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The work of Wendelin Werner and his collaborators represents one of the 
most exciting and fruitful interactions between mathematics and physics in 
recent times. Werner's research has developed a new conceptual framework 
for understanding critical phenomena arising in physical  systems and has 
brought new geometric insights that were missing before.  The theoretical 
ideas arising in this work, which combines probability theory and ideas from 
classical  complex  analysis,  have  had  an  important  impact  in  both 
mathematics and physics and have potential connections to a wide variety of 
applications.

A motivation for Wendelin Werner's work is found in statistical physics, where 
probability theory is used to analyze the large-scale behavior of complex, 
many-particle systems. A standard example of such a system is that of a gas: 
Although it would be impossible to know the position of every molecule of air 
in the room you are sitting in, statistical  physics tells you it  is  extremely 
unlikely that all the air molecules will end up in one corner of the room. Such 
systems can exhibit phase transitions that mark a sudden change in their 
macroscopic behavior.  For  example,  when water  is  boiled,  it  undergoes a 
phase  transition  from  being  a  liquid  to  being  a  gas.  Another  classical 
example  of  a  phase  transition  is  the  spontaneous  magnetization  of  iron, 
which depends on temperature. At such phase transition points, the systems 
can exhibit so-called critical phenomena. They can appear to be random at 
any scale (and in particular at the macroscopic level) and become "scale-
invariant",  meaning  that  their  general  behavior  appears  statistically  the 
same at all scales. Such critical phenomena are remarkably complicated and 
are  far  from  completely  understood.

In 1982 physicist Kenneth G. Wilson received the Nobel Prize for his study of 
critical  phenomena,  which  helped  explain  "universality":  Many  different 
physical systems behave in the same way as they get near critical points. 
This behavior is described by functions in which a quantity (for instance the 
difference between the actual temperature and the critical one) is raised to 
an  exponent,  called  a  "critical  exponent"  of  the  system.  Physicists  have 
conjectured  that  these  exponents  are  universal  in  the  sense  that  they 
depend  only  on  some  qualitative  features  of  the  system and  not  on  its 
microscopic details. Although the systems that Wilson was interested in were 
mainly three- and four-dimensional, the same phenomena also arise in two-
dimensional
systems.  During  the  1980s  and  1990s,  physicists  made  big  strides  in 
developing conformal field theory, which provides an approach to studying 



two-dimensional critical phenomena. However, this approach was difficult to 
understand in a rigorous mathematical way, and it provided no geometric 
picture of how the systems behaved. One great accomplishment of Wendelin 
Werner, together with his collaborators Gregory Lawler and Oded Schramm, 
has  been  to  develop  a  new  approach  to  critical  phenomena  in  two 
dimensions  that  is  mathematically  rigorous  and  that  provides  a  direct 
geometric picture of systems at and near their critical points.

Percolation is a model that captures the basic behaviour of, for example, a 
gas  percolating  through  a  random  medium.  This  medium  could  be  a 
horizontal network of pipes where, with a certain probability, each pipe is 
open  or  blocked.  Another  example  is  the  behaviour  of  pollutants  in  an 
aquifer. One would like to answer questions such as, What does the set of 
polluted  sites  look  like?  Physicists  and  mathematicians  study  schematic 
models of percolation such as the following. First, imagine a plane tiled with 
hexagons. A toss of a (possibly biased) coin decides whether a hexagon is 
colored white or black, so that for any given hexagon the probability that it 
gets colored black is p and the probability that it gets colored white is then 1 
- p. If we designate one point in the plane as the origin, we can ask, Which 
parts  of  the  plane  are  connected  to  the  origin  via  monochromatic  black 
paths? This set is called the "cluster" containing the origin. If p is smaller 
than 1/2, there will be fewer black hexagons than white ones, and the cluster 
containing the origin will be finite. Conversely, if p is larger than 1/2, there is 
a positive chance that the cluster containing the origin is infinite. The system 
undergoes a phase transition at the critical value p = 1/2.

