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Abstract. Einstein’s equations of the general theory of relativity are rewritten within
a Clifford algebra. This algebra is otherwise isomorphic to a direct product of two
quaternion algebras. A multivector calculus is developed within this Clifford algebra
which differs from the corresponding complexified algebra used in the standard space-
time algebra approach.

1. Introduction

In recent years, applications of Clifford algebras in physics have been strongly
developed, in particular in the area of the general theory of relativity [1, 2,
3]. Yet, most of these applications have neglected the close connection of Clif-
ford algebras to quaternions. In the following, we shall give a formulation of
Einstein’s equations within a Clifford algebra which is isomorphic to a direct
product of two quaternion algebras and thus differs from the corresponding
complexified algebra used in the space-time algebra approach (STA).

2. Clifford Algebra

2.1 Definitions

Consider the Clifford algebra (over real numbers) having four generators
e0, e1, e2, e3, anticommuting when distinct (e1e2 = −e2e1) and such that
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e 2
0 = −1, e 2

1 = e 2
2 = e 2

3 = +1. A basis of the algebra is constituted by the
sixteen elements 1, e0(≡ j), e1, e2, e3, e0e1, e0e2, e0e3, e3e2(≡ I), e1e3(≡
J), e2e1(≡ K), e1e2e3(≡ k), e0e3e2, e0e1e3, e0e2e1, e0e1e2e3(≡ i). The ele-
ments i, j, k satisfy the relations

i2 = j2 = k2 = ijk = −1

and similarly for I, J, K. Hence, i, j, k constitute a quaternionic system as
well as I, J, K the latter commuting with the first (iJ = Ji, etc.). Conse-
quently, a general element of the algebra or Clifford number can be written as
a set of four quaternions (α0; α1, α2, α3) or (α0; α) and explicitly

(a + ib + jc + kd; m + in + jr + ks)

with m= m1I + m2J + m3K and similarly for n, r, and s [4, 5]. The sixteen
dimensions of a Clifford number decompose into scalars a, pseudo-scalars ib,
vectors (jc; ks) ≡ jc+ks, bivectors m+in and trivectors kd+jr. Two Clifford
numbers multiply according to the rule

(α0; α)(β0; β) = (α0β0 − α.β; α0β + αβ0 + α× β)

where α.β, α×β stand for the ordinary dot and vector products. Since quater-
nion multiplication is not commutative, the order of the elements in the formula
must be respected. The product of two quaternions is obtained via the same
product, the coefficients being real.

The conjugated Ac of a Clifford number A is defined by (a + ib − jc +
kd; −m− in+ jr−ks) with (AB)c = BcAc, where A, B are Clifford numbers
and the commutator is given by

2[A, B] = AB −BA.

2.2 Interior and Exterior Products

Interior and exterior products of two vectors u and v can be defined quite
generally via the formula

uv = λu.v + µu ∧ v

where λ, µ are constants [6]; adopting the choice λ = µ = −1, one obtains the
relations
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2u.v = −(uv + vu)

2u ∧ v = −(uv − vu).

The exterior product being associative, the interior and exterior products of a
vector v with a multivector Ap = v1 ∧ v2 . . . ∧ vp where vp are vectors is given
by

2v.Ap = (−1)p[vAp − (−1)pApv]

2v ∧Ap = (−1)p[vAp + (−1)pApv].

In particular, we shall frequently use the relation 2B.v = Bv− vB where B is
a bivector. The interior and exterior products of two multivectors Ap and Bq

are defined with Casanova [3] by

Ap.Bq = (v1 ∧ . . . ∧ vp−1).(vp.Bq)

Ap ∧Bq = v1 ∧ (v2 ∧ . . . vp ∧Bq).

3. Application to Einstein’s Equations

3.1 Pseudo-euclidean Space

Consider the pseudo-euclidean four-dimensional vector space (jx0; kx) and its
interior product

x.x = (x0)2 − (x1)2 − (x2)2 − (x3)2;

according to whether the latter is positive, negative or nil, the vector is said to
be time like, space like or isotropic. A unit time like vector (space like) has an
interior product equal to 1 (resp. -1). The vectors e0, e1, e2 and e3 are orthog-
onal, unit vectors and constitute a basis of the pseudo-euclidean space. The
reciprocal basis eα is defined by eµ.eν = δµ

ν(e0 = e0, e
1 = −e1, e

2 = −e2, e
3 =

−e3).

