = Low Pressure Distillation Column 

CAC = Crude Argon Column 

TAC = Total Annual Cost 

EC = Electricity Cost 

BHP = Brake Horsepower of the Compressor 

CPC = Capital Cost of Main Compressor 

HEC = Capital Cost of Heat Exchanger 

CSC = Capital Cost of Column Shells 

CTC = Capital Cost of Column Trays 
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