This critical value corresponds to the case where one tosses a fair coin to 
choose  the  color  for  each  hexagon.  In  this  case,  one can  prove that  all 
clusters are finite and that whatever large portion of the lattice one chooses 
to look at, one will find (with high probability) clusters of size comparable to 
that portion. The accompanying picture represents a sample of a fairly large 
cluster.

The percolation model has drawn the interest of theoretical physicists, who 
used  various  non-rigorous  techniques  to  predict  aspects  of  its  critical 
behavior. In particular, about fifteen years ago, the physicist John Cardy used 
conformal field theory to predict some large-scale properties of percolation at 
its critical point. Werner and his collaborators Lawler and Schramm studied 
the continuous object that appears when one takes the large-scale limit---
that is, when one allows the hexagon size to get smaller and smaller. They 
derived  many  of  the  properties  of  this  object,  such as,  for  instance,  the 
fractal dimension of the boundaries of the clusters. Combined with Stanislav 
Smirnov's 2001 results on the percolation model and earlier results by Harry 
Kesten, this work led to a complete derivation of the critical exponents for 
this particular model.

Another  two-dimensional  model  is  planar  Brownian motion,  which can be 
viewed as the large-scale limit  of  the discrete random walk.  The discrete 
random walk describes the trajectory of a particle that chooses at random a 
new direction at every unit of time. The geometry of planar Brownian paths 



is quite complicated. In 1982, Benoit Mandelbrot conjectured that the fractal 
dimension of the outer boundary of the trajectory of a Brownian path (the 
outer boundary of the blue set in the accompanying picture) is 4/3. Resolving 
this  conjecture  seemed  out  of  reach  of  classical  probabilistic  techniques. 
Lawler, Schramm, and Werner proved this conjecture first by showing that 
the  outer  frontier  of  Brownian  paths  and  the  outer  boundaries  of  the 
continuous  percolation  clusters  are  similar,  and  then  by  computing  their 
common  dimension  using  a  dynamical  construction  of  the  continuous 
percolation clusters. Using the same strategy, they also derived the values of 
the closely related "intersection exponents" for Brownian motion and simple 
random walks that had been conjectured by physicists B. Duplantier and K.-
H. Kwon (one of these intersection exponents describes the probability that 
the paths of two long walkers remain disjoint up to some very large time). 
Further  work  of  Werner  exhibited  additional  symmetries  of  these  outer 
boundaries  of  Brownian  loops.

Another result of  Wendelin Werner and his co-workers is  the proof of  the 
"conformal  invariance"  of  some  two-  dimensional  models.  Conformal 
invariance is a property similar to, but more subtle and more general than, 
scale  invariance  and lies  at  the  roots  of  the definition  of  the continuous 
objects that Werner has been studying. Roughly speaking, one says that a 
random two-dimensional object is conformally invariant if  its distortion by 
angle-preserving transformations (these are called conformal maps and are 
basic objects in complex analysis) have the same law as the object itself. The 
assumption  that  many  critical  two-dimensional  systems  are  conformally 
invariant is one of the starting points of conformal field theory. Smirnov's 
above-mentioned result proved conformal invariance for percolation. Werner 
and  his  collaborators  proved  conformal  invariance  for  two  classical  two-
dimensional models, the loop-erased random walk and the closely related 
uniform spanning tree, and described their scaling limits. A big challenge in 
this  area  now  is  to  prove  conformal  invariance  results  for  other  two-
dimensional  systems.

Mathematicians and physicists had developed very different approaches to 
understanding two-dimensional  critical  phenomena.  The work of  Wendelin 
Werner  has  helped  to  bridge  the  chasm  between  these  approaches, 
enriching  both  fields  and  opening  up  fruitful  new  areas  of  inquiry.  His 
spectacular work will continue to influence both mathematics and physics in 
the  decades  to  come.

1357 words

BIOGRAPHICAL SKETCH
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