An orthochronous Lorentz transformation is expressed by

x′ = axac

where a is an even multivector (constituted by an even product of eα) such
that aac = 1; the same relation A′ = aAac applies to any multivector A and
yields the relativistic invariant AAc. A pure rotation of angle θ around the
unit (space-like) vector ku is given by a = cos θ/2 + u sin θ/2; a pure Lorentz
transformation is given by a = ch ϕ/2 + iu sh ϕ/2 (with th ϕ = v/c) and
transforms (actively) a point at rest into a point moving with the velocity v in
the direction of the unit vector ku.
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3.2 Riemannian Space

Consider a space with an elementary four-dimensional displacement DM =
ωiei and an affined connection Dei = ωj

iej . A covariant differentiation of a
vector A is defined by

DA = dA + dω.A

with 2dω = ωijei ∧ ej where dω is a bivector and ωij = ωi
k(ek.ej); dA is

the ordinary differential with respect to the components. Under a Lorentz
transformation A′ = fAfc, DA and dω transform respectively according to
DA′ = fDAfc and

dω′ = fdωfc − 2df fc.

The space is said to be riemannian if it is without torsion and has a curva-
ture, two conditions which are expressed by

D(∆M)−∆(DM) = 0 (1)

(D∆−∆D)A = Ω.A (2)

where Ω is the bivector dδω− δdω +[dω, δω]; D, ∆ designate covariant differ-
entiations in two independent directions. Equation (1) entails that the affined
connection bivector dω = Ikduk is determined by the elementary displacement
DM = σmdum via the linear equations

Ik .σm − Im.σk =
∂σk

∂um
− ∂σm

∂uk

where the partial derivatives are taken only with respect to the components
and σi, Ik, uk are respectively vectors, bivectors and the parameters. More
explicitly, writing

2dω = Lkm
j ωj(d)ek ∧ em

dωk(δ)− δωk(d) = −Ck
ijω

i(d)ωj(δ),

equation (1) yields the relation

2Lijk = (Ckij − Cijk − Cjki)

with the standard raising or lowering of indexes Ckij = (ek.em)Cm
ij . Ω can be

expressed as
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Ω = −Ωkmωk(d)ωm(δ)

= −
{

∂Ik

∂um
− ∂Im

∂uk
+ [Ik, Im]

}
dukδum

with 2Ωkm = Rij
kmei ∧ ej where Rij

km is the Riemann tensor. Bianchi’s first
identity is given by relation (3) entailing (4)

Ωij .ek + Ωjk.ei + Ωki.ej = 0 (3)

Ωij .(ek ∧ em) = Ωkm.(ei ∧ ej). (4)

Bianchi’s second identity is given by

Ωij ; k + Ωjk ; i + Ωki ; j = 0 with

D′Ω(d, δ) = d′Ω + [d′ω, Ω] = Ωij; k ωi(d)ωj(δ)ωk(d′).

Finally, the Ricci tensor Rik = Rh
ihk and the curvature R = Rk

k are obtained
via the relations

Rk = −Ωik.ei = Rikei ,

R = −(Ωik.ei).ek = −Ωik.(ei ∧ ek).

3.3 Einstein’s Equations

Einstein’s field equations [7-9] can be written in the form

1
2
Ωij .(ei ∧ ej ∧ ek) = K T k (i, j = 0, 1, 2, 3) (5)

with T k = T ikei, K = 8πG/c4, and 2B.T = −(BT + TB), where T ik is the
energy-momentum tensor and B, T are respectively a bivector and a trivector.
The left member of equation (5) is identical to the standard expression (Rik−
δikR/2)ei. The proof goes as follows; using the relation

(B.T ).V = (B ∧ V ).T

where B, T, V are respectively a bivector, a trivector and a vector, one has
[
1
2
Ωij .(ei ∧ ej ∧ ek)

]
.eµ =

1
2
Rαβ

ij(eα ∧ eβ ∧ eµ).(ei ∧ ej ∧ ek)

= −1
2
Rαβ

ij δijk
αβµ = Rβk

βµ −
1
2
δk
µ R.
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Equation (5) presents a close formal resemblance to the equation obtained
within the differential calculus despite a distinct algebraic context [10]. Finally,
calling u the four-velocity the equation of motion is given by

Du = du + dω.u = 0.

As an application, in the case of the Schwarzschild metric, the metric and the
bivector dω are respectively given by (with m = GM/c2)

ds2 = (1− 2m

r
)c2dt2 − (1− 2m

r
)−1dr2 − r2(dθ2 + sin2 θdϕ2)

dω = cos θdϕI + (1− 2m

r
)1/2(− sin θ dϕ J + dθK) + iImcdt/r2.

4. Conclusion

Einstein’s equations have been formulated within a Clifford algebra revealing a
formal analogy with the equations derived from the exterior differential calcu-
lus. A multivector calculus based on this algebra, directly linked to quaternions,
and distinct from the complexified algebra used in STA has been developed with
the hope of showing the usefulness of quaternions in physics.